• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 3
  • Tagged with
  • 17
  • 15
  • 15
  • 12
  • 8
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beitrag zur Grundwassermengen- und Wärmebewirtschaftung unter dem Aspekt sich verändernder anthropogener und natürlicher Randbedingungen am Beispiel des Dresdner Elbtals

Gottschalk, Thomas 21 October 2014 (has links)
Veränderungen des Klimas, zunehmende Grundwassernutzungen sowie die Verdichtung der städtischen Strukturen wirken sich auf Temperaturen, Mengenbilanzen und den Wasserspiegel des Grundwassers aus. Schon heute lassen sich anthropogene Einflüsse wie tief liegende Gebäudestrukturen und Einleitungen von Wasser-Wasser-Wärmepumpen auf das Temperaturniveau des Grundwassers nachweisen. Zielstellung der vorliegenden Arbeit war die Untersuchung der Auswirkungen dieser natürlichen und anthropogenen Effekte in Dresden und die Aufstellung von Ansätzen eines Grundwasser-Temperaturmanagements. Auf der Grundlage aktueller Daten zu Grundwassernutzung und zur Grundwasserneubildung wurden Ist-Zustands-Berechnungen sowie Projektionen künftiger Systemzustände mit dem Grundwassermodell Dresden realisiert. Aufgrund des von TESCH (2013) in Szenarienberechnungen projizierten Rückgangs der Grundwasserneubildung um ca. zwei Drittel bis zum Ende des 21. Jahrhunderts ist ein deutlich geringeres Grundwasserdargebot zu erwarten. Defizite in der Grundwasserbilanz werden jedoch durch einen höheren Anteil an Uferfiltrat zum Teil ausgeglichen. Wesentlich ist, dass in den Szenarienberechnungen die maximale Entnahmemenge einen größeren Einfluss auf die Grundwasserbilanzen ausübt als der projizierte Rückgang der Grundwasserneubildung. Die Gewinnung von ausreichend Grundwasser für die Deckung des Trink- und Brauchwasserbedarfs von Bevölkerung, Gewerbe und Industrie scheint auch künftig sicher. Wärmeeinträge in das Grundwasser wurden anhand von Daten aus Stichtagsmessungen der Jahre 2009 und 2011 (FUGRO HGN; 2009 und SCHOLZ UND LEVIS, 2011) identifiziert. Hierbei konnte eine Reihe von Temperaturanomalien im Stadtgebiet den Quellen eindeutig zugeordnet werden. Anhand der Untersuchung von drei Teilgebieten zeigte sich, dass das Temperaturniveau des Grundwassers im Stadtzentrum (Teilgebiet Altstadt) gegenüber den anderen untersuchten Teilgebieten (Elbbogen Übigau und Johannstadt/Striesen) erhöht ist, was zuerst auf die Vielzahl von Bauwerken zurück geführt wird, die bis in das Grundwasser reichen. Des Weiteren zeigte sich ein deutlicher Zusammenhang von Messstellendichte und Ergebnisqualität. Während in der Altstadt die Identifikation von Wärmequellen gut möglich war, sind die Ergebnisse zu anderen Teilgebieten aufgrund der deutlich geringeren Messstellendichte weniger belastbar. Temperaturen im Boden und in der Luftsäule einer Grundwassermessstelle in der Dresdner Altstadt wurden über einen Zeitraum von ca. 2 Jahren ausgewertet. Die Untersuchungen belegen die Durchprägung des Jahresgangs der Lufttemperatur bis zum Grundwasser mit einer zeitlichen Verzögerung des Eintreffens der Extremwerte von ca. drei Monaten. Mit den Untersuchungen konnte nachgewiesen werden, dass das gleichzeitig angewendete Verfahren der Messung von Temperaturen in der Luftsäule einer Grundwassermessstelle zur Identifizierung der vertikalen Temperaturverteilung im Boden praktisch anwendbar ist. Der Wärmetransport im Boden wurde mit dem Programm HYDRUS 1-D für den Ist-Zustand auf Basis der Bodentemperaturmesswerte und für die Zukunftsszenarien auf der Basis von WETTREG 2010-Daten abgebildet. Die Berechnungen ergaben im Vergleich zum Ist-Zustand erhöhte Bodentemperaturen. Besonders interessant ist, dass die Änderungssignale der Bodentemperaturen für alle berechneten Tiefen bei den Minima deutlicher ausfallen als bei den Maxima. Des Weiteren zeigt sich ein signifikanter Unterschied zwischen den Berechnungsergebnissen der beiden untersuchten Zeitscheiben (2021 bis 2050 und 2071 bis 2100). Die höheren Bodentemperaturen im Winter bieten gegebenenfalls Ansatzpunkte zur Nutzung dieses Wärmeangebots, die erhöhten Temperaturen im Sommer können gegebenenfalls zu einer Erhöhung der Temperaturen des Wassers in Abschnitten des Trinkwassernetzes mit zeitweise größeren Aufenthaltsdauern führen. Die gefundenen Ergebnisse implizieren zudem künftig höhere Grundwassertemperaturen. Die Auswirkungen von Wärmeeinträgen auf das Grundwasser wurden mit Hilfe von MODFLOW/SEAWAT-Konzeptmodellen untersucht. Für den Ist-Zustand berücksichtigen diese Konzeptmodelle bereits Wärmeeinträge durch Gebäude und thermische Grundwassernutzungen (MIX, 2013). In den Szenarienberechnungen wurden projizierte erhöhte mittlere Lufttemperaturen aufgeprägt und weitere, zum Teil fiktive Nutzungen und Wärmeeinträge durch Gebäude implementiert. Die mit dem Anstieg der Lufttemperatur erwartete Erhöhung der mittleren Grundwassertemperatur und somit die Wirkung der natürlichen Anteile der Wärmeeinträge wird für die weniger anthropogen beeinflussten Grundwasserleiterabschnitte am deutlichsten. Die Modellergebnisse zeigen, dass unter den angenommenen Voraussetzungen mittlere Grundwassertemperaturen über 20°C nicht erreicht werden und modellgestützte Managementmaßnahmen für größere Grundwasserleiterabschnitte hinsichtlich der Bewertung energetischer Nutzungen des Grundwassers zielführend sind. Aufgrund des heutigen Standes der Forschungen zur Auswirkung von Wärmeeinträgen auf die Grundwasserqualität kann noch kein Handlungszwang abgeleitet werden, gleichsam fehlt ohne verbindliche Temperaturrichtwerte ein rechtlicher Rahmen. In der Klärung dieser Fragen, der verstärkten Wärmerückgewinnung aus dem Grundwasser und dem modellgestützten Grundwasserwärmemanagement sind zukünftige Aufgabenfelder der Grundwasserbewirtschaftung erkennbar.:1 EINLEITUNG 1 1.1 Rezente und erwartete künftige Grundwasserhaushaltssituation 1 1.2 Mögliche Auswirkungen natürlicher und anthropogener Wärmeeinträge auf die zukünftige Grundwassernutzung 2 2 ZIEL UND STRUKTUR DER ARBEIT 3 2.1 Zielstellung der Arbeit 3 2.2 Struktur der Arbeit 3 3 STAND DER FORSCHUNG 5 4 THEORETISCHE GRUNDLAGEN, RELEVANTE BEGRIFFE UND GLEICHUNGEN 9 4.1 Ungesättigte Bodenzone 9 4.2 Grundwasserleiter und Grundwasserhemmer 9 4.3 Grundwasser 9 4.4 Wasserbewegung in der ungesättigten Zone 10 4.5 Grundwasserströmung in Porengrundwasserleitern 10 4.6 Grundwasserbewirtschaftung 12 4.7 Grundwasservorsorge und Grundwasserschutz 13 4.8 Grundwassernutzungen 13 4.9 Modell 13 4.10 Quellen und Senken 15 4.11 Kalibrierung und Validierung 16 4.12 Epignose, Prognose und Projektion 18 4.13 Temperaturanomalie