291 |
Biological treatment of turkey processing wastewater with sand filtrationKang, Young Woon 11 March 2004 (has links)
No description available.
|
292 |
Assessment of on-site wastewater treatment systems in unsewered communities in Jordan / Bedömning av avloppsreningssystem på plats i små samhällen i JordanienShubail, Hani Yahya Ali January 2020 (has links)
Centralized wastewater treatment systems need substantial funds besides high-cost operation and maintenance programs, which could be considered unsuitable for low-income developing countries. As a solution, it becomes the trend towards on-site wastewater treatment systems (OWTs) due to its cost-effectiveness and flexibility of implementation and management. However, the keenness to implement these systems appropriately and monitor them continually is crucial to ensure that they do not impact the surrounding environment and human health. Constructed wetland is one of the on-site wastewater treatment systems. These systems are comparatively affordable alternative technology, and adequate systems for small communities, rural, and hilly areas. In the present study, two constructed wetlands as on-site wastewater treatment systems in Sakib - Jerash Governorate, Jordan, were investigated regarding systems performance, social acceptance, and cost-benefit analysis. The first system is a vertical flow constructed wetland (VCW) that has been operating since January 2020. The second system is a recirculation vertical flow constructed wetland (RVCW) that has been in operation since July 2015. The checking of the theoretical design parameter and the actual loading conditions of the septic tanks and wetlands in both systems showed that both implemented septic tanks and the wetlands are adequate and appropriate for the design goals. The wetlands’ treatment performance showed sufficient capability in organic matter removal efficiencies: Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS) removal efficiency. For pathogens: Total Coliform (TC) and Escherichia coli (E.coli), even though the removal efficiency was high, the effluents' values exceeded the local directive. Concerning nutrients removal, both systems showed low nitrogen and phosphorus removal efficiencies. Some suggestions and recommendations were proposed for improving nutrients removal and pathogen removal efficiencies. These recommendations were in desludging the septic tanks, replacing the filtering media, introduce plantation or add other carbon sources to the system, and using an additional aerobic filtration unit in the wetlands’ outlets. The study showed that the Jordanian society's nonacceptance of the on-site wastewater treatment systems could be handled through full transparency, educational workshops, and public participation. The latter contributed an increased sense of ownership robustly and increased concern of responsibilities on the operational and maintenance matters. Regarding the cost-benefit analysis, the study results demonstrated that the implementation of a constructed wetland as an on-site wastewater treatment system could be a beneficial and valuable alternative for clusters in rural areas and even in newly urbanized plans. The promising method for the treated wastewater's disinfection using clay minerals needs further investigation to determine the optimum clay mineral concentration on treatment and the needed time for exposure. / För att täcka centraliserade avloppsreningssystems drift och underhåll är det kapitalinsättningen av stor betydelse, förutom högkostnadsprogram, något som anses vara olämpligt för låginkomstländer. In-situ avloppsreningssystem verkar vara en lovande lösning till detta. För att dock säkerställa att dessa ej belastar den omgivande miljö och fungerar som det skall i förbehåll att dessa ständigt övervakas. Konstruerade våtmarker är en typ av in-situ vattenreningsteknik. Dessa system är lämpliga för småstäder, bergiga och tätortsområden. Dessa system är kostnadseffektiva och flexibla vad dess implementering och hantering anbelangar. Två dylika system är i fokus av denna studie, nämligen två konstruerade våtmarker i Sakib - Jerash i Jordanien och i synnerhet utforskas dess prestanda, social acceptans i och dessutom utfördes en nyttokostnadsanalys. Båda våtmarkerna i denna rapport har konstruerats med ett vertikalt markflöde och är i drift sedan januari 2020 och juli 2015 respektive. Dessa två system ger goda reduktioner med avseende på biokemiskt syrebehov och kemiskt syrebehov (BOD, COD), totalt suspenderat material (TSS), och effektivitet rörande patogen borttagning (TC och E. coli). Även om patogen borttagningseffektivitet i sig var hög förblev patogenhalt hög i det lokala direktivs avseende; de lokala förutsättningarna, nämligen designparameter och belastningsförhållanden, tillåter dock uppbyggande och drift av dessa två systemen som i fokus i detta studium. Beträffande borttagning av näringsämnen visade det sig att båda systemen har låg kväve- och fosforborttagningseffektivitet. Vissa förslag och rekommendationer föreslogs för att förbättra näringsämnen samt systemens effektivitet vad gäller patogenborttagning; i synnerhet dessa förslag beträffar pumpa ut slammet ur septiktanken, utbyte och backspolning av vattenfiltermedia, vattenväxterinförande eller tillägg av en extern kolkälla samt användning av en ytterligare aerobfiltreringsenhet vid utlopp. Det visade sig att det jordanska samhälle sätter käppar i hjulet vad gäller implementering av dessa våtmarker emedan dess förfarande är oacceptabelt. Dylika problem kan överbryggas genom full insyn, föredrag och workshops samt allmänhetens deltagande. Det sistnämnda gav upphov till en ökad känsla av äganderätt robust, något som ledde till ökat intresse för ansvar i drifts- och underhållsfrågor. Vad nyttokostnadsanalysen anbelangar visade det sig att implementering av ett dylikt system skulle vara fördelaktigt och värdefullt som alternativ för kluster på tätorts- och landsbygdsområden. Avloppsvattenbehandlingen med lermineraler verkar hittills vara en lovande metod vid betraktande av tidigare studier. Det behöver dock göras ytterligare undersökningar för avloppsvattenbehandlingen med lermineraler vid bestämmande av den optimala lermineral koncentration och dess exponeringstid.
