• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 14
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 29
  • 25
  • 24
  • 18
  • 16
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Drop impact splashing and air entrapment

Thoraval, Marie-Jean 03 1900 (has links)
Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.
82

Numerical Analysis on the Effects of Blade Loading on Vortex Shedding and Boundary Layer Behavior in a Transonic Axial Compressor

Clark, Kenneth Phillip 14 June 2011 (has links) (PDF)
Multiple high-fidelity, time-accurate computational fluid dynamics simulations were performed to investigate the effects of upstream stator loading and rotor shock strength on vortex shedding characteristics in a single stage transonic compressor. Various configurations of a transonic axial compressor stage, including three stator/rotor axial spacings of close, mid, and far in conjunction with three stator loadings of decreased, nominal, and increased were simulated in order to understand the flow physics of transonic blade-row interactions. Low-speed compressors typically have reduced stator/rotor axial spacing in order to decrease engine weight, and also because there is an increase in efficiency with reduced axial spacing. The presence of a rotor bow shock in high-speed compressors causes additional losses as the shock interacts with the upstream stator trailing edge. This research analyzes the strength of shock-induced vortices due to these unsteady blade-row interactions. The time-accurate URANS code, TURBO, was used to generate periodic, quarter annulus simulations of the Blade Row Interaction compressor rig. Both time-averaged and time-accurate results compare well with experimentally-observed trends. It was observed that vortex shedding was synchronized to the passing of a rotor bow shock. Normal and large shock-induced vortices formed on the stator trailing edge immediately after the shock passing, but the large vortices were strengthened at the trailing edge due to a low-velocity region on the suction surface. This low velocity region was generated upstream of mid-chord on the suction surface from a shock-induced thickening of the boundary layer or separation bubble, due to the rotor bow shock reflecting off the stator trailing edge and propagating upstream. The circulation of the shock-induced vortices increased with shock strength (decreased axial spacing) and stator loading. Most design tools do not directly account for unsteady effects such as blade-row interactions, so a model is developed to help designers account for shock-induced vortex strength with varying shock strength and stator loading. An understanding of the unsteady interactions associated with blade loading and rotor shock strength in transonic stages will help compressor designers account for unsteady flow physics early in the design process.
83

Turbine Base Pressure Active Control Through Trailing Edge Blowing

Saracoglu, Bayindir Huseyin 05 September 2012 (has links)
No description available.
84

<b>Investigating Unsteadiness in a Low-Pressure Turbine Stage using Constant Temperature Anemometry</b>

Adam C Moeller (18462006) 29 April 2024 (has links)
<p dir="ltr">In this thesis, an experimental procedure for assessing unsteady fluctuations in flow velocity inside an annular low pressure turbine test facility using constant temperature anemometry is established. This procedure is then applied to two test cases in order to validate the methodology and build expertise with the measurement techniques involved. The results of these experiments appear to be reasonable and in good agreement with the body of literature documenting such cases. After the procedure is validated, the experiments in the annular test section are conducted and the results are processed according to the same methodology as previous. The results provide spatial and temporal understanding of the flow at a plane downstream of the blade row. The uncertainties of measured quantities are computed and the experimental results are contextualized with a comparison to a numerical study. The body of work is assessed to determine whether the research objective has been met and recommendations for future studies are given.</p>
85

Analysis of Heat Transfer Enhancement in Channel Flow through Flow-Induced Vibration

Kota, Siva Kumar 12 1900 (has links)
In this research, an elastic cylinder that utilized vortex-induced vibration (VIV) was applied to improve convective heat transfer rates by disrupting the thermal boundary layer. Rigid and elastic cylinders were placed across a fluid channel. Vortex shedding around the cylinder led to the periodic vibration of the cylinder. As a result, the flow-structure interaction (FSI) increased the disruption of the thermal boundary layer, and therefore, improved the mixing process at the boundary. This study aims to improve convective heat transfer rate by increasing the perturbation in the fluid flow. A three-dimensional numerical model was constructed to simulate the effects of different flow channel geometries, including a channel with a stationary rigid cylinder, a channel with a elastic cylinder, a channel with two elastic cylinders of the same diameter, and a channel with two elastic cylinders of different diameters. Through the numerical simulations, the channel maximum wall temperature was found to be reduced by approximately 10% with a stationary cylinder and by around 17% when introducing an elastic cylinder in the channel compared with the channel without the cylinder. Channels with two-cylinder conditions were also studied in the current research. The additional cylinder with the same diameter in the fluid channel only reduced the surface wall temperature by 3% compared to the channel without any cylinders because the volume of the second cylinder could occupy some space, and therefore, reduce the effect of the convective heat transfer. By reducing the diameter of the second cylinder by 25% increased the effect of the convection heat transfer and reduced the maximum wall temperature by around 15%. Compared to the channel with no cylinder, the introduction of cylinders into the channel flow was found to increase the average Nusselt number by 55% with the insertion of a stationary rigid cylinder, by 85% with the insertion of an elastic cylinder, by 58% with the insertion of two cylinders of the same diameter, and by approximately 70% with the insertion of two cylinders of different diameters (the second cylinder having the smaller diameter). Furthermore, it was also found that the maximum local Nusselt number could be enhanced by around 200%-400% at the entrance of the fluid channel by using the elastic cylinders compared to the channel without cylinders.
86