im Grundwasser 18 4.14 Grundlagen des Wärmetransports in porösen Medien 19 5 METHODIK DER BEARBEITUNG 23 5.1 Auswertung von rezenten Daten zur Grundwassertemperatur 23 5.2 Messtechnische Erfassung von Bodentemperaturen 23 5.2.1 Messstellenauswahl – Methodik der Standortanalyse 23 5.2.2 Konzept der Pilotmessstelle 25 5.3 Szenarioberechnungen mit dem Grundwassermodell Dresden 27 5.3.1 Grundwassermodell und Konzeption der modelltechnischen Arbeiten 27 5.3.1.1 Das Grundwassermodell Dresden 27 5.3.1.2 Ergänzung der Methodik zur Ausweisung zukünftiger Grundwasserüberschuss-, gleichgewichts und defizitgebiete 29 5.3.1.3 Bilanzierung der Grundwasservolumenströme 35 5.3.1.4 Berechnung maximaler Grundwasserflurabstände 36 5.3.2 Beschreibung der Szenarien 36 5.4 Modellierung des Wärmetransports in der Aerationszone 36 5.4.1 Modellvorstellung 36 5.4.2 Beschreibung der Szenarien 38 5.5 Konzeptmodelle zur Berechnung des Wärmetransports im Grundwasser 38 5.6 Untersuchungsgebiet 39 5.6.1 Geologische und hydrogeologische Einordnung 39 5.6.2 Überblick zur urbanen Grundwassernutzung 40 5.6.2.1 Trink- und Brauchwassernutzung 40 5.6.2.2 Energetische Grundwassernutzung 40 6 GRUNDWASSER- UND BODENTEMPERATUREN 43 6.1 Temperaturbezogene großräumige Grundwasserüberwachung 43 6.2 Grundwassertemperaturen und Temperaturanomalien 45 6.2.1 Grundwassertemperaturen 45 6.2.2 Ursachen von Temperaturunterschieden und -anomalien 46 6.2.2.1 Temperaturunterschiede in der Innenstadt und am Stadtrand 46 6.2.2.2 Natürliche Temperaturanomalien 47 6.2.2.3 Anthropogene Temperaturanomalien 47 6.2.3 Bewertung der Ergebnisse und Schlussfolgerungen 55 6.3 Messtechnische Erfassung der Wärmemigration in der Aerationszone 56 6.3.1 Zielstellung der Messungen 56 6.3.2 Auswahl des Messstellenstandortes 57 6.3.3 Durchführung der Messungen 58 6.3.4 Ergebnisse der Messungen 59 6.3.5 Vergleichbarkeit der Messergebnisse in Boden und Luftsäule 66 6.3.6 Weitere Messungen an Grundwassermessstellen 67 6.3.7 Bewertung der Ergebnisse und Schlussfolgerungen 70 7 MODELLIERUNG DER WASSERSTRÖMUNG UND DES WÄRMETRANSPORTS 71 7.1 Zielsetzung der modelltechnischen Arbeiten 71 7.2 Modellierung der Grundwasserströmung 71 7.2.1 Grundwassernutzung für den Epignose- und Projektionszeitraum 71 7.2.2 Aktualisierung der Eingangsgröße Grundwasserneubildung für den Epignose- und Projektionszeitraum 71 7.2.3 Ableitung der Größe rezenter und künftiger Randzuflüsse aus der Grundwasserneubildung 74 7.2.4 Rohrnetzverluste 74 7.2.5 Fließgewässer 75 7.2.6 Simulation der Grundwasserströmung mit dem Grundwassermodell 76 7.2.7 Güte der Modellanpassung 77 7.2.8 Ergebnisse der Szenarienberechnung 78 7.2.8.1 Abgrenzung von Grundwasserbilanzgebieten 78 7.2.8.2 Grundwasserbilanzen 79 7.2.8.3 Grundwasserflurabstände 82 7.2.9 Bewertung der Ergebnisse und Schlussfolgerungen 85 7.3 Modellierung des Wärmetransports 86 7.3.1 Teilmodellansatz 86 7.3.2 Berechnung des vertikalen Wärmetransports in der Aerationszone mit HYDRUS 1D 86 7.3.2.1 Epignose 86 7.3.3 Projektionen 91 7.3.3.1 Datenbasis der Modellierung 91 7.3.3.2 Ergebnisse 94 7.3.4 Bewertung der Ergebnisse und Schlussfolgerungen 96 7.4 Berechnung des Wärmetransports im Grundwasser 97 7.4.1 MODFLOW/SEAWAT – Konzeptmodelle 97 7.4.1.1 Szenarienberechnung 100 7.4.1.2 Konzeptmodell „Altstadt“ 100 7.4.1.3 Konzeptmodell „Elbbogen Übigau“ 102 7.4.1.4 Konzeptmodell „Johannstadt/Striesen“ 102 7.4.2 Ergebnisse der Modellierung 103 7.4.2.1 Konzeptmodell „Altstadt“ 103 7.4.2.2 Konzeptmodell „Elbbogen Übigau“ 106 7.4.2.3 Konzeptmodell „Johannstadt/Striesen“ 107 7.4.3 Bewertung der Ergebnisse 108 7.4.3.1 Einschätzung der Ergebnisse und Nutzung der Modelle 108 7.4.3.2 Beschränkungen der Modellaussagen und Schritte zum Detailmodell 109 8 MÖGLICHE MAßNAHMEN UND ANPASSUNGSOPTIONEN 110 8.1 Grundwassermenge 110 8.2 Grundwasserwärmehaushalt 110 8.3 Grundwasserwärmemanagement 111 9 ZUSAMMENFASSUNG 112 10 LITERATURVERZEICHNIS 114 / Climate change, the rise of energetic groundwater use and the compact city structures cause an impact to the groundwater temperatures, groundwater quantity balance and the groundwater table. Today impacts of anthropogenic influences like deep basements of big buildings and the infiltration of heated or cooled water from groundwater using heat pumps were already detected. The target of this dissertation has been the investigation of these natural and anthropogenic effects in Dresden and planning steps for a groundwater temperature management. Basing on existing data of groundwater use and recharge in Dresden, a modelling of the recent and future system status scenarios with the three-dimensional model has been done. According to the latest results of the regional climate model WETTREG 2010 and a work by Tesch about the groundwater recharge until the end of the 21st Century, a significant reduction in resources are expected. Partly the balance deficit will be regulated by bank filtration. It is an important fact that the maximum discharge rate, which is larger than the permitted real use, has a bigger influence in the balance than the lower groundwater recharge. The water catchment to supply inhabitants and industrial units seems to be secure in the future. Heat impacts to the groundwater were detected by measurements in 2011 and 2012. With the results of these measurements anomalies of the temperature field and the emission points of heat inputs were distinctly located. Based on the investigation of three subareas, a higher level of groundwater temperatures in the city center (subarea Altstadt) compared to the other subareas (Übigau and Jogannstadt/Striesen) was detected. The reason of this fact is the multitude of big buildings which are reaching the aquifer. The investigation has also showed the relationship between the quantity of the measuring points and the quality of the results. In the subarea Altstadt an identification of heat inputs could be very well found. The results in the other subareas with a lower amount of sampling points have not the same level of validity. Information from time series over two years about soil and air column temperatures of a close-by groundwater measurement point were analyzed. The research documents the heat transport from the air to the groundwater with a retardation of the extreme values along about three months. With this analysis, the method of measurement air column temperatures in groundwater measurement points aiming to identify the vertical soil temperature distribution could be attested. The measured heat transport in the unsaturated soil was reproduced with the HYDRUS 1-D