|
293 |
Shotgun metagenomic analysis of antimicrobial resistance in wastewaterMaile-Moskowitz, Ayella Zorka 13 March 2023 (has links)
Antimicrobial resistance (AMR) threatens our modern standard of living with the potential return to a pre-antibiotic condition where deadly infections are no longer treatable. Wastewater treatment plants (WWTPs) are vital components in water sanitation infrastructure and are now also being recognized as valuable monitoring points for antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) disposed of or excreted by human populations. Hospital waste water is of special interest as a potential focused monitoring point and in general research is needed to establish the benefits of both on-site and community-scale wastewater treatment as important barriers to the disseminators of ARGs into the environment. The research aims described herein examine these components of wastewater treatment and how they relate to AMR indicators identified through metagenomic sequencing. Through monitoring of local WWTPs, it was found that AMR indicators shifted over time and in relation to human behavior that changed due to the COVID-19 pandemic. Hospital wastewater did not measurably impact the microbiome during simulated activated sludge wastewater treatment according to broad-scale metagenomic ARG profiling; however, some clinically-relevant ARGs escaped treatment. Lastly, a study of a transect of WWTPs indicated impacts on the abundance of certain ARGs in downstream riverine receiving environments. Nonetheless, there appeared to be a number of other factors at play, and upstream and downstream resistomes tended to remain similar, calling for further research to delineate impacts of various wastewaters and treatments on ARGs in affected aquatic environments. / Doctor of Philosophy / Antimicrobial resistance (AMR) occurs when bacteria, viruses, and fungi are able to survive in the presence of antibiotics because they carry antibiotic resistance genes (ARGs) encoded in their DNA. AMR is a major public health concern as it makes it so that antibiotics are no longer effective against potentially deadly infections. Wastewater treatment plants (WWTPs) are being discovered as a hub of opportunity for monitoring potential AMR problems in a community. WWTPs receive sewage from homes and various industries. This sewage contains rich information for researchers to examine in terms of which antibiotics, bacteria, and ARGs are circulating in the community. This makes it possible to find out which antibiotics are being consumed in the community and which ARGs might be prevalent. The purpose of this research was to better understand both how WWTPs can be used as monitoring points for AMR and how they can be improved to help reduce ARGs emitted to rivers and streams where treated water is discharged. It was found that the types of ARGs prevalent in wastewater changed over time, especially during the COVID-19 pandemic as people worked from home and changed habits regarding doctors' visits, which impacted antibiotic use. Hospital sewage was studied as a useful indicator of pathogens and ARGs that are challenging a community and also the antibiotics being used. This research explored what happened to ARGs during the treatment of domestic (i.e., from people's homes) wastewater along with hospital wastewater and found that hospital wastewater introduced some ARGs that are typically found in clinical settings, but did not negatively impact the overall wastewater treatment process. Finally, the impact that WWTPs have on rivers to which treated water is discharged was explored. The results indicated that certain ARGs were elevated downstream of the WWTPs. However, when examining all ARGs together, no major shifts due to the treated wastewater were apparent.
|
294 |
Advancing Integrated Membrane Filtration Processes for Treating Industrial Wastewaters with Time Varying Feed Properties / DEVELOPING INTEGRATED MEMBRANE PROCESSES FOR INDUSTRIAL WASTEWATERSPremachandra, Abhishek January 2024 (has links)
Wastewaters that are produced by industrial processes are more challenging to treat than municipal wastewaters, primarily due to two reasons. Firstly, industrial wastewaters contain high concentrations of several different contaminants (e.g. metals, nutrients and organics etc.), which can be challenging for a single process to treat. Secondly, the compositional properties of the wastewaters can vary significantly as it is dependent on several upstream processes. Commercial membrane technologies have shown significant adoption in desalination and municipal wastewater treatment applications. Their favourable selectivity and tunable properties have garnered interest from both academia and industry to push these technologies into industrial wastewater treatment. Despite showing promising contaminant removal results, current studies have shown that fouling due to high contaminant loadings, and variable treatment efficacies due to feed property variations, limit the adoption of commercial membranes into these applications. Current research addresses these challenges through the new material development or surface modifications, however, there is a need to approach these challenges at a process level by integrating existing membrane technology into adaptive processes.
This thesis aims to advance the adoption of commercial membrane technology into ‘tough-to-treat’ industrial wastewater applications. Firstly, the effects of high contaminant concentrations and variable feed properties on membrane treatment is studied by using advanced techniques, such as gas chromatography – mass spectrometry, to resolve the composition of feed and permeate streams from membrane processes treating real wastewaters. It was determined that fast and efficient screening tools are required to optimize and adapt membrane processes to respond to this variability. This thesis then introduces high-throughput and miniaturized screening platform that combines analytical centrifugation with filter plate technology to rapidly optimize two-stage coagulation-filtration processes with an extremely low material and time requirement. / Thesis / Doctor of Philosophy (PhD) / Wastewaters sourced from industrial processes are considered ‘tough-to-treat’ due to high contaminant concentrations and time-varying compositional properties. Recent advancements in membrane technologies have demonstrate great promise in treating industrial wastewaters, however, these membranes often need to be integrated with other treatment technologies to overcome challenges with treating these wastewaters. This thesis aims to push the adoption of integrated membrane processes for treating high-strength industrial wastewaters. By utilizing advanced analytical techniques to investigate the effects of high contaminant loadings and variable feed properties on membrane processes, it was determined that screening tools are needed to rapidly design and optimize membrane process that are tailored to the properties of the wastewater. This thesis introduces a high-throughput and miniaturized screening platform that combines analytical centrifugation and filter-plate technology to holistically screen two-stage coagulation-filtration processes with little time and material requirements.
