• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antimikrobielle Wirksamkeit von Bleichmitteln und Bleichsystemen

Betz, Monika Maria. January 2001 (has links) (PDF)
München, Techn. Universiẗat, Diss., 2001.
2

Olfaktorische Effektstoffe in tensidhaltigen Formulierungen /

Müller, Christian. January 2008 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2008.
3

CO2-Abtrennung aus Gasströmen durch Absorption in Poly(methyldiglykol)amin

Ohle, Andrea 10 August 2009 (has links) (PDF)
In dieser Dissertation wird ein Prozess für die absorptive CO2-Abtrennung aus Gasströmen vorgestellt, der durch die Nutzung des neu entwickelten Waschmittels GenosorbN in einem Postcombustion-Prozess einen geringeren Energiebedarf als bisher bekannte Verfahren aufweist. Für die Nachrüstung bereits vorhandener Kraftwerke ist der Postcombustion-Prozess vorteilhaft, da er im Vergleich zum IGCC- oder dem Oxyfuel-Verfahren die geringsten Änderungen im Kraftwerksprozess selbst erfordert. Die bisher für die CO2-Abtrennung diskutierten Absorptionsmittel, wie z. B. MEA (Mono-Ethanol-Amin), haben allerdings vor allem in der Regeneration einen sehr hohen Energiebedarf, der vom Kraftwerk zusätzlich zur Verfügung gestellt werden muss. In Zusammenarbeit zwischen dem Institut für Verfahrenstechnik und Umwelttechnik der TU Dresden und der Clariant GmbH wurde das Absorptionsmittel GenosorbN (chemische Bezeichnung: Poly(methyldiglykol)amin) entwickelt. GenosorbN weist als Hybrid-Waschmittel gegenüber CO2 sowohl physikalische als auch chemische Bindungseigenschaften auf. Ausgehend von der Löslichkeitscharakteristik dieses Absorptionsmittels für CO2 und wichtigen Stoffwerten (z. B. Wärmekapazität und Lösungswärme von CO2) wurden mit Hilfe eines umfangreichen Versuchsprogramms an einer Technikumsanlage Betriebsparameter für einen energetisch günstigen technischen Einsatz ermittelt. Dabei hat sich herausgestellt, dass der Absorptionsprozess mit unverdünntem GenosorbN gegenüber einer MEA-Wäsche bei einem CO2-Abscheidegrad von ca. 90 % einen um ca. 20 - 27 % geringeren Energiebedarf in der Waschmittelregeneration aufweisen kann. Außerdem ist für die Desorption ein energetisch minderwertiger Heizdampf mit geringerem Temperatur- bzw. Druckniveau als bei dem MEA-Prozess ausreichend, da die Regenerationstemperatur um 40 - 50 K niedriger ist. Eine zusätzliche Druckabsenkung auf 400 mbar Absolutdruck im Desorber begünstigt die Regeneration deutlich. / This dissertation presents a process for the absorptive CO2-separation from gas streams, which shows a lower energy requirement than established methods by using the newly developed absorption liquid GenosorbN in a postcombustion-process. To retrofit an already existing power plant, the postcombustion-process is advantageous, because it needs the least changes in the power plant-process itself compared to the IGCC- or the Oxyfuel-process. The absorbents discussed for the CO2-separation up to now, for example MEA (mono-ethanol-amine), cause a high energy requirement mainly in the solvent regeneration, which has to be provided additionally from the power plant. The solvent GenosorbN (chemical notation: poly(methyldiglycol)amine) was developed in cooperation between the Institute of Process Engineering and Environmental Engineering of the Technical University of Dresden and the Clariant GmbH. GenosorbN is a hybrid-absorbent and therefore it shows both physical and chemical bonding forces. Based on the solvents characteristic of solubility for CO2 and important data on chemical media (for example heat capacity and enthalpy of solution) operating parameters for an energetic advantageous technical application were identified by a lot of test series at a pilot plant. The measurements show that the absorption process with the undiluted GenosorbN has a circa 20 - 27 % lower energy demand for the solvent regeneration compared to the MEA-process to reach a degree of separation of 90 %. Furthermore a low-value heating steam with lower temperature and therefore lower pressure level suffices because of the significant lower (40 - 50 K) regeneration temperature. An additional pressure reduction to 400 mbar absolute pressure in the regeneration column favours the solvent regeneration considerably.
4