program. After this, future scenarios on the basic of WETTREG 2010 results were computed. The findings are higher soil temperature levels in the future with higher alteration signals in the minimum than in the maximum values. The modeling results have also showed a significant difference in the investigated time series (2021 - 2050 and 2071 - 2100). The higher temperatures in winter could be a chance to use this heat. In the summer it could partly affect parts of the water supply. Furthermore the findings implicate higher ground water temperatures in the future. To investigate heat impacts to the ground water concept, models of MIX (2013) were used for the heat transport in the aquifer which combines the heat impact of buildings and heat pumps with the natural air temperature rise. The WETTREG2010 result (air temperatures), heat inputs and possible new energetic groundwater use systems were implemented in the conceptual models. Results of the modeling has showed that the expected rise of the ground water temperature will be more significant for the less anthropogenic influenced parts of the urban aquifer than the parts with high initial level of heat pollution. In the model results, the temperatures do not reach mean values of 20°C (LAWA guideline). An important finding is also that these models could be used for a more efficient groundwater heat management and for the evaluation of energetic groundwater projects of its use. Because of the recent stand of research on the impacts of higher ground water temperatures to the ground water quality, a need for action can’t be indicated at the moment. At present there are no guideline values neither standard of law for the energetic use of groundwater. This facts and the question of heat recycling from the urban aquifer are fields for the groundwater management in the future.:1 EINLEITUNG 1 1.1 Rezente und erwartete künftige Grundwasserhaushaltssituation 1 1.2 Mögliche Auswirkungen natürlicher und anthropogener Wärmeeinträge auf die zukünftige Grundwassernutzung 2 2 ZIEL UND STRUKTUR DER ARBEIT 3 2.1 Zielstellung der Arbeit 3 2.2 Struktur der Arbeit 3 3 STAND DER FORSCHUNG 5 4 THEORETISCHE GRUNDLAGEN, RELEVANTE BEGRIFFE UND GLEICHUNGEN 9 4.1 Ungesättigte Bodenzone 9 4.2 Grundwasserleiter und Grundwasserhemmer 9 4.3 Grundwasser 9 4.4 Wasserbewegung in der ungesättigten Zone 10 4.5 Grundwasserströmung in Porengrundwasserleitern 10 4.6 Grundwasserbewirtschaftung 12 4.7 Grundwasservorsorge und Grundwasserschutz 13 4.8 Grundwassernutzungen 13 4.9 Modell 13 4.10 Quellen und Senken 15 4.11 Kalibrierung und Validierung 16 4.12 Epignose, Prognose und Projektion 18 4.13 Temperaturanomalie im Grundwasser 18 4.14 Grundlagen des Wärmetransports in porösen Medien 19 5 METHODIK DER BEARBEITUNG 23 5.1 Auswertung von rezenten Daten zur Grundwassertemperatur 23 5.2 Messtechnische Erfassung von Bodentemperaturen 23 5.2.1 Messstellenauswahl – Methodik der Standortanalyse 23 5.2.2 Konzept der Pilotmessstelle 25 5.3 Szenarioberechnungen mit dem Grundwassermodell Dresden 27 5.3.1 Grundwassermodell und Konzeption der modelltechnischen Arbeiten 27 5.3.1.1 Das Grundwassermodell Dresden 27 5.3.1.2 Ergänzung der Methodik zur Ausweisung zukünftiger Grundwasserüberschuss-, gleichgewichts und defizitgebiete 29 5.3.1.3 Bilanzierung der Grundwasservolumenströme 35 5.3.1.4 Berechnung maximaler Grundwasserflurabstände 36 5.3.2 Beschreibung der Szenarien 36 5.4 Modellierung des Wärmetransports in der Aerationszone 36 5.4.1 Modellvorstellung 36 5.4.2 Beschreibung der Szenarien 38 5.5 Konzeptmodelle zur Berechnung des Wärmetransports im Grundwasser 38 5.6 Untersuchungsgebiet 39 5.6.1 Geologische und hydrogeologische Einordnung 39 5.6.2 Überblick zur urbanen Grundwassernutzung 40 5.6.2.1 Trink- und Brauchwassernutzung 40 5.6.2.2 Energetische Grundwassernutzung 40 6 GRUNDWASSER- UND BODENTEMPERATUREN 43 6.1 Temperaturbezogene großräumige Grundwasserüberwachung 43 6.2 Grundwassertemperaturen und Temperaturanomalien 45 6.2.1 Grundwassertemperaturen 45 6.2.2 Ursachen von Temperaturunterschieden und -anomalien 46 6.2.2.1 Temperaturunterschiede in der Innenstadt und am Stadtrand 46 6.2.2.2 Natürliche Temperaturanomalien 47 6.2.2.3 Anthropogene Temperaturanomalien 47 6.2.3 Bewertung der Ergebnisse und Schlussfolgerungen 55 6.3 Messtechnische Erfassung der Wärmemigration in der Aerationszone 56 6.3.1 Zielstellung der Messungen 56 6.3.2 Auswahl des Messstellenstandortes 57 6.3.3 Durchführung der Messungen 58 6.3.4 Ergebnisse der Messungen 59 6.3.5 Vergleichbarkeit der Messergebnisse in Boden und Luftsäule 66 6.3.6 Weitere Messungen an Grundwassermessstellen 67 6.3.7 Bewertung der Ergebnisse und Schlussfolgerungen 70 7 MODELLIERUNG DER WASSERSTRÖMUNG UND DES WÄRMETRANSPORTS 71 7.1 Zielsetzung der modelltechnischen Arbeiten 71 7.2 Modellierung der Grundwasserströmung 71 7.2.1 Grundwassernutzung für den Epignose- und Projektionszeitraum 71 7.2.2 Aktualisierung der Eingangsgröße Grundwasserneubildung für den Epignose- und Projektionszeitraum 71 7.2.3 Ableitung der Größe rezenter und künftiger Randzuflüsse aus der Grundwasserneubildung 74 7.2.4 Rohrnetzverluste 74 7.2.5 Fließgewässer 75 7.2.6 Simulation der Grundwasserströmung mit dem Grundwassermodell 76 7.2.7 Güte der Modellanpassung 77 7.2.8 Ergebnisse der Szenarienberechnung 78 7.2.8.1 Abgrenzung von Grundwasserbilanzgebieten 78 7.2.8.2 Grundwasserbilanzen 79 7.2.8.3 Grundwasserflurabstände 82 7.2.9 Bewertung der Ergebnisse und Schlussfolgerungen 85 7.3 Modellierung des Wärmetransports 86 7.3.1 Teilmodellansatz 86 7.3.2 Berechnung des vertikalen Wärmetransports in der Aerationszone mit HYDRUS 1D 86 7.3.2.1 Epignose 86 7.3.3 Projektionen 91 7.3.3.1 Datenbasis der Modellierung 91 7.3.3.2 Ergebnisse 94 7.3.4 Bewertung der Ergebnisse und Schlussfolgerungen 96 7.4 Berechnung des Wärmetransports im Grundwasser 97 7.4.1 MODFLOW/SEAWAT – Konzeptmodelle 97 7.4.1.1 Szenarienberechnung 100 7.4.1.2 Konzeptmodell „Altstadt“ 100 7.4.1.3 Konzeptmodell „Elbbogen Übigau“ 102 7.4.1.4 Konzeptmodell „Johannstadt/Striesen“ 102 7.4.2 Ergebnisse der Modellierung 103 7.4.2.1 Konzeptmodell „Altstadt“ 103 7.4.2.2 Konzeptmodell „Elbbogen Übigau“ 106 7.4.2.3 Konzeptmodell „Johannstadt/Striesen“ 107 7.4.3 Bewertung der Ergebnisse 108 7.4.3.1 Einschätzung der Ergebnisse und Nutzung der Modelle 108 7.4.3.2 Beschränkungen der Modellaussagen und Schritte zum Detailmodell 109 8 MÖGLICHE MAßNAHMEN UND ANPASSUNGSOPTIONEN 110 8.1 Grundwassermenge 110 8.2 Grundwasserwärmehaushalt 110 8.3 Grundwasserwärmemanagement 111 9 ZUSAMMENFASSUNG 112 10 LITERATURVERZEICHNIS 114
2