|
295 |
Photocatalytic Affinity Membranes for The treatment of Dyes Contaminated Wastewater. Fabrication of the photocatalytic affinity membranes, using chemical and electrohydrodynamic processes; electrospinning, and electrospraying, for the efficient removal and degradation of the dyes that are present in the contaminated waterAlAbduljabbar, Fahad A. January 2022 (has links)
Electrospinning and electrospraying are electrohydrodynamic processes used for the
fabrication of nano- and microfiber membranes and the deposition of particles on the
membrane. Despite the numerous research papers found in the literature on electrospun
polymers and their application in water treatment, not much is reported on the
functionalization of electrospun nano- or microfibers and the deposition of ceramic
nanoparticles on their surface by electrospraying. The use of these two processes may
increase the efficiency of membranes in removing contaminants. In the present
research, the processes of electrospinning and electrospraying are described and the
factors affecting electrospinning are investigated. All parameters affecting the
production of smooth NFs and NPs are discussed. A literature review of the recent
advances in electrospinning and electrospray applications, as well as the application
of NFs membranes in water treatment, has been described. This research has been
designed based on the knowledge gaps identified in the literature. Detailed
experiments were carried out on the preparation of PAN_P and Cs_P NFs membranes
by electrospinning technique, the NFs membranes were then functionalized with
different functional groups. The membranes were used for removal (Chapter 3) and
degradation (Chapters 4 and 5) of dyes synthetic solutions. In the case of degradation,
the membranes were electrosprayed with TiO2 NPs. All membranes were
characterized by standard spectroscopic, microscopic, surface analytical, and thermal methods. Adsorption of MB, RB, and ST from a synthetic aqueous solution on the
membranes PAN and EA-g-PAN NFs decreased in the order PAN<EA-g-PAN. The
adsorption isotherm for the dyes fitted well with the models of Langmuir and
Freundlich. The values of the correlation coefficient (r2) for Langmuir varied from
0.940 to 0.995 and for Freundlich from 0.941 to 0.998. The slightly increased values of the correlation coefficient in the case of Freundlich indicate that condensation
(physical adsorption) of dyes on the NFs membranes also occurred in addition to the
formation of monolayers.
PAN_P NFs membranes prepared by electrospinning were functionalized with DETA
to produce a functionalized PAN _F NFs membrane. TiO2 NPs synthesized in the
laboratory were anchored to the surface of the PAN_F NFs membrane by electrospray
to prepare PAN _Coa. A second PAN_Co was prepared by embedding TiO2 NPs into
the PAN_P NFs by electrospinning. A similar strategy was also used for the Cs and
TiO2 NPs system. The PAN_Coa NFs membrane was used for the degradation of MO
while the Cs_Coa NFs membrane was used for the degradation of MB. The higher
photocatalytic activity of PAN _Coa NFs membranes (92%, 20 ppm, and 99.5%, 10 ppm) compared to PAN_Co NFs membranes (41.64%) was due to the smaller band
gap, high surface roughness, and large surface area. Also, the higher photocatalytic
activity of the Cs_Coa NFs membrane (89%) compared to TiO2/Cs composite (Cs_Co)
NFs membranes (40%) was due to a balance between the band gap, high surface
roughness, and lower surface area. BET showed that the isotherms and hysteresis were
similar for all NFs membranes, and they were classified as isotherm type IV and
hysteresis H3 (IUPAC), corresponding to mesopores and slit-shaped pores.
|
296 |
Advancing Rural Public Health: From Drinking Water Quality and Health Outcome Meta-analyses to Wastewater-based Pathogen MonitoringDarling, Amanda Victoria 07 October 2024 (has links)
A rural-urban divide in health status and healthcare infrastructure has been well-documented in the U.S., where populations residing in census regions classified as rural often exhibit more negative health outcomes, adverse health behaviors, and have reduced access to affordable and proximal health services, compared to their urban and peri-urban counterparts. However, it is important to note that such disparities vary based on specific rural regions and individual circumstances. Rural areas may face elevated risk factors for infectious diseases such as increased proximity to wildlife and livestock and disproportionately high reliance on private, non-federally regulated, primary drinking water sources. Chronic conditions prevalent in rural communities such as diabetes and hypertension are frequently linked with longer duration and higher severity of symptoms than in urban areas; this association suggests that the risk of exposure to infectious diseases and the likelihood of progression to serious illness and hospitalization may be elevated, although this is not universally the case across all rural settings. Alongside documented urban-rural health disparities, there also exist disparities in the nature and quality of data on health-related behaviors, outcomes, and service provision in rural areas compared to urban and peri-urban regions.
In this dissertation, two key environmental matrices –drinking water and wastewater– were highlighted as vectors of information to better estimate levels of contaminant exposures and health outcomes in rural communities. First, baseline data on drinking water contaminant levels and associated health outcome data were highlighted as crucial for refining holistic exposure estimates as well as understanding drinking water related health burdens in rural communities where a larger proportion of households use private drinking water sources, such as well water, that are not federally regulated. Second, systematic sampling and testing of pathogen biomarkers in wastewater to non-invasively measure population-level health status, also known as wastewater based surveillance (WBS) and, depending on the context, wastewater based epidemiology (WBE) is not constrained by disadvantages of clinical testing, e.g., limited health-care access, long travel times to testing facilities, delay between symptom-onset and testing. Thus, expanded implementation of WBS in rural communities is proposed here as a strategy to address data disparities in clinical testing for infectious diseases.
Collectively, this dissertation advances knowledge on estimated drinking water contaminant levels, exposures, and associated public health outcomes and corresponding research gaps in rural Appalachian U.S., and elucidates pathways toward best practices and considerations for public-health focused wastewater testing adoption in rural communities. For the latter, the question of whether WBS challenges unique to rural wastewater systems hinder application of WBS in small, rural communities was explored, as well as methods to advance best-practices for rural WBS.