CO2-Abtrennung aus Gasströmen durch Absorption in Poly(methyldiglykol)amin

Ohle, Andrea 16 July 2009 (has links)
In dieser Dissertation wird ein Prozess für die absorptive CO2-Abtrennung aus Gasströmen vorgestellt, der durch die Nutzung des neu entwickelten Waschmittels GenosorbN in einem Postcombustion-Prozess einen geringeren Energiebedarf als bisher bekannte Verfahren aufweist. Für die Nachrüstung bereits vorhandener Kraftwerke ist der Postcombustion-Prozess vorteilhaft, da er im Vergleich zum IGCC- oder dem Oxyfuel-Verfahren die geringsten Änderungen im Kraftwerksprozess selbst erfordert. Die bisher für die CO2-Abtrennung diskutierten Absorptionsmittel, wie z. B. MEA (Mono-Ethanol-Amin), haben allerdings vor allem in der Regeneration einen sehr hohen Energiebedarf, der vom Kraftwerk zusätzlich zur Verfügung gestellt werden muss. In Zusammenarbeit zwischen dem Institut für Verfahrenstechnik und Umwelttechnik der TU Dresden und der Clariant GmbH wurde das Absorptionsmittel GenosorbN (chemische Bezeichnung: Poly(methyldiglykol)amin) entwickelt. GenosorbN weist als Hybrid-Waschmittel gegenüber CO2 sowohl physikalische als auch chemische Bindungseigenschaften auf. Ausgehend von der Löslichkeitscharakteristik dieses Absorptionsmittels für CO2 und wichtigen Stoffwerten (z. B. Wärmekapazität und Lösungswärme von CO2) wurden mit Hilfe eines umfangreichen Versuchsprogramms an einer Technikumsanlage Betriebsparameter für einen energetisch günstigen technischen Einsatz ermittelt. Dabei hat sich herausgestellt, dass der Absorptionsprozess mit unverdünntem GenosorbN gegenüber einer MEA-Wäsche bei einem CO2-Abscheidegrad von ca. 90 % einen um ca. 20 - 27 % geringeren Energiebedarf in der Waschmittelregeneration aufweisen kann. Außerdem ist für die Desorption ein energetisch minderwertiger Heizdampf mit geringerem Temperatur- bzw. Druckniveau als bei dem MEA-Prozess ausreichend, da die Regenerationstemperatur um 40 - 50 K niedriger ist. Eine zusätzliche Druckabsenkung auf 400 mbar Absolutdruck im Desorber begünstigt die Regeneration deutlich. / This dissertation presents a process for the absorptive CO2-separation from gas streams, which shows a lower energy requirement than established methods by using the newly developed absorption liquid GenosorbN in a postcombustion-process. To retrofit an already existing power plant, the postcombustion-process is advantageous, because it needs the least changes in the power plant-process itself compared to the IGCC- or the Oxyfuel-process. The absorbents discussed for the CO2-separation up to now, for example MEA (mono-ethanol-amine), cause a high energy requirement mainly in the solvent regeneration, which has to be provided additionally from the power plant. The solvent GenosorbN (chemical notation: poly(methyldiglycol)amine) was developed in cooperation between the Institute of Process Engineering and Environmental Engineering of the Technical University of Dresden and the Clariant GmbH. GenosorbN is a hybrid-absorbent and therefore it shows both physical and chemical bonding forces. Based on the solvents characteristic of solubility for CO2 and important data on chemical media (for example heat capacity and enthalpy of solution) operating parameters for an energetic advantageous technical application were identified by a lot of test series at a pilot plant. The measurements show that the absorption process with the undiluted GenosorbN has a circa 20 - 27 % lower energy demand for the solvent regeneration compared to the MEA-process to reach a degree of separation of 90 %. Furthermore a low-value heating steam with lower temperature and therefore lower pressure level suffices because of the significant lower (40 - 50 K) regeneration temperature. An additional pressure reduction to 400 mbar absolute pressure in the regeneration column favours the solvent regeneration considerably.
5

Upgrading Biogas to Biomethane Using Absorption / Aufbereitung von Biogas zu Biomethan mittels Absorption