Beitrag zur Grundwassermengen- und Wärmebewirtschaftung unter dem Aspekt sich verändernder anthropogener und natürlicher Randbedingungen am Beispiel des Dresdner Elbtals

Gottschalk, Thomas 28 January 2015 (has links) (PDF)
Veränderungen des Klimas, zunehmende Grundwassernutzungen sowie die Verdichtung der städtischen Strukturen wirken sich auf Temperaturen, Mengenbilanzen und den Wasserspiegel des Grundwassers aus. Schon heute lassen sich anthropogene Einflüsse wie tief liegende Gebäudestrukturen und Einleitungen von Wasser-Wasser-Wärmepumpen auf das Temperaturniveau des Grundwassers nachweisen. Zielstellung der vorliegenden Arbeit war die Untersuchung der Auswirkungen dieser natürlichen und anthropogenen Effekte in Dresden und die Aufstellung von Ansätzen eines Grundwasser-Temperaturmanagements. Auf der Grundlage aktueller Daten zu Grundwassernutzung und zur Grundwasserneubildung wurden Ist-Zustands-Berechnungen sowie Projektionen künftiger Systemzustände mit dem Grundwassermodell Dresden realisiert. Aufgrund des von TESCH (2013) in Szenarienberechnungen projizierten Rückgangs der Grundwasserneubildung um ca. zwei Drittel bis zum Ende des 21. Jahrhunderts ist ein deutlich geringeres Grundwasserdargebot zu erwarten. Defizite in der Grundwasserbilanz werden jedoch durch einen höheren Anteil an Uferfiltrat zum Teil ausgeglichen. Wesentlich ist, dass in den Szenarienberechnungen die maximale Entnahmemenge einen größeren Einfluss auf die Grundwasserbilanzen ausübt als der projizierte Rückgang der Grundwasserneubildung. Die Gewinnung von ausreichend Grundwasser für die Deckung des Trink- und Brauchwasserbedarfs von Bevölkerung, Gewerbe und Industrie scheint auch künftig sicher. Wärmeeinträge in das Grundwasser wurden anhand von Daten aus Stichtagsmessungen der Jahre 2009 und 2011 (FUGRO HGN; 2009 und SCHOLZ UND LEVIS, 2011) identifiziert. Hierbei konnte eine Reihe von Temperaturanomalien im Stadtgebiet den Quellen eindeutig zugeordnet werden. Anhand der Untersuchung von drei Teilgebieten zeigte sich, dass das Temperaturniveau des Grundwassers im Stadtzentrum (Teilgebiet Altstadt) gegenüber den anderen untersuchten Teilgebieten (Elbbogen Übigau und Johannstadt/Striesen) erhöht ist, was zuerst auf die Vielzahl von Bauwerken zurück geführt wird, die bis in das Grundwasser reichen. Des Weiteren zeigte sich ein deutlicher Zusammenhang von Messstellendichte und Ergebnisqualität. Während in der Altstadt die Identifikation von Wärmequellen gut möglich war, sind die Ergebnisse zu anderen Teilgebieten aufgrund der deutlich geringeren Messstellendichte weniger belastbar. Temperaturen im Boden und in der Luftsäule einer Grundwassermessstelle in der Dresdner Altstadt wurden über einen Zeitraum von ca. 2 Jahren ausgewertet. Die Untersuchungen belegen die Durchprägung des Jahresgangs der Lufttemperatur bis zum Grundwasser mit einer zeitlichen Verzögerung des Eintreffens der Extremwerte von ca. drei Monaten. Mit den Untersuchungen konnte nachgewiesen werden, dass das gleichzeitig angewendete Verfahren der Messung von Temperaturen in der Luftsäule einer Grundwassermessstelle zur Identifizierung der vertikalen Temperaturverteilung im Boden praktisch anwendbar ist. Der Wärmetransport im Boden wurde mit dem Programm HYDRUS 1-D für den Ist-Zustand auf Basis der Bodentemperaturmesswerte und für die Zukunftsszenarien auf der Basis von WETTREG 2010-Daten abgebildet. Die Berechnungen ergaben im Vergleich zum Ist-Zustand erhöhte Bodentemperaturen. Besonders interessant ist, dass die Änderungssignale der Bodentemperaturen für alle berechneten Tiefen bei den Minima deutlicher ausfallen als bei den Maxima. Des Weiteren zeigt sich ein signifikanter Unterschied zwischen den Berechnungsergebnissen der beiden untersuchten Zeitscheiben (2021 bis 2050 und 2071 bis 2100). Die höheren Bodentemperaturen im Winter bieten gegebenenfalls Ansatzpunkte zur Nutzung dieses Wärmeangebots, die erhöhten Temperaturen im Sommer können gegebenenfalls zu einer Erhöhung der Temperaturen des Wassers in Abschnitten des Trinkwassernetzes mit zeitweise größeren Aufenthaltsdauern führen. Die gefundenen Ergebnisse implizieren zudem künftig höhere Grundwassertemperaturen. Die Auswirkungen von Wärmeeinträgen auf das Grundwasser wurden mit Hilfe von MODFLOW/SEAWAT-Konzeptmodellen untersucht. Für den Ist-Zustand berücksichtigen diese Konzeptmodelle bereits Wärmeeinträge durch Gebäude und thermische Grundwassernutzungen (MIX, 2013). In den Szenarienberechnungen wurden projizierte erhöhte mittlere Lufttemperaturen aufgeprägt und weitere, zum Teil fiktive Nutzungen und Wärmeeinträge durch Gebäude implementiert. Die mit dem Anstieg der Lufttemperatur erwartete Erhöhung der mittleren Grundwassertemperatur und somit die Wirkung der natürlichen Anteile der Wärmeeinträge wird für die weniger anthropogen beeinflussten Grundwasserleiterabschnitte am deutlichsten. Die Modellergebnisse zeigen, dass unter den angenommenen Voraussetzungen mittlere Grundwassertemperaturen über 20°C nicht erreicht werden und modellgestützte Managementmaßnahmen für größere Grundwasserleiterabschnitte hinsichtlich der Bewertung energetischer Nutzungen des Grundwassers zielführend sind. Aufgrund des heutigen Standes der Forschungen zur Auswirkung von Wärmeeinträgen auf die Grundwasserqualität kann noch kein Handlungszwang abgeleitet werden, gleichsam fehlt ohne verbindliche Temperaturrichtwerte ein rechtlicher Rahmen. In der Klärung dieser Fragen, der verstärkten Wärmerückgewinnung aus dem Grundwasser und dem modellgestützten Grundwasserwärmemanagement sind zukünftige Aufgabenfelder der Grundwasserbewirtschaftung erkennbar. / Climate change, the rise of energetic groundwater use and the compact city structures cause an impact to the groundwater temperatures, groundwater quantity balance and the groundwater table. Today impacts of anthropogenic influences like deep basements of big buildings and the infiltration of heated or cooled water from groundwater using heat pumps were already detected. The target of this dissertation has been the investigation of these natural and anthropogenic effects in Dresden and planning steps for a groundwater temperature management. Basing on existing data of groundwater use and recharge in Dresden, a modelling of the recent and future system status scenarios with the three-dimensional model has been done. According to the latest results of the regional climate model WETTREG 2010 and a work by Tesch about the groundwater recharge until the end of the 21st Century, a significant reduction in resources are expected. Partly the balance deficit will be regulated by bank filtration. It is an important fact that the maximum discharge rate, which is larger than the permitted real use, has a bigger influence in the balance than the lower groundwater recharge. The water catchment to supply inhabitants and industrial units seems to be secure in the future. Heat impacts to the groundwater were detected by measurements in 2011 and 2012. With the results of these measurements anomalies of the temperature field and the emission points of heat inputs were distinctly located. Based on the investigation of three subareas, a higher level of groundwater temperatures in the city center (subarea Altstadt) compared to the other subareas (Übigau and Jogannstadt/Striesen) was detected. The reason of this fact is the multitude of big buildings which are reaching the aquifer. The investigation has also showed the relationship between the quantity of the measuring points and the quality of the results. In the subarea Altstadt an identification of heat inputs could be very well found. The results in the other subareas with a lower amount of sampling points have not the same level of validity. Information from time series over two years about soil and air column temperatures of a close-by groundwater measurement point were analyzed. The research documents the heat transport from the air to the groundwater with a retardation of the extreme values along about three months. With this analysis, the method of measurement air column temperatures in groundwater measurement points aiming to identify the vertical soil temperature distribution could be attested. The measured heat transport in the unsaturated soil was reproduced with the HYDRUS 1-D program. After this, future scenarios on the basic of WETTREG 2010 results were computed. The findings are higher soil temperature levels in the future with higher alteration signals in the minimum than in the maximum values. The modeling results have also showed a significant difference in the investigated time series (2021 - 2050 and 2071 - 2100). The higher temperatures in winter could be a chance to use this heat. In the summer it could partly affect parts of the water supply. Furthermore the findings implicate higher ground water temperatures in the future. To investigate heat impacts to the ground water concept, models of MIX (2013) were used for the heat transport in the aquifer which combines the heat impact of buildings and heat pumps with the natural air temperature rise. The WETTREG2010 result (air temperatures), heat inputs and possible new energetic groundwater use systems were implemented in the conceptual models. Results of the modeling has showed that the expected rise of the ground water temperature will be more significant for the less anthropogenic influenced parts of the urban aquifer than the parts with high initial level of heat pollution. In the model results, the temperatures do not reach mean values of 20°C (LAWA guideline). An important finding is also that these models could be used for a more efficient groundwater heat management and for the evaluation of energetic groundwater projects of its use. Because of the recent stand of research on the impacts of higher ground water temperatures to the ground water quality, a need for action can’t be indicated at the moment. At present there are no guideline values neither standard of law for the energetic use of groundwater. This facts and the question of heat recycling from the urban aquifer are fields for the groundwater management in the future.
3