To summarize existing publicly available peer-reviewed literature on drinking water contaminants in rural Appalachian U.S., in Chapter 2, a systematic review and meta-analysis of microbial and chemical drinking water contaminants was performed. Key contaminants were identified as being elevated beyond regulatory, health-based, maximum contaminant levels in our meta-analyses from rural drinking water sources in Appalachia, including E coli, lead, arsenic, uranium. Overall, we found data on drinking water source quality under baseline conditions (i.e., rather than post anomalous contamination events such as chemical spills) in rural Appalachian U.S. was sparse relative to widespread media coverage on the issue. Epidemiologic-based research studies that collected both drinking water exposure data and paired health outcome data were also limited. As a result, although some instances of anomalously high levels of drinking water contaminants were identified in rural Appalachia from the published literature, we could not obtain a clear picture of baseline exposures to drinking water contaminants in most rural Appalachian communities, highlight need to address these knowledge gaps.
In Chapter 3, to evaluate whether wastewater could serve as a reliable metric for estimating community circulation of viruses and antimicrobial resistance (AMR) markers, even when sourced from aging and low-resource sewer collection networks, a 12-month wastewater monitoring study was conducted in a small, rural sewer conveyance system with pronounced infrastructural challenges. Specifically, the field site under study was compromised with heavy inflow and infiltration (IandI). Detection rates and concentrations of viral, AMR, and human fecal markers were grouped by levels of IandI impact across the sewershed, and location-, date-, and sample- specific variables were assessed for their relative influence on viral, AMR, and human fecal marker signal using generalized linear models (GLMs). We found that while IandI likely adversely impacted the magnitude of wastewater biomarker signal to some extent throughout the sewershed, especially up-sewer at sites with more pronounced IandI, substantial diminishment of wastewater signal at WWTP influent was not observed in response to precipitation events. Thus, our data indicated that WWTP influent sampling alone can still be used to assess and track community circulation of pathogens in heavily IandI impacted systems, particularly for ubiquitously circulating viruses less prone to dilution induced decay. Delineations were also made for what circumstances up-sewer sampling may be necessary to better inform population shedding of pathogens, especially where IandI is prevalent.
Various normalization strategies have been proposed to account for sources of variability for deriving population-level pathogen shedding from wastewater, including those introduced by IandI-driven dilution. Thus, in Chapter 4, we evaluated the temporal and spatial variability of viral and AMR marker signal in wastewater at different levels of IandI, both unnormalized and with the adoption of several normalization strategies. We found that normalization using physicochemical-based wastewater strength metrics (chemical oxygen demand, total suspended solids, phosphate, and ammonia) resulted in higher temporal and site-specific variability of SARS-CoV-2 and human fecal biomarker signal compared to unnormalized data, especially for viral and AMR marker signal measured in wastewater from sites with pronounced IandI. Viral wastewater signal normalized to physicochemical wastewater strength metrics and flow data also closely mirrored precipitation trends, suggesting such normalization approaches may more closely scale wastewater trends towards precipitation patterns rather than per capita signal in an IandI compromised system. We also found that in most cases, normalization did not significantly alter the relationship between wastewater trends and clinical infection trends. These findings suggest a degree of caution is warranted for some normalization approaches, especially where precipitation driven IandI is heightened. However, data and findings largely supported the utility of using human fecal markers such as crAssphage for normalizing wastewater signal to address site-specific differences in dilution levels, since viral signal scaled to this metric did not result in strong correlations between precipitation and wastewater trends, higher spatial and temporal variation was not observed, and strong correlations were observed between viral signal and viral infection trends.
Finally, in chapter 5, we assessed the relationship between monthly Norovirus GII, Rotavirus, and SARS-CoV-2 wastewater trends with seasonal infection trends for each of the viruses to ascertain whether WBE could be used in a rural sewershed of this size with substantial IandI impacts to track and potentially predict population level infection trends. Though up-sewer, or near-source sampling, at sites with permanent IandI impacts did not exhibit a clear relationship with seasonal infection trends for Rotavirus, SARS-CoV-2, and Norovirus GII, WWTP influent signal and consensus signals aggregated from multiple up-sewer sites largely mirrored expected seasonal trends. Findings also suggested that for more ubiquitous viral targets, such as SARS-CoV-2, viral trends measured at WWTP influent in a small IandI impacted system may still provide a sufficiently useful measure of infection trends to inform the use of WBE (assuming appropriate normalization to sewershed population). These findings elucidate the potential utility and relative robustness of wastewater testing to ascertain community-level circulation of pathogens in small, rural sewersheds even those compromised by extensive IandI inputs.
Overall, this dissertation examined drinking water and wastewater as critical metrics for assessing contaminant exposures and infectious disease trends in rural communities, particularly in the context of small, rural communities which tend to have more limited health infrastructure and lower-resource wastewater systems. Overall, findings underscore the need for baseline data on drinking water quality by identifying gaps in current knowledge and calling for further research to better understand drinking water contaminant exposure levels in rural areas. Wastewater as a non-invasive, population-level health metric was evaluated in the context of a small, rural sewer system overall, and by varying observed levels of IandI, as well as associated tradeoffs for normalization adoption. By evaluating these environmental surveillance metrics using both desk-based and field-based research study designs, findings from this dissertation offer valuable insights and practical recommendations for improving baseline drinking water quality monitoring and wastewater pathogen testing, all with the overarching goal of supporting more targeted public health interventions in rural settings. / Doctor of Philosophy / In the United States, there is a significant health and healthcare gap between rural and urban areas. Rural communities often face worse health outcomes, poorer health behaviors, and have less access to affordable and nearby healthcare services compared to their urban and peri-urban counterparts. Additionally, rural areas are exposed to higher risks for infectious diseases due to closer proximity to wildlife and livestock and proportionately lower access to regulated drinking water sources. Chronic conditions like diabetes and hypertension, which are more common in rural populations, can exacerbate the severity and duration of symptoms for infectious diseases, potentially leading to more serious illness and hospitalizations. Despite these heightened risks, data on health behaviors, outcomes, and healthcare services in rural areas is often lacking and less comprehensive compared to urban regions. This dissertation investigates two promising avenues of improving monitoring to provide information needed to better understand and address contaminant exposures and health trends in rural communities: drinking water and wastewater.