Dixit, Onkar 08 December 2015 (has links) (PDF)
Questions that were answered in the dissertation: Which process is suitable to desulphurize biogas knowing that chemical absorption will be used to separate CO2? Which absorption solvent is suitable to separate CO2 from concentrated gases such as biogas at atmospheric pressure? What properties of the selected solvent, namely aqueous diglycolamine (DGA), are already known? How to determine solvent properties such as equilibrium CO2 solubility under absorption and desorption conditions using simple, but robust apparatuses? What values do solvent properties such as density, viscosity and surface tension take at various DGA contents and CO2 loadings? How do primary alkanolamine content and CO2 loading influence solvent properties? What is the optimal DGA content in the solvent? What is the optimal desorption temperature at atmospheric pressure? How can equilibrium CO2 solubility in aqueous DGA solvents be simulated? What is the uncertainty in the results? How to debottleneck an absorber and increase its gas-treating capacity? How to determine the optimal lean loading of the absorption solvent? What are the characteristics of the absorption process that uses aqueous DGA as the solvent to separate CO2 from biogas and is more energy efficient and safer than the state-of-the-art processes? How to quantitatively compare the hazards of absorption solvents? What is the disposition of the German population towards hazards from biogas plants? What are the favourable and adverse environmental impacts of biomethane? / Fragen, die in der Dissertation beantwortet wurden: Welches Verfahren ist zur Entschwefelung von Biogas geeignet, wenn die chemische Absorption zur CO2-Abtrennung genutzt wird? Welches Absorptionsmittel ist geeignet, um CO2 aus konzentrierten Gasen, wie Biogas, bei atmosphärischem Druck abzutrennen? Welche Eigenschaften des ausgewählten Absorptionsmittels, wässriges Diglykolamin (DGA), sind bereits bekannt? Wie wird die CO2-Gleichgewichtsbeladung unter Absorptions- und Desorptionsbedingungen mit einfachen und robusten Laborapparaten bestimmt? Welche Werte nehmen die Absorptionsmitteleigenschaften wie Dichte, Viskosität und Oberflächenspannung bei verschiedenen DGA-Gehalten und CO2-Beladungen? Wie werden die Absorptionsmitteleigenschaften durch den Primäramin-Gehalt und die CO2-Beladung beeinflusst? Was ist der optimale DGA-Gehalt im Absorptionsmittel? Was ist die optimale Desorptionstemperatur bei atmosphärischem Druck? Wie wird die CO2-Gleichgewichtsbeladung im wässrigen DGA simuliert? Welche Ungenauigkeit ist zu erwarten? Wie wird eine Absorptionskolonne umgerüstet, um die Kapazität zu erweitern? Wie wird die optimale CO2-Beladung des Absorptionsmittels am Absorbereintritt (im unbeladenen Absorptionsmittel) bestimmt? Was sind die Prozesseigenschaften eines Absorptionsverfahrens, das wässriges DGA als Absorptionsmittel nutzt sowie energieeffizienter und sicherer als Verfahren auf dem Stand der Technik ist? Wie kann das Gefahrenpotenzial von Absorptionsmittel quantitativ verglichen werden? Wie werden Gefahren aus einer Biogasanlage durch die deutsche Bevölkerung wahrgenommen? Welche positive und negative Umweltauswirkung hat Biomethan?
6

Die Böhme Fettchemie GmbH von ihrer Gründung bis in die frühe Nachkriegszeit: Für Eure Wäsche ausgezeichnet – Wasch- und Textilhilfsmittel aus Chemnitz –

Reichmann, Ivonne 19 January 2021 (has links)
Die Böhme Fettchemie ging aus der 1881 von Hermann Theodor Böhme errichteten „Drogen-, Farben- und chemische Produktehandlung“ hervor. Am Ende des 19. Jahrhunderts als kleine Verkaufshandlung gegründet, etablierte es sich innerhalb von 50 Jahren zu einem weltbekannten Unternehmen zunächst im Bereich der Textilhilfsmittel. Doch auch im Bereich der Haushaltswaschmittel erreichte es in den 1930er Jahren ebenfalls einen großen Bekanntheitsgrad. Mit der Werbefigur Johanna, die das weltweit erste synthetische Waschmittel „Fewa“ anpries, war es der Firma gelungen, ein breites Publikum auf sich aufmerksam zu machen. Neben der Unternehmensgeschichte – von der Gründung bis in die Mitte der 1940er Jahre – gibt die Autorin Ivonne Reichmann mit dem vorliegenden Werk Auskunft über soziale und wirtschaftliche Aspekte der Böhme Fettchemie. Die einzelnen, chronologisch gegliederten Kapitel erschließen die bauliche Erweiterung, die Mitarbeiterstruktur, den Ausbau der Produktpalette sowie die weltweite Ausdehnung des Unternehmens. Deren Werbemaßnahmen spielen dabei ebenso eine Rolle wie die Übernahme durch den Henkel-Konzern in den 1930er Jahren. Mit dieser Studie wird eine Forschungslücke zum bisher wenig betrachteten Bereich der chemischen Industrie im südwestsächsischen Raum geschlossen.:1. Fragestellung und Methode 2. Voraussetzungen und Anfänge der Unternehmensgründung 3. Unternehmensentwicklung bis zum Ende der 1920er Jahre 4. Die turbulenten 1930er Jahre 5. Das Unternehmen während des Zweiten Weltkriegs 6. Nachkriegsjahre / Böhme Fettchemie emerged from a 'drugs, dyes and chemical products shop' established by Hermann Theodor Böhme in 1881. Founded at the end of the 19th century as a small sales business, it established itself within 50 years as a world-famous company, initially in the field of textile auxiliaries. But also in the field of household laundry detergents it achieved a high degree of recognition in the 1930s. With the advertising figure Johanna, who praised the world's first synthetic detergent 'Fewa', the company succeeded in attracting the attention of a wide audience. In addition to the company's history – from its foundation to the mid-1940s – the author Ivonne Reichmann provides information about the social and economic aspects of Böhme Fettchemie with this work. The individual, chronologically structured chapters reveal the structural expansion, the employee structure, the expansion of the product range as well as the worldwide expansion of the company. Their advertising measures play just as much a role as the takeover by the Henkel Group in the 1930s. This study closes a research gap to the hitherto little considered area of the chemical industry in southwest Saxony.:1. Fragestellung und Methode 2. Voraussetzungen und Anfänge der Unternehmensgründung 3. Unternehmensentwicklung bis zum Ende der 1920er Jahre 4. Die turbulenten 1930er Jahre 5. Das Unternehmen während des Zweiten Weltkriegs 6. Nachkriegsjahre
7