Heat transport in strongly anharmonic solids from first principles

Knoop, Florian 27 April 2022 (has links)
In dieser Arbeit beschreiben wir wie nicht-störungstheoretischer Wärmetransport im Rahmen von ab initio-Simulationen und linearer Antworttheorie formuliert werden kann. Die daraus resultierende ab initio-Green-Kubo-Methode ermöglicht die Simulation von Wärmetransport in Festkörpern beliebiger Anharmonizität und ist besonders geeignet um "stark anharmonische" Systeme zu beschreiben in denen störungstheoretische Ansätze unzuverlässig werden. Um die systematische Unterscheidung von harmonischen und anharmonischen Materialien zu ermöglichen führen wir ein "Anharmonizitätsmaß" ein, welches die anharmonischen Beiträge zu den interatomaren Kräften unter thermodynamischen Bedingungen quantifiziert. Mit diesem Anharmonizitätsmaß untersuchen wir typische dynamische Effekte die in stark anharmonischen Materialien auftreten, sowie die Grenzen störungstheoretischer Methoden zur Berechnung von Wärmetransporteigenschaften. Wir zeigen, dass eine negative Korrelation des Anharmonizitätsmaßes mit der Wärmeleitfähigkeit einfacher Kristalle besteht, was die intuitive Auffassung bestärkt, wonach harmonische Materialien bessere Wärmeleiter sind und umgekehrt. Auf diesen Erkenntnissen aufbauend identifizieren wird anharmonische Materialien als Kandidaten für Wärmetransport-Simulationen auf der Suche nach neuen thermischen Isolatoren. Auf diesem Wege identifizieren wir mehrere neue thermische Isolatoren welche potentielle technologische Relevanz als thermische Barrieren oder Thermoelektrika aufweisen könnten, und schlagen diese zur experimentellen Untersuchung vor. / In this work, we describe how a non-perturbative heat transport formalism for solids emerges in the framework of ab initio simulations coupled with linear response theory. The resulting ab initio Green Kubo method allows for studying heat transport in solids of arbitrary anharmonic strength, and is particularly suited to describe “strongly anharmonic” systems where per- turbative approaches become unreliable. In order to discern harmonic from anharmonic materials in a systematic way, we introduce an “anharmonicity measure” which quantifies the anharmonic contribution to the interatomic forces under thermodynamic conditions. Using this anharmonicity measure, we investigate typical dynamical effects occurring in strongly anharmonic compounds and investigate the limits of perturbative approaches for the study of thermal transport. We show that this measure negatively correlates with bulk thermal conductivities in simple solids, supporting the intuitive notion that more harmonic materials are better heat conductors and vice versa. Based on these findings, we identify anharmonic compounds as candidates for thermal transport simulations in the search for novel thermal insulators. In this way, we identify several new thermal insulators of potential technological relevance as thermal barriers or thermoelectric materials which we suggest for experimental study.
4

Temperatureffekte bei der lasererzeugten Kavitation / Thermal effects in laser-generated cavitation

Söhnholz, Hendrik 26 October 2016 (has links)
No description available.
5

Herstellung und Eigenschaften hydridbasierter Verbundwerkstoffe mit hoher Energie- und Leistungsdichte für die Wasserstoffspeicherung