Firstly, this dissertation underscores the importance of establishing baseline data on drinking water quality. This is essential for accurately estimating exposure levels and understanding the health impacts associated with elevated levels of drinking water contaminants, particularly in rural areas where a higher share of primary drinking water sources is unregulated by the federal government compared to urban areas. This study reveals significant gaps in current knowledge and highlights the need for more research to provide a clearer picture of drinking water quality in these communities.
Secondly, this dissertation explores the use of wastewater as a non-invasive tool for assessing community health. This method, known as wastewater-based surveillance (WBS) or wastewater-based epidemiology (WBE), offers a way to measure population-level health trends without relying on clinical testing, which can be limited by factors such as access to healthcare and delays in testing. The dissertation evaluates how effective wastewater monitoring can be in small, rural sewer systems, even when these systems face challenges like aging infrastructure and significant inflow and infiltration (IandI) from groundwater and surface water. It examines how different normalization strategies for wastewater data can influence the reliability of this method and how wastewater testing can be adapted to account for varying levels of IandI.
Overall, the dissertation provides valuable insights into the effectiveness of using drinking water and wastewater as environmental metrics for informing public health intervention strategies in rural settings. It offers justifications for improving drinking water quality monitoring and wastewater testing practices, aiming to support more targeted and effective public health interventions in rural communities. By addressing the challenges and limitations associated with these environmental monitoring strategies this research contributes to a better understanding of how to reduce health data disparities in rural areas.
|
297 |
Synthesis and characterization of nitrogen-doped titanium oxide nanoparticles for visible-light photocatalytic wastewater treatmentPelaschi, Mohammad Ali 05 October 2018 (has links)
TiO2 nanoparticles are one of the most suitable materials for photocatalysis, specifically for water and air treatment and removal of a wide variety of organic pollutants such as dyes, aromatic compounds, and chlorinated aromatic compounds. Methods of synthesis of TiO2 are generally categorized in two main classes of wet chemical, and dry methods. Wet chemical methods generally provide a better control over size, size distribution, and shape; all of which significantly affect photocatalytic performance of the produced nanoparticles. Despite its advantages over other semiconductor photocatalysts, wide band-gap of titania restrains its photocatalytic activity to only UV light, which only makes up to 5% of the light reaching surface of the earth. To induce visible-light activity, titania has been doped by different dopants, including transition metal-dopants such as Fe, and Co and non-metal dopants such as N, and C. Nitrogen has been shown to be a better dopant, providing a suitably placed energy state within the band-gap of TiO2, and not suffering from issues related to transition-metal dopants such as low thermal and physical stability and high electron-hole recombination rates. To dope titania with nitrogen, one could add the nitrogen source together with other precursors during synthesis, referred to as wet chemical doping methods, or anneal the synthesized titania nanoparticles under a flow of ammonia at high temperatures, referred to as dry doping methods. While different doping methods have been studied individually, the author maintains that there has been an absence of research comparing the effectiveness of these methods, on photocatalytic performance of N-doped TiO2 within a consistent experiment. In this research TiO2 nanoparticles were synthesized by a facile, inexpensive sol-gel method, and doping was done by wet chemical methods, dry methods, and a combination of both these methods. Visible-light photocatalytic activity of these nanoparticles was evaluated by their efficiency in degradation of methyl orange. The results show wet doping methods increase the efficiency of titania nanoparticles more than dry doping, or combination of both. Further investigation showed that the main reason for higher activity of wet chemically doped nanoparticles is due to their higher available surface area of 131.7 m2.g-1. After normalizing the available surface area, measured by the BET method, it was shown that a combination of wet chemical doping, and dry doping at 600 °C result in the most active nanoparticles, but high temperature dry doping severely decreases the surface area, lowering the overall efficiency of the product. Additionally, N-doped TiO2 nanoparticles were synthesized using a simple hydrothermal method, in which the nitrogen source was used not only to dope, but also to control shape, size, size distribution, and morphology of the titania nanoparticles, and to induce aqueous colloidal stability. It was shown that addition of triethylamine during the synthesis, results in ultra-small, colloidally stable, cubic TiO2 nanoparticles, while using triethanolamine results in formation of TiO2 pallets, assembled into spherical, rose-like structures. The synthesized nanoparticles show impressive efficiency in visible-light removal of phenol, 4-chlorophenol, and pentachlorophenol, achieving 100% degradation of a 100-ppm phenol solution in 90 min, more than 98% degradation of a 20-ppm 4-chlorophenol solution in 90 min, and 97% degradation of a 10-ppm pentachlorophenol in 180 min with 500 ppm loading of the catalyst in all cases. Moreover, synthesized nanoparticles showed no sign of deactivation after 5 consecutive runs, removing 4-chlorophenol, showing their reusability. / Graduate
|
298 |