Upgrading Biogas to Biomethane Using Absorption

Dixit, Onkar 17 November 2015 (has links)
Questions that were answered in the dissertation: Which process is suitable to desulphurize biogas knowing that chemical absorption will be used to separate CO2? Which absorption solvent is suitable to separate CO2 from concentrated gases such as biogas at atmospheric pressure? What properties of the selected solvent, namely aqueous diglycolamine (DGA), are already known? How to determine solvent properties such as equilibrium CO2 solubility under absorption and desorption conditions using simple, but robust apparatuses? What values do solvent properties such as density, viscosity and surface tension take at various DGA contents and CO2 loadings? How do primary alkanolamine content and CO2 loading influence solvent properties? What is the optimal DGA content in the solvent? What is the optimal desorption temperature at atmospheric pressure? How can equilibrium CO2 solubility in aqueous DGA solvents be simulated? What is the uncertainty in the results? How to debottleneck an absorber and increase its gas-treating capacity? How to determine the optimal lean loading of the absorption solvent? What are the characteristics of the absorption process that uses aqueous DGA as the solvent to separate CO2 from biogas and is more energy efficient and safer than the state-of-the-art processes? How to quantitatively compare the hazards of absorption solvents? What is the disposition of the German population towards hazards from biogas plants? What are the favourable and adverse environmental impacts of biomethane? / Fragen, die in der Dissertation beantwortet wurden: Welches Verfahren ist zur Entschwefelung von Biogas geeignet, wenn die chemische Absorption zur CO2-Abtrennung genutzt wird? Welches Absorptionsmittel ist geeignet, um CO2 aus konzentrierten Gasen, wie Biogas, bei atmosphärischem Druck abzutrennen? Welche Eigenschaften des ausgewählten Absorptionsmittels, wässriges Diglykolamin (DGA), sind bereits bekannt? Wie wird die CO2-Gleichgewichtsbeladung unter Absorptions- und Desorptionsbedingungen mit einfachen und robusten Laborapparaten bestimmt? Welche Werte nehmen die Absorptionsmitteleigenschaften wie Dichte, Viskosität und Oberflächenspannung bei verschiedenen DGA-Gehalten und CO2-Beladungen? Wie werden die Absorptionsmitteleigenschaften durch den Primäramin-Gehalt und die CO2-Beladung beeinflusst? Was ist der optimale DGA-Gehalt im Absorptionsmittel? Was ist die optimale Desorptionstemperatur bei atmosphärischem Druck? Wie wird die CO2-Gleichgewichtsbeladung im wässrigen DGA simuliert? Welche Ungenauigkeit ist zu erwarten? Wie wird eine Absorptionskolonne umgerüstet, um die Kapazität zu erweitern? Wie wird die optimale CO2-Beladung des Absorptionsmittels am Absorbereintritt (im unbeladenen Absorptionsmittel) bestimmt? Was sind die Prozesseigenschaften eines Absorptionsverfahrens, das wässriges DGA als Absorptionsmittel nutzt sowie energieeffizienter und sicherer als Verfahren auf dem Stand der Technik ist? Wie kann das Gefahrenpotenzial von Absorptionsmittel quantitativ verglichen werden? Wie werden Gefahren aus einer Biogasanlage durch die deutsche Bevölkerung wahrgenommen? Welche positive und negative Umweltauswirkung hat Biomethan?

Page generated in 0.0451 seconds