Pohlmann, Carsten 10 November 2014 (has links) (PDF)
In dieser Arbeit werden kompaktierte Verbundwerkstoffe aus verschiedenen Speichermaterialien mit expandiertem Naturgraphit (ENG) in Hinblick auf die Anwendung als dynamische Wasserstofffeststoffspeichermaterialien untersucht. Pulverförmige hydridbildende Ausgangsmaterialien wurden mit bis zu 25 Masse-% ENG vermischt und bei Pressdrücken bis 600 MPa kompaktiert. Um einen weiten Anwendungsbereich abzudecken wurden ein Niedrigtemperaturmaterial (Ti-Mn-basierte Legierung; 0°C bis 100°C), zwei Mitteltemperaturmaterialien (Amid- und Alanatsystem; 100°C bis 200°C) und ein Hochtemperaturmaterial (Magnesium-Nickel-Legierung; 250°C bis 400°C) basierend auf einer umfangreichen Literaturrecherche gewählt. Die Verbundwerkstoffe weisen eine erhöhte radiale Wärmeleitfähigkeit auf und zeichnen sich im Vergleich zu herkömmlich verwendeten Pulverschüttungen durch höhere volumetrische Wasserstoffspeicherdichten aus. Im Fokus der Untersuchungen stehen vor allem die im Hinblick auf Anwendungstauglichkeit wesentlichen Eigenschaften der Verbundwerkstoffe. So wurde z.B. der Wasserstoffdruck während der Dehydrierung variiert, um sicher zu stellen, Verbraucher mit üblichen Überdrücken versorgen zu können. Darüber hinaus wurde die Stabilität, Gaspermeabilität, Wärmeleitfähigkeit und Porosität der Presslinge im Verlauf zyklischer Hydrierung evaluiert und diskutiert. Insgesamt zeichnet sich ein hohes Potenzial ab, derartige Presslinge als Wasserstoffspeichermaterial für verschiedene Anwendungen entsprechend der jeweiligen Arbeitstemperaturen und weiteren Randbedingungen (z.B. Systemmasse, Tankvolumen etc.) zu verwenden. Diesbezüglich konnte mittels eines Tankdemonstrators basierend auf dem Ti-Mn-System ein Wasserstofffahrzeug erfolgreich betrieben und somit auch die Praxistauglichkeit der Hydrid-Graphit-Verbundmaterialien gezeigt werden. / Compacted composites of solid-state hydrogen storage materials and expanded natural graphite (ENG) are investigated in view of their potential for hydrogen storage applications. Powdery hydride-forming materials were blended with up to 25 weight-% ENG and compacted with up to 600 MPa compaction pressure. In order to cover a wide range of possible applications one low-temperature material (Ti-Mn-based alloy; 0°C to 100°C), two mid-temperature materials (amide and alante system; 100°C to 200°C) and one high-temperature material (magnesium-nickel alloy; 250°C to 400°C) were chosen based on a thorough literature review. The composites result in an increased radial thermal conductivity and are superior in their volumetric hydrogen storage density compared to commonly used loose powder beds. The research is focused on the applicability of suchlike prepared composites. In this regard, the dehydrogenation back-pressures were varied to ensure a sufficient supply pressure of common consumer loads. Furthermore, the stability, gas permeability, thermal conductivity and porosity throughout cyclic hydrogenation were evaluated and discussed. Overall, a high potential to use suchlike composite materials for hydrogen storage applications regarding the specific working conditions (temperature, system mass, available volume etc.) is found. In this regard, a demonstrator tank equipped with Ti-Mn-based system was successfully supplying a hydrogen driven vehicle, which proves the feasibility of these hydride-graphite composite materials.
6

Influence of faults on the 3D coupled fluid and heat transport

Cherubini, Yvonne January 2013 (has links)
Da geologische Störungen können als Grundwasserleiter, -Barrieren oder als gemischte leitende /stauende Fluidsysteme wirken. Aufgrund dessen können Störungen maßgeblich den Grundwasserfluss im Untergrund beeinflussen, welcher deutliche Veränderungen des tiefen thermischen Feldes bewirken kann. Grundwasserdynamik und Temperaturveränderungen sind wiederum entscheidende Faktoren für die Exploration geothermischer Energie. Diese Studie untersuchte den Einfluss von Störungen auf das Fluidsystem und das thermische Feld im Untergrund. Sie erforschte die physikalischen Prozesse, welche das Fluidverhalten und die Temperaturverteilung in Störungen und in den umgebenden Gesteinen. Dazu wurden 3D Finite Elemente Simulationen des gekoppelten Fluid und Wärmetransports für synthetische sowie reale Modelszenarien auf unterschiedlichen Skalen durchgeführt. Um den Einfluss einer schräg einfallenden Störung systematisch durch die schrittweise Veränderung der hydraulischen Öffnungsweite und der Permeabilität, zu untersuchen, wurde ein klein-skaliges synthetisches Modell entwickelt. Ein inverser linearer Zusammenhang wurde festgestellt, welcher zeigt, dass sich die Fluidgeschwindigkeit in der Störung jeweils um ~1e-01 m/s verringert, wenn die Öffnungsweite der Störung um jeweils eine Magnitude vergrößert wird. Ein hoher Permeabilitätskontrast zwischen Störung und umgebender Matrix begünstigt die Fluidadvektion hin zur Störung und führt zu ausgeprägten Druck- und Temperaturveränderungen innerhalb und um die Störung herum. Bei geringem Permeabilitätskontrast zwischen Störung und umgebendem Gestein findet hingegen kein Fluidfluss in der Störung statt, wobei das hydrostatische Druck- sowie das Temperaturfeld unverändert bleiben. Auf Grundlage der synthetischen Modellierungsergebnisse wurde der Einfluss von Störungen auf einer größeren Skala anhand eines komplexeren (realen) geologischen Systems analysiert. Dabei handelt es sich um ein 3D Modell des Geothermiestandortes Groß Schönebeck, der ca. 40 km nördlich von Berlin liegt. Die Integration von einer permeablen und drei impermeablen Hauptstörungen, zeigte unterschiedlich starke Einflüsse auf Fluidzirkulation, Temperatur – und Druckfeld. Die modellierte konvektive Zirkulation in der permeablen Störung verändert das thermische Feld stark (bis zu 15 K). In den gering durchlässigen Störungen wird die Wärme ausschließlich durch Diffusion geleitet. Der konduktive Wärmetransport beeinflusst das thermische Feld nicht, bewirkt jedoch lokale Veränderungen des hydrostatischen Druckfeldes. Um den Einfluss großer Störungszonen mit kilometerweitem vertikalen Versatz auf das geothermische Feld der Beckenskala zu untersuchen, wurden gekoppelte Fluid- und Wärmetransportsimulationen für ein 3D Strukturmodell des Gebietes Brandenburg durchgeführt (Noack et al. 2010; 2013). Bezüglich der Störungspermeabilität wurden verschiedene geologische Szenarien modelliert, von denen zwei Endgliedermodelle ausgewertet wurden. Die Ergebnisse zeigten, dass die undurchlässigen Störungen den Fluidfluss nur lokal beeinflussen. Da sie als hydraulische Barrieren wirken, wird der Fluidfluss mir sehr geringen Geschwindigkeiten entlang der Störungen innerhalb eines Bereichs von ~ 1 km auf jeder Seite umgelenkt. Die modellierten lokalen Veränderungen des Grundwasserzirkulationssystems haben keinen beobachtbaren Effekt auf das Temperaturfeld. Hingegen erzeugen permeable Störungszonen eine ausgeprägte thermische Signatur innerhalb eines Einflussbereichs von ~ 2.4-8.8 km in -1000 m Tiefe und ~6-12 km in -3000 m Tiefe. Diese thermische Signatur, in der sich kältere und wärmere Temperaturbereiche abwechseln, wird durch auf- und abwärts gerichteten Fluidfluss innerhalb der Störung verursacht, der grundsätzlich durch existierende Gradienten in der hydraulischen Druckhöhe angetrieben wird. Alle Studien haben gezeigt, dass Störungen einen beachtlichen Einfluss auf den Fluid-, und Wärmefluss haben. Es stellte sich heraus, dass die Permeabilität in der Störung und in den umgebenden geologischen Schichten so wie der spezifische geologische Rahmen entscheidende Faktoren in der Ausbildung verschiedener Wärmetransportmechanismen sind, die sich in Störungen entwickeln können. Die von permeablen Störungen verursachten Temperaturveränderungen können lokal, jedoch groß sein, genauso wie die durch hydraulisch leitende und nichtleitende Störungen hervorgerufenen Veränderungen des Fluidystems. Letztlich haben die Simulationen für die unterschiedlich skalierten Modelle gezeigt, dass die Ergebnisse sich nicht aufeinander übertragen lassen und dass es notwendig ist, jeden geologischen Rahmen hinsichtlich Konfiguration und Größenskala gesondert zu betrachten. Abschließend hat diese Studie demonstriert, dass die Betrachtung von Störungen in 3D Finiten Elementen Modellen für die Simulation von gekoppeltem Fluid- und Wärmetransport auf unterschiedlichen Skalen möglich ist. Da diese Art von numerischen Simulationen sowohl die geologische Struktur des Untergrunds sowie die im Erdinnern ablaufenden physikalischen Prozesse integriert, können sie einen wertvollen Beitrag leisten, indem sie Feld- und Laborgestützte Untersuchungen vervollständigen. / Faults can act as conduits, barriers or mixed conduit/barrier systems to fluid flow. Therefore, faults may significantly influence fluid flow regimes operating in the subsurface, possibly resulting in distinct variations of the deep thermal field. Both, flow dynamics and temperature changes are in turn crucial factors that need to be taken into account for geothermal energy exploration. This study investigated the influence of faults on the subsurface fluid system and thermal field and explored the processes controlling fluid behavior and thermal distribution both within host rocks and faults. For this purpose, 3D finite element simulations of coupled fluid and heat transport have been carried out, both for synthetic and real-case model scenarios on different scales. A small-scale synthetic model was developed to systematically assess the impact of an inclined fault by changing gradually its hydraulic width and its permeability within the simulations. An observed linear inverse relationship revealed that changing the fault width by one order of magnitude results in a fluid velocity decrease (~1e-01 m/s) within the fault. A high permeability contrast between fault and matrix favors fluid advection into the fault and leads to pronounced pressure and temperature changes in and around the same domain. When the permeability contrast between fault domain and host rock is low, however, no fluid flow is observed in the fault, thus resulting in undisturbed hydrostatic pressure and temperature fields. On the basis of these synthetic fault modelling results, the influence of faults on a larger scale have been analyzed within a more complex (real-case) geological setting,- a 3D model of the geothermal site Groß Schönebeck / located ~40 km north of Berlin. The integration of one permeable and three impermeable major faults, resulted in distinct changes observed in the local fluid circulation, thermal and pressure field. Modelled convective circulation within the permeable fault decisively modifies the thermal field (up to 15 K). Within the low permeable faults, heat is transferred only by conduction, inducing no thermal imprint but local deviations of the hydrostatic pressure field. To investigate the impact of major fault zones on the basin-scale geothermal field, coupled fluid and heat transport simulations have been conducted for a 3D structural model for Brandenburg region (Noack et al. 2010; 2013). Different geological scenarios in terms of modelled fault permeability have been carried out of which two end member models are analyzed. The results showed that tight fault zones affect the flow field locally. Acting as hydraulic barriers, fluid flow is deviated with very low velocities along them within a range of ~ 1 km on either sides. The modelled local changes in the groundwater circulation system have no considerable effect on the temperature field. By contrast, permeable fault zones induce a pronounced signature on the thermal field extending over a distance of ~ 2.4-8.8 km at -1000 m depth and ~6-12 km at -3000 m depth. This thermal signature, characterized by alternating cooler and hotter temperature domains, is controlled by up- and downward directed flow within the fault domain, principally driven by existing hydraulic head gradients. All studies demonstrated that faults have a considerable impact on the fluid and heat flow. The permeability in faults and surrounding geological layers as well as the specific geological setting turned out to be crucial factors in controlling the different kinds of heat transfer mechanisms that may evolve in faults. Temperature variations caused by permeable faults may be local but significant as well as changes in fluid dynamics by both conduits and barriers. Thus, the results demonstrated the importance to consider faults in geothermal energy exploration. In the final analysis, the simulations for the small-, regional- and basin-scale models showed that the outcomes cannot be transferred by upscaling and that it is necessary to consider each geological setting separately with respect to its configuration and scale dimension. In summary, this study demonstrated that the consideration of faults in 3D finite element models for coupled fluid and heat transport simulations on different scales is feasible. As these type of numerical simulations integrate both, the structural setting of the subsurface and the physical processes controlling subsurface transport, the outcomes of this thesis may provide positive contributions in that they valuably complement field- and laboratory-based investigations.
7