AvaliaÃÃo do Atual Potencial de ReÃso de Ãgua no Estado do Cearà e Propostas Para um Sistema de GestÃoClÃudia ElizÃngela Tolentino Caixeta 25 January 2010 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Este trabalho teve como objetivo avaliar o potencial de reÃso de Ãguas no Estado do Cearà como forma de contribuir para o efetivo gerenciamento dos recursos hÃdricos e para a conservaÃÃo ambiental do Estado. O trabalho foi desenvolvido observando as seguintes etapas: (1) levantamento bibliogrÃfico; (2) caracterizaÃÃo do Estado do Cearà (Ãrea de estudo); (3) definiÃÃo das alternativas e critÃrios de reÃso; (4) levantamento das ETEs com respectivas vazÃes e as caracterÃsticas do sistema de tratamento para seleÃÃo daquelas cujos efluentes podem ser utilizados; (5) proposiÃÃo do(s) tipo(s) de reÃso para as ETEs selecionadas; (6) estudo de viabilidade econÃmica financeira para o reÃso industrial; (7) proposiÃÃo de condiÃÃes e diretrizes para o fortalecimento do reÃso no Estado; (8) apresentar e discutir os resultados; (9) avaliar o trabalho desenvolvido. O trabalho tem como resultados: (1) O reÃso industrial mostrou-se viÃvel para ser implantado no Distrito Industrial (DI) de MaracanaÃ, sendo que o efluente do tipo PadrÃo 2 (efluente da lagoa de estabilizaÃÃo, tanque de mistura para correÃÃo do pH, floculador, decantor tanque de recarbonataÃÃo e efluente final) foi o que apresentou melhor viabilidade econÃmico financeira. (2) Pesquisa realizada junto Ãs empresas do DI de MaracanÃu evidenciou grande receptividade por parte dos usuÃrios potenciais, desde que sejam garantidos qualidade, quantidade e preÃo competitivo com a atual fonte de abastecimento.(3) Dos 12 sistemas avaliados, a ETE Tupamrim foi a que apresentou condiÃÃes mais adequadas para a prÃtica do reÃso urbano nÃo potÃvel â rega de Ãreas verdes de Fortaleza. (4) Os sistemas de lagoas de estabilizaÃÃo em operaÃÃo na RMF e interior do Estado podem disponibilizar uma vazÃo de cerca de 1.872,0 L/s, e tais volumes poderÃo beneficiar cerca de 3.279,66 hectares, considerando uma demanda para irrigaÃÃo igual a 18.000 m3/ha.ano; ou suprir, em mÃdia, uma Ãrea de cultivo de peixes de 1.497.600 m2 (149,7 ha). Com base nos resultados pode-se concluir: (1) A implementaÃÃo de reÃso de Ãgua no Cearà à uma alternativa importante a ser considerada no Plano Estadual de Recursos HÃdricos, pois poderÃ: contribuir efetivamente na preservaÃÃo dos recursos hÃdricos; aumentar a oferta de Ãgua para os setores agrÃcola, piscÃcola e industrial no Estado, por meio da disponibilizaÃÃo da Ãgua recuperada aos usos que possam prescindir de potabilidade; e disponibilizar um volume maior de Ãgua de boa qualidade aos usos nobres, conforme preconiza a Agenda 21. (2) Dentre as modalidades de reÃso estudadas para o Estado, todas se mostraram viÃveis, sendo o reÃso industrial o que vai necessitar de um maior investimento. Jà os reÃso agrÃcola e em piscicultura sÃo os mais fÃceis de serem implementados, necessitando apenas de uma determinaÃÃo do Governo do Estado para que seja firmada uma parceria entre Cagece e SDA e, dessa forma, viabilizar a implantaÃÃo dos projetos. (3) O reÃso de Ãguas residuÃrias no Estado do Cearà à uma alternativa viÃvel, desde que haja uma regulamentaÃÃo para minimizar os riscos epidemiolÃgicos que podem advir da prÃtica sem a adoÃÃo de barreiras mÃltiplas para garantir a proteÃÃo da saÃde populacional. à incontestÃvel a necessidade do estabelecimento de diretrizes que permitam que a prÃtica do reÃso se torne segura e difundida, contribuindo assim para a minimizaÃÃo do problema de escassez de Ãgua no Estado. / The main objective of this work was evaluate the potential for water reuse in the state of Ceara as a contribution to the effective management of water resources and the conservation of the state. It consisted of the following stages: (1) literature, (2) A bibliographical survey; (2) description of the Ceara State (area under study); (3) definition of alternatives and criteria for reuse, (4) survey of treatment plants with respective flow rates and characteristics of treatment system for selection of those whose effluent can be used, (5) proposition (s) type (s) to reuse the selected treatment plants, (6) economic feasibility study for the financial reuse industrial (7) conditions of proposition and guidelines for the strengthening of reuse in the State, (8) present and discuss the results and (9) assessing the work undertaken. As results of the study we can mention: (1) The industrial reuse was feasible to be deployed in DI MaracanaÃ, and the effluent standard type 2 (effluent from the stabilization pond, mixing tank for pH correction, flocculant, decantor, carbonation tank and final effluent) showed the best economic and financial viability. (2) Research conducted with companies in the DI Maracanaà showed great responsiveness on the part of potential users, since it is guaranteed quality, quantity and price competitive with current power supply. (3) Of the 12 systems evaluated the Tupamirim WTPT presented the best conditions for the practice of non-potable urban reuse - irrigation of green areas in Fortaleza (4) The system of stabilization ponds in operation in the RMF and the State can provide a flow of about 1872.0 L / s, and these volumes will benefit approximately 3279.66 hectares, whereas the demand for irrigation equal to18,000 m3/ha.ano, or supply, on average, a growing area of 1,497,600 m2 fish (149.7 ha). The main conclusions of this work are: (1) The implementation of water reuse in Cearà is an important alternative to be considered in the State Plan for Water Resources, as it may: contribute effectively in the conservation of water resources, increase the supply of water for agricultural, fish and industry in the state, through the provision of reclaimed water for uses that can dispense the drinking, and provide a greater volume of water of good quality to end uses, as recommended by Agenda 21.(2) Among the types of reuse study for the state, all proved viable. As the industrial reuse which will require a larger investment. Since the re-use agricultural and fish are the easiest to implement, requiring only a determination of the State Government so that it signed a partnership betweean Cagece and SDA thus enable the implementation of projects.(3) The reuse of wastewater in the state of Ceara is a viable alternative, but necessary regulations to mitigate the pest risk that may arise from the practice without the adoption of multiple barriers to ensure protection of population health. Is no denying the need to establish guidelines that allow the practice of reuse to become secure, ubiquitous, thus helping to minimize the problem of water scarcity in the state.