Étude de stabilité et simulation numérique de l’écoulement interne des moteurs à propergol solide simplifiés / Stability analysis and numerical simulation of simplified solid rocket motors

Boyer, Germain 22 October 2012 (has links)
Cette thèse vise à modéliser les instabilités hydrodynamiques générant des détachements tourbillonnaires pariétaux (ou VSP) responsables des Oscillations De Pression dans les moteurs à propergol solide longs et segmentés par interaction avec l’acoustique du moteur. Ces instabilités sont modélisées en tant que modes de stabilité linéaire globaux de l’écoulement d’un conduit à parois débitantes. En supposant que les structures pariétales émergent d’une perturbation de l’écoulement de base, des modes discrets et indépendants du maillage utilisé sont calculés. Dans ce but, une discrétisation par collocation spectrale multi-domaine est implémentée dans un solveur parallèle afin de s’affranchir de la croissance polynomiale des fonctions propres et de la présence de couches limites. Les valeurs propres ainsi calculées dépendent explicitement des frontières du domaine, à savoir la position de la perturbation et celle de la sortie, et sont ensuite validées par simulation numérique directe. On montre alors qu’elles permettent bien de décrire la réponse à une perturbation initiale de l’écoulement modifié par une rupture de débit pariétale. Ensuite, la simulation d’une réponse forcée par l’acoustique se fait sous forme de structures tourbillonnaires dont les fréquences discrètes sont en accord avec celles des modes de stabilité. Ces structures sont réfléchies en ondes de pression de même fréquences remontant l’écoulement. Finalement, la simulation numérique et la théorie de la stabilité permettent de montrer que le VSP, dont la réponse est linéaire vis-à-vis d’un forçage compressible comme l’acoustique, est le phénomène moteur des Oscillations De Pression. / The current work deals with the modeling of the hydrodynamic instabilities that play a major role in the triggering of the Pressure Oscillations occurring in large segmented solid rocket motors. These instabilities are responsible for the emergence of Parietal Vortex Shedding (PVS) and they interact with the boosters acoustics. They are first modeled as eigenmodes of the internal steady flowfield of a cylindrical duct with sidewall injection within the global linear stability theory framework. Assuming that the related parietal structures emerge from a baseflow disturbance, discrete meshindependant eigenmodes are computed. In this purpose, a multi-domain spectral collocation technique is implemented in a parallel solver to tackle numerical issues such as the eigenfunctions polynomial axial amplification and the existence of boundary layers. The resulting eigenvalues explicitly depend on the location of the boundaries, namely those of the baseflow disturbance and the duct exit, and are then validated by performing Direct Numerical Simulations. First, they successfully describe flow response to an initial disturbance with sidewall velocity injection break. Then, the simulated forced response to acoustics consists in vortical structures wihich discrete frequencies that are in good agreement with those of the eigenmodes. These structures are reflected into upstream pressure waves with identical frequencies. Finally, the PVS, which response to a compressible forcing such as the acoustic one is linear, is understood as the driving phenomenon of the Pressure Oscillations thanks to both numerical simulation and stability theory.
87

Low-order coupled map lattices for estimation of wake patterns behind vibrating flexible cables

Balasubramanian, Ganapathi Raman 08 September 2003 (has links)
"Fluid-structure interaction arises in a wide array of technological applications including naval and marine hydrodynamics, civil and wind engineering and flight vehicle aerodynamics. When a fluid flows over a bluff body such as a circular cylinder, the periodic vortex shedding in the wake causes fluctuating lift and drag forces on the body. This phenomenon can lead to fatigue damage of the structure due to large amplitude vibration. It is widely believed that the wake structures behind the structure determine the hydrodynamic forces acting on the structure and control of wake structures can lead to vibration control of the structure. Modeling this complex non-linear interaction requires coupling of the dynamics of the fluid and the structure. In this thesis, however, the vibration of the flexible cylinder is prescribed, and the focus is on modeling the fluid dynamics in its wake. Low-dimensional iterative circle maps have been found to predict the universal dynamics of a two-oscillator system such as the rigid cylinder wake. Coupled map lattice (CML)models that combine a series of low-dimensional circle maps with a diffusion model have previously predicted qualitative features of wake patterns behind freely vibrating cables at low Reynolds number. However, the simple nature of the CML models implies that there will always be unmodelled wake dynamics if a detailed, quantitative comparison is made with laboratory or simulated wake flows. Motivated by a desire to develop an improved CML model, we incorporate self-learning features into a new CML that is trained to precisely estimate wake patterns from target numerical simulations and experimental wake flows. The eventual goal is to have the CML learn from a laboratory flow in real time. A real-time self-learning CML capable of estimating experimental wake patterns could serve as a wake model in a future anticipated feedback control system designed to produce desired wake patterns. A new convective-diffusive map that includes additional wake dynamics is developed. Two different self-learning CML models, each capable of precisely estimating complex wake patterns, have been developed by considering additional dynamics from the convective-diffusive map. The new self-learning CML models use adaptive estimation schemes which seek to precisely estimate target wake patterns from numerical simulations and experiments. In the first self-learning CML, the estimator scheme uses a multi-variable least-squares algorithm to adaptively vary the spanwise velocity distribution in order to minimize the state error (difference between modeled and target wake patterns). The second self-learning model uses radial basis function neural networks as online approximators of the unmodelled dynamics. Additional unmodelled dynamics not present in the first self-learning CML model are considered here. The estimator model uses a combination of a multi-variable normalized least squares scheme and a projection algorithm to adaptively vary the neural network weights. Studies of this approach are conducted using wake patterns from spectral element based NEKTAR simulations of freely vibrating cable wakes at low Reynolds numbers on the order of 100. It is shown that the self-learning models accurately and efficiently estimate the simulated wake patterns within several shedding cycles. Next, experimental wake patterns behind different configurations of rigid cylinders were obtained. The self-learning CML models were then used for off-line estimation of the stored wake patterns. With the eventual goal of incorporating low-order CML models into a wake pattern control system in mind, in a related study control terms were added to the simple CML model in order to drive the wake to the desired target pattern of shedding. Proportional, adaptive proportional and non-linear control techniques were developed and their control efficiencies compared."
88