Scaling laws in two models for thermodynamically driven fluid flows / Skalierungsgesetze in zwei Modellen für thermodynamisch getriebene Fluidflüsse

Seis, Christian 03 January 2012 (has links) (PDF)
In this thesis, we consider two models from physics, which are characterized by the interplay of thermodynamical and fluid mechanical phenomena: demixing (spinodal decomposition) and Rayleigh--Bénard convection. In both models, we investigate the dependencies of certain intrinsic quantities on the system parameters. The first model describes a thermodynamically driven demixing process of a binary viscous fluid. During the evolution, the two components of the mixture separate into two domains of the different equilibrium volume fractions. One observes a clear tendency: Larger domains grow at the expense of smaller ones, and thus, the average domain sizes increases --- a phenomenon called coarsening. It turns out that two mechanisms are relevant for the coarsening process. At an early stage of the evolution, material transport is essentially mediated by diffusion; at a later stage, when the typical domain size exceeds a certain value, due to the viscosity of the mixture, a fluid flow sets in and becomes the relevant transport mechanism. In both regimes, the growth rates of the typical domain size obey certain power laws. In this thesis, we rigorously establish one-sided bounds on these growth rates via a priori estimates. The second model, Rayleigh--Bénard convection, describes the behavior of a fluid between two rigid horizontal plates that is heated from below and cooled from above. There are two competing heat transfer mechanisms in the system: On the one hand, thermodynamics favors a state in which temperature variations are locally minimized. Thus, in our model, the thermodynamical equilibrium state is realized by a temperature with a linearly decreasing profile, corresponding to pure conduction. On the other hand, due to differences in the densities of hot and cold fluid parcels, buoyancy forces act on the fluid. This results in an upward motion of hot parcels and a downward motion of cold parcels. We study the dependence of the average upward heat flux, measured in the so-called Nusselt number, on the temperature forcing encoded by the container height. It turns out that the efficiency of the heat transport is independent of the height of the container, and thus, the Nusselt number is a constant function of height. Using a priori estimates, we prove an upper bound on the Nusselt number that displays this dependency --- up to logarithmic errors. Further investigations on the flow pattern in Rayleigh--Bénard convection show a clear separation of length scales: Along the horizontal top and bottom plates one observes thin boundary layers in which heat is essentially conducted, whereas the large bulk is characterized by a convective heat flow. We give first rigorous results in favor of linear temperature profiles in the boundary layers, which indicate that heat is indeed essentially conducted close to the boundaries.
8

Herstellung und Eigenschaften hydridbasierter Verbundwerkstoffe mit hoher Energie- und Leistungsdichte für die Wasserstoffspeicherung