|
299 |
Studie odkanalizování vybrané obce / Study of sewer network of selected municipalityRemešová, Terezie January 2019 (has links)
The main goal of this diploma thesis is the proposal of sewerage variants of local parts of village Pačlavice, which are villages Pornice and Lhota. For individual municipalities are proposed three partially different variants, which vary mainly in the way of wastewater draining and wastewater treatment. All three variants are evaluate from an economic and technical point of view and on the basis of evaluation is propose a variant, which is in my opinion, the most suitable for these municipalities. In the villages Pornice, Lhota and Pačlavice are proposed new delivery and gravity sections, associated objects of overflow chambers with pumping stations, independent overflow chambers or separate pumping stations that complement the existing combined sewer system to ensure the drainage of wastewater to wastewater treatment plant and following treatment of this water.
|
300 |
Detection and tracking of emerging viruses of public health interest in waters through molecular and metagenomic proceduresCuevas Ferrando, Enric 22 December 2022 (has links)
Tesis por compendio / [ES] El objetivo inicial de esta tesis era detectar y rastrear virus entéricos en diferentes matrices acuáticas mediante la combinación de protocolos moleculares y metagenómicos. Se establecieron como objetivos principales el desarrollo de procedimientos para la concentración de virus en muestras de aguas residuales, el análisis de virus indicadores de contaminación fecal y la caracterización del viroma de estas muestras.
En cuanto al desarrollo de procedimientos para la concentración de virus entéricos emergentes en muestras de aguas residuales, el protocolo de floculación con hidróxido de aluminio, utilizado habitualmente en el grupo para la concentración de otros virus entéricos, resultó muy eficaz para el virus de la Hepatitis E, permitiendo su detección en muestras de aguas de entrada y salida de estaciones depuradoras de aguas residuales (EDAR). Por lo que respecta al seguimiento de la prevalencia de otros virus entéricos e indicadores virales en muestras de entrada y salida de EDARs, esta tesis proporciona información cuantitativa sobre la presencia del indicador crAssphage y otros virus entéricos de cápside intacta en aguas de diferentes EDARs valencianas. Además, los resultados de la correlación indican que crAssphage podría no ser un indicador óptimo de la presencia de virus entéricos infecciosos en las aguas residuales tratadas. En relación a la caracterización del viroma de las muestras de agua de las EDARs analizadas, en la presente tesis se describe un procedimiento de referencia que permite la detección y caracterización de las poblaciones virales en las muestras de aguas residuales recogidas a la entrada y salida de la planta depuradora. También se refleja el sesgo existente en los perfiles del viroma que se obtienen según las librerías de secuenciación que se empleen. En este sentido, esta investigación arroja luz sobre la diversidad de las comunidades virales en influentes y efluentes de aguas residuales, proporcionando información valiosa también en términos de indicadores fecales virales.
Con la llegada de la pandemia de COVID-19 a principios de 2020, el SARS-CoV-pasó a ser el protagonista de la segunda parte de la tesis. En este aspecto, se marcaron como objetivos implementar un sistema de monitorización de SARS-CoV-2 en aguas residuales y desarrollar y optimizar métodos moleculares rápidos para inferir la infectividad del SARS-CoV-2.
Los resultados obtenidos han demostrado que la aplicación de la epidemiología basada en aguas residuales (WBE) es eficiente para estimar la presencia de COVID-19 en comunidades y puede servir de herramienta para la salud pública como alerta temprana ante situaciones pandémicas. Asimismo, esta tesis incluye el primer estudio publicado en España que realizó un análisis metagenómico de la diversidad del SARS-CoV-2 presente en las aguas residuales en las tres primeras oleadas epidemiológicas, cuyos resultados confirmaron el potencial de la secuenciación masiva de aguas residuales para detectar nuevas mutaciones y linajes del SARS-CoV-2. Además, también se han comparado y optimizado los protocolos de concentración, extracción y detección de ácidos nucleicos de coronavirus a partir de muestras de aguas residuales, superficiales y de mar. Así, este trabajo amplía el conocimiento sobre los procedimientos analíticos para la detección del SARS-CoV-2 en aguas residuales favoreciendo la implementación global del COVID-19 WBE. Finalmente, se ha implementado un protocolo de RT-qPCR de viabilidad basado en el cloruro de platino para evitar la amplificación del ARN del SARS-CoV-2 no infeccioso. Además, los resultados de esta tesis apoyan la idea de que el SARS-CoV-2 presente en las aguas residuales no es infeccioso. En general, en el marco de esta tesis doctoral se ha desarrollado una herramienta analítica rápida basada en la RT-qPCR de viabilidad para inferir la infectividad del SARS-CoV-2 con potencial aplicación en la evaluación de riesgos, la prevención y el control en los programas de salud / [CA] L'objectiu inicial d'esta tesi era detectar i rastrejar virus entèrics en diferents matrius aquàtiques mitjançant la combinació de protocols moleculars i metagenòmics. Es van establir com a objectius específics el desenvolupament de procediments per a la concentració de virus en mostres d'aigües residuals, l'anàlisi de virus indicadors de contaminació fecal i la caracterització del viroma d'estes mostres.
Pel que fa al desenvolupament de procediments per a la concentració de virus entèrics emergents en mostres d'aigües residuals, el protocol de floculació amb hidròxid d'alumini, utilitzat habitualment al grup per a la concentració d'altres virus entèrics, va resultar molt eficaç per al virus de l'hepatitis E, permetent-ne la detecció en mostres d'aigües d'entrada i de sortida d'estacions depuradores d'aigües residuals (EDAR). Pel que fa al seguiment de la prevalença d'altres virus entèrics i indicadors virals en mostres d'entrada i de sortida d'EDARs, esta tesi proporciona informació quantitativa sobre la presència de l'indicador crAssphage i altres virus entèrics de càpside intacta en aigües de diferents EDARs valencianes. A més, els resultats de la correlació indiquen que el bacteriòfag crAssphage podria no ser un indicador òptim de la presència de virus entèrics infecciosos a les aigües residuals tractades. Pel que fa a la caracterització del viroma de les mostres d'aigua de les EDARs analitzades, a la present tesi es descriu un procediment de referència que permet la detecció i caracterització de les poblacions virals a les mostres d'aigües residuals recollides a l'entrada i sortida de la planta depuradora. També es reflecteix el biaix existent als perfils del viroma que s'obtenen segons les llibreries de seqüenciació que s'utilitzen. En este sentit, esta investigació aporta coneixement sobre la diversitat de les comunitats virals en influents i efluents d'aigües residuals, proporcionant informació valuosa també en termes d'indicadors fecals virals.