Etude expérimentale et numérique de l'interaction aérodynamique entre deux profils : application au risque aéronautique du décrochage profond / Experimental and numerical study of the aerodynamic interaction between two airfoils : application to deep stall aeronautical hazard

Hetru, Laurent 16 November 2015 (has links)
Le décrochage profond est un cas particulier du décrochage d’un avion, où l'empennage horizontal est entièrement situé dans le sillage décollé de la voilure principale. Le plan perd ainsi son efficacité, ce qui se traduit par une position d'équilibre en tangage stable, à une incidence élevée, dont il est impossible de sortir par une manœuvre simple. L’objectif de cette étude est de caractériser l’aérodynamique associée à ce phénomène et de proposer une procédure d’identification et de récupération. Il est proposé une démarche visant à déterminer la dynamique bidimensionnelle de l’écoulement autour d’une configuration aéronautique de référence. Les coefficients aérodynamiques, obtenus dans une large plage d’incidence, mettent en évidence l’effet de l’interaction entre les profils sur le décrochage, qui impacte principalement le profil aval. L’analyse des champs de vitesse fournit l’étendue et l’évolution axiale des sillages des profils. Un traitement des champs de vitesse par moyennes de phase permet de reconstruire la dynamique temporelle. À partir de ces résultats, un modèle potentiel de forçage de l’écoulement autour du profil aval permet d’expliquer la modification du coefficient de portance imposé par l’interaction. Des simulations numériques de l’écoulement, qui fournissent des champs résolus en temps, permettent de retrouver certaines évolutions expérimentales. L’ensemble des résultats est utilisé, en parallèle à des données issues d’un aéronef réel, dans un modèle de vol longitudinal afin d’analyser le comportement dynamique de l’avion. Des critères permettant d’identifier la dynamique qui conduit à cet équilibre, fournissent une détection précoce de ce dernier. / Deep stall is a specific type of airplane stall, in which the horizontal tail is inside the detached wake of the main wing. The tail loses its efficiency, leading to a stable pitching equilibrium position with a high angle-of-attack, without any easy recovery procedure. The aim of the study is to characterize the aerodynamic associated to that phenomenon in order to propose an identification and recovery procedure. The approach consists in a two-dimensional flow characterization based on an aeronautical reference configuration. Aerodynamic coefficients, obtained for a wide range of angles-of-attack, show the interaction between the airfoils on the stall of the downstream airfoil. The analysis of velocity fields gives the width and the axial development of the airfoils wakes. Phase-averages of velocity fields lead to the synthesis of flow time-development. With these results, a potential model of flow forcing on the downstream airfoil explains the lift coefficient alteration imposed by the interaction. Flow numerical simulations, giving time-resolved fields, provide good accordance with experimental developments .The whole set of results is used, concurrently with real aircraft data, inside a longitudinal flight model in order to analyze the airplane dynamical behavior. Criteria for the identification of the dynamic leading to that equilibrium provide a rapid detection of deep stall and the implementation of a recovery strategy.
89

Posouzení dřevěné mostní konstrukce na účinky dynamického zatížení / An assessment of a wooden bridge construction on a dynamic load

Skorunka, Ondřej January 2016 (has links)
Diploma thesis deals with static and dynamic analysis of a wooden arch footbridge. The computational model of the structure was created in ANSYS 15. Dynamic forces from wind and horses were applied to the model based on the modal analysis. The effects of these forces at resonance were evaluated by harmonic analysis.
90

Multi-Directional Phase-Contrast Flow MRI in Real Time

Kollmeier, Jost M. 31 August 2020 (has links)
No description available.

Page generated in 0.0645 seconds