Pohlmann, Carsten 29 September 2014 (has links)
In dieser Arbeit werden kompaktierte Verbundwerkstoffe aus verschiedenen Speichermaterialien mit expandiertem Naturgraphit (ENG) in Hinblick auf die Anwendung als dynamische Wasserstofffeststoffspeichermaterialien untersucht. Pulverförmige hydridbildende Ausgangsmaterialien wurden mit bis zu 25 Masse-% ENG vermischt und bei Pressdrücken bis 600 MPa kompaktiert. Um einen weiten Anwendungsbereich abzudecken wurden ein Niedrigtemperaturmaterial (Ti-Mn-basierte Legierung; 0°C bis 100°C), zwei Mitteltemperaturmaterialien (Amid- und Alanatsystem; 100°C bis 200°C) und ein Hochtemperaturmaterial (Magnesium-Nickel-Legierung; 250°C bis 400°C) basierend auf einer umfangreichen Literaturrecherche gewählt. Die Verbundwerkstoffe weisen eine erhöhte radiale Wärmeleitfähigkeit auf und zeichnen sich im Vergleich zu herkömmlich verwendeten Pulverschüttungen durch höhere volumetrische Wasserstoffspeicherdichten aus. Im Fokus der Untersuchungen stehen vor allem die im Hinblick auf Anwendungstauglichkeit wesentlichen Eigenschaften der Verbundwerkstoffe. So wurde z.B. der Wasserstoffdruck während der Dehydrierung variiert, um sicher zu stellen, Verbraucher mit üblichen Überdrücken versorgen zu können. Darüber hinaus wurde die Stabilität, Gaspermeabilität, Wärmeleitfähigkeit und Porosität der Presslinge im Verlauf zyklischer Hydrierung evaluiert und diskutiert. Insgesamt zeichnet sich ein hohes Potenzial ab, derartige Presslinge als Wasserstoffspeichermaterial für verschiedene Anwendungen entsprechend der jeweiligen Arbeitstemperaturen und weiteren Randbedingungen (z.B. Systemmasse, Tankvolumen etc.) zu verwenden. Diesbezüglich konnte mittels eines Tankdemonstrators basierend auf dem Ti-Mn-System ein Wasserstofffahrzeug erfolgreich betrieben und somit auch die Praxistauglichkeit der Hydrid-Graphit-Verbundmaterialien gezeigt werden. / Compacted composites of solid-state hydrogen storage materials and expanded natural graphite (ENG) are investigated in view of their potential for hydrogen storage applications. Powdery hydride-forming materials were blended with up to 25 weight-% ENG and compacted with up to 600 MPa compaction pressure. In order to cover a wide range of possible applications one low-temperature material (Ti-Mn-based alloy; 0°C to 100°C), two mid-temperature materials (amide and alante system; 100°C to 200°C) and one high-temperature material (magnesium-nickel alloy; 250°C to 400°C) were chosen based on a thorough literature review. The composites result in an increased radial thermal conductivity and are superior in their volumetric hydrogen storage density compared to commonly used loose powder beds. The research is focused on the applicability of suchlike prepared composites. In this regard, the dehydrogenation back-pressures were varied to ensure a sufficient supply pressure of common consumer loads. Furthermore, the stability, gas permeability, thermal conductivity and porosity throughout cyclic hydrogenation were evaluated and discussed. Overall, a high potential to use suchlike composite materials for hydrogen storage applications regarding the specific working conditions (temperature, system mass, available volume etc.) is found. In this regard, a demonstrator tank equipped with Ti-Mn-based system was successfully supplying a hydrogen driven vehicle, which proves the feasibility of these hydride-graphite composite materials.
9

Elektrische und thermische Leitungseigenschaften von ß-Ga2O3 Einkristallen und homoepitaktischen Dünnschichten

Ahrling, Robin Fabian 20 March 2024 (has links)
Die Elektrifizierung unserer Gesellschaft verlangt eine stetige Innovation von elektrischen Bauteilen. Ein vielversprechendes Material ist der transparente Halbleiter ß-Ga2O3. Mit seiner hohen Bandlücke von 4,8 eV bietet das Material gute Voraussetzungen, um im Bereich der Hochleistungselektronik verwendet zu werden. In dieser Arbeit wurden die elektrischen und thermischen Leitungseigenschaften von ß-Ga2O3 untersucht. Dabei werden die Streumechanismen, die den Transport von Elektronen oder Phononen bestimmen, diskutiert. Es wurde eine Abhängigkeit der Ladungsträgerbeweglichkeit von der Schichtdicke der leitfähigen homoepitaktischen ß-Ga2O3 Schichten festgestellt. Während in Volumenproben und dicken Schichten (>150 nm) eine Kombination aus Streuung von Elektronen an Phononen und an ionisierten Störstellen den Transport dominiert, so spielen bei dünnen Schichten Grenzflächeneffekte eine Rolle. Dieser Effekt konnte mit einer modifizierten Variante des Modells nach Bergmann beschrieben werden. Messungen der Wärmeleitfähigkeit haben deren aus der Literatur bekannte Anisotropie bei Raumtemperatur bestätigt. Die Wärmeleitfähigkeit steigt mit sinkender Temperatur, bis bei etwa 30 K ein Maximum von über 1000 W/(mK) erreicht wird. Anhand der mittleren freien Weglängen der Phononen konnte gezeigt werden, dass der Wärmetransport oberhalb von 80 K von Phonon-Phonon Umklappstreuung bestimmt wird. Zwischen 30 K und 80 K zeigt sich der Einfluss von Punktdefektstreuung. Unterhalb von 30 K zeigen sich die Einflüsse der Grenzflächen des Kristalls. Es findet ein Übergang des Phononentransports aus dem diffusiven Transportregime nach Fourier zum ballistischen Phononenstrahlungstransport nach Casimir und Majumdar statt. Eine Betrachtung dieser Materialparameter zeigt, dass ein möglicher Einsatzbereich für ß-Ga2O3 basierte Bauelemente mit flüssigem Stickstoff gekühlte Anwendungen sein könnten. Hier sind sowohl elektrische als auch thermische Parameter gut für hohe Stromdichten geeignet. / The electrification of our society demands continuous innovation in the field of electronic devices. One promising material is the transparent semiconductor ß-Ga2O3. With its high bandgap of 4.8 eV the material shows a great potential to be used in the field of high-power electronics. In this work, the electrical and thermal properties of ß-Ga2O3 have been investigated. The scattering mechanisms that determine the transport of electrons or phonons are discussed. A dependence of the charge carrier mobility on the thickness of the conductive homoepitaxial ß-Ga2O3 layers has been observed. While a combination of electron-phonon scattering (high temperatures) and scattering of electrons on ionized impurities (low temperatures) was shown to dominate the transport in bulk samples and bulk-like layers (>150 nm), in thin layers the influence of boundary scattering plays an increasing role. This effect could be described by a modified version of the Bergmann scattering model for an ideal thin film. Measurements of the thermal conductivity have reproduced the anisotropy previously reported in literature. The thermal conductivity rises with decreasing temperature until it reaches a maximum at approximately 30 K exceeding 1000 W/(mK). The phonon mean free path showed, that the phonon transport is dominated by phonon-phonon Umklapp-scattering above 80 K. Between 30 K and 80 K the influence of point defect scattering was visible. Below 30 K surface effects influence the thermal transport. A transition from diffusive phonon transport in the Fourier model into ballistic phonon-radiative transport described by Casimir and Majumdar takes place. A comparison of these material parameters with those of materials currently used in high-power electronics like SiC and GaN shows, that a possible application for ß-Ga2O3 are devices, that are cooled with liquid nitrogen. In this temperature range the electrical and thermal conductivity of are both well-suited for high current densities.
10

Beiträge zur Auslegung konturnaher Temperierkanäle in Werkzeugen bei variothermer Prozessführung

Rohne, Marcus 08 August 2024 (has links)
In der Arbeit wurde der stationäre wie instationäre Wärmetransport in exemplarischen Werkzeuggeometrien untersucht. Im Ergebnis konnten Wärmedurchgangswiderstände und instationäre Verläufe charakteristischer Temperaturen (Mitteltemperatur, Werkzeugwand- und Kanalwandtemperatur) in Abhängigkeit der Wand- und Kanalabstände sowie der Strömungsgeschwindigkeit bestimmt werden. Daraus wurden Auslegungsgrundlagen in Form von Gleichungen zur Bestimmung des Formfaktors der Wärmeleitung sowie der zeitlichen Verläufe der Werkzeugwandtemperatur, der Kanalwandtemperatur und der Wandtemperatur-inhomogenität erarbeitet. Dabei zeigt sich eine gute Übereinstimmung zwischen den Gleichungen sowie experimentellen und numerischen Daten. Die Gleichungen erweitern den Wissenstand zur Auslegung von Temperierkanälen von Werkzeugen in variothermen Prozessen.

Page generated in 0.0816 seconds