Amb l'arribada de la pandèmia de COVID-19 a principis del 2020, el SARS-CoV-va passar a ser el protagonista de la segona part de la tesi. En este aspecte, es van establir com a objectius implementar un sistema de monitorització de SARS-CoV-2 en aigües residuals i desenvolupar i optimitzar mètodes moleculars ràpids per inferir la infectivitat del SARS-CoV-2.
Els resultats obtinguts han demostrat que l'aplicació de l'epidemiologia basada en aigües residuals (WBE) és eficient per estimar la presència de COVID-19 a les comunitats i pot servir d'eina per a la salut pública com a alerta primerenca davant de situacions pandèmiques. Així mateix, esta tesi inclou el primer estudi publicat a Espanya que va realitzar una anàlisi metagenòmica de la diversitat del SARS-CoV-2 present a les aigües residuals a les tres primeres onades epidemiològiques, els resultats del qual van confirmar el potencial de la seqüenciació massiva d'aigües residuals per a detectar noves mutacions i llinatges del SARS-CoV-2. A més, també s'han comparat i optimitzat els protocols de concentració, extracció i detecció d'àcids nucleics de coronavirus a partir de mostres d'aigües residuals, superficials i de mar. Així, este treball amplia el coneixement sobre els procediments analítics per a la detecció del SARS-CoV-2 en aigües residuals afavorint la implementació global del COVID-19 WBE. Finalment, s'ha implementat un protocol de RT-qPCR de viabilitat basat en el clorur de platí per evitar l'amplificació de l'ARN del SARS-CoV-2 no infecciós. A més, els resultats d'esta tesi donen suport a la idea que el SARS-CoV-2 present a les aigües residuals no és infecciós. En general, en el marc d'esta tesi doctoral s'ha desenvolupat una eina analítica ràpida basada en la RT-qPCR de viabilitat per inferir la infectivitat del SARS-CoV-2 amb potencial aplicació en l'avaluació de riscos, la prevenció i el control en els programes de Salut Pública. / [EN] The initial aim of this thesis was to detect and monitor the presence of enteric viruses in different aquatic matrices using both molecular and metagenomic protocols. The specific objectives were the development of procedures for the concentration of viruses in wastewater samples, the analysis of viruses indicative of faecal contamination and the characterisation of the virome in these samples.
Regarding the development of procedures for the concentration of emerging enteric viruses in wastewater samples, the flocculation protocol with aluminium hydroxide, commonly used in the group for the concentration of other enteric viruses, proved to be very effective for Hepatitis E virus, allowing its detection in influent and effluent water samples from wastewater treatment plants (WWTPs). Regarding the monitoring of the prevalence of other enteric viruses and viral indicators in incoming and outgoing samples from WWTPs, this thesis provides quantitative information on the presence of the indicator crAssphage and other enteric viruses with intact capsid in water from different Valencian WWTPs. Moreover, the correlation results indicate that crAssphage may not be an optimal indicator of the presence of infectious enteric viruses in treated wastewater. In relation to the virome characterisation of the WWTP water samples analysed, the present thesis describes a reference procedure that allows the detection and characterisation of viral populations in wastewater. It also reflects the existing bias in the virome profiles obtained depending on the sequencing libraries used. In this sense, this research sheds light on the diversity of viral communities in influent and effluent wastewater, providing valuable information also in terms of faecal viral indicators.
With the advent of the COVID-19 pandemic in the early 2020s, SARS-CoV-2 became the focus of the second part of the thesis. In this aspect, the objectives were to implement a monitoring system for SARS-CoV-2 in wastewater and to develop and optimise rapid molecular methods to infer SARS-CoV-2 infectivity.
The results obtained have demonstrated that the application of wastewater-based epidemiology (WBE) is efficient for estimating the presence of COVID-19 in communities and can serve as a Public Health tool for early warning of pandemic situations. Furthermore, this thesis includes the first study published in Spain that performed a metagenomic analysis of the SARS-CoV-2 diversity present in wastewater in the first three epidemiological waves, the results of which confirmed the potential of mass sequencing of wastewater to detect new SARS-CoV-2 mutations and lineages. In addition, protocols for the concentration, extraction and detection of coronavirus nucleic acids from sewage, surface and seawater samples have also been compared and optimised. Thus, this work expands the knowledge on analytical procedures for the detection of SARS-CoV-2 in wastewater favouring the global implementation of the COVID-19 WBE. Finally, a viability RT-qPCR protocol based on platinum chloride has been implemented to avoid amplification of non-infectious SARS-CoV-2 RNA. Furthermore, the results of this thesis support the idea that SARS-CoV-2 present in wastewater is not infectious. Overall, in the framework of this PhD thesis, a rapid analytical tool based on feasibility RT-qPCR has been developed to infer the infectivity of SARS-CoV-2 with potential application in risk assessment, prevention and control in Public Health programmes. / This thesis has been funded by an "Ayudas para contratos predoctorales para la formación de doctores 2018” grant, awarded by the Ministry of Science and Innovation. / Cuevas Ferrando, E. (2022). Detection and tracking of emerging viruses of public health interest in waters through molecular and metagenomic procedures [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/190899 / Compendio
|
Page generated in 0.0801 seconds