• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 20
  • 20
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influence of Mountain Pine Beetle on Fuels, Foliar Fuel Moisture Content, and Litter and Volatile Terpenes in Whitebark Pine

Toone, Chelsea 01 December 2013 (has links)
Mountain pine beetle (Dendroctonus ponderosae Hopkins) has caused extensive tree mortality in whitebark pine (Pinus albicaulis Engelm) forests. Previous studies conducted in various conifer forests have shown that fine surface fuels are significantly altered during a bark beetle outbreak. Bark beetle activity in conifer stands has also been shown to alter foliar fuel moisture content and chemistry over the course of the bark beetle rotation.The objective of this study was to evaluate changes to fine surface fuels, foliar fuel moisture and chemistry and litter chemistry in and under whitebark pine trees infested by mountain pine beetle. Fuels were measured beneath green (healthy) trees compared to red (two years since initial MPB attack with 50% or greater needles remaining) and gray (greater than two years since attack with between 15% and 45% needles remaining) trees. Foliar moisture content was measured in four mountain pine beetle crown condition classes: green-uninfested, green-infested (current year’s attack), yellow (last year’s attack), and red. Total terpene content was analyzed in whitebark pine needle litter and volatile terpenes were collected and analyzed from green, green-infested, yellow, and red trees.Significant differences were found in litter depths under green, red, and graytrees. Duff depths were significantly less beneath green trees than red and gray trees. One hour and ten hour fuels were more influenced by diameter and crown size than beetle crown condition classes. Foliar fuel moisture content dramatically decreased from green-infested to the red beetle crown condition class. No differences were detected in shrub and forb biomass between green, red, and gray trees. Green-infested trees had significantly lower foliar fuel moisture than green trees and by late in the season showed fuel moisture levels similar to red trees which had the lowest fuel moisture content. Litter beneath red trees contained large amounts of terpenes, including compounds known to increase foliage flammability that remain in the litter throughout the fire season. Total terpene content emitted from red foliage is greater than green-infested or yellow foliage.
12

Vegetation community characteristics and dendrochronology of whitebark pine (Pinus albicaulis) in the southern Coast Mountains, British Columbia

Carlson, Kimberly 21 August 2013 (has links)
Whitebark pine (Pinus albicaulis) is an endangered keystone tree species growing at the highest elevations in the mountain ranges of western North America. Across its range, whitebark pine is faced with a number of threats including fire suppression, mountain pine beetle, white pine blister rust, and climate change. Climate change is perhaps the greatest threat facing the species, yet it is the least understood. Most studies rely on model predictions and only look at the impacts on whitebark pine itself, not taking into consideration the other bird, mammal, and plant communities that are associated with it. In order to assess the potential effects of climate change on whitebark pine communities in the southern Coast Mountains of British Columbia, this thesis examined the vegetation associations and climate controls currently shaping the communities. My results showed that whitebark pine is growing in the open away from other subalpine tree species. This suggests that whitebark pine is not facilitating other subalpine tree species, contrary to what has been shown in the Rocky Mountains. Evidence of a distinct suite of understory vegetation associated with whitebark pine is weak and inconclusive. Differences in understory vegetation appear to be mainly due to site differences in climate, soils, and topography. Age distributions constructed from tree cores revealed that whitebark pine decline at lower elevation sites may be due to successional advancement to subalpine fir, and subalpine fir is currently encroaching into higher elevation sites. A dendrochronological assessment revealed that winter conditions, including snowpack, temperature, and the Aleutian Low Pressure Index (ALPI) were the most limiting to whitebark pine growth at high-elevation sites, but biotic factors including disease and competition appear to be more important than climate in determining annual ring growth at lower elevation sites. Bootstrapped correlations between annual ring widths and snowpack records showed that tree responses to fluctuating snowpack have changed over time. For most of the 20th century, low snowpack periods were associated with greater annual growth. Since around 1970, when the snowpack levels dropped below anything previously recorded for the area, annual tree growth has been reduced. It appears that these high elevation tree species require a balance between too much snow (shorter growing season) and too little snow (reduced protection from harsh winter conditions). Climate change models for the area predict drastically reduced snowpack in the coming decades. If snowpack continues to drop, as it has since 1970, it will likely lead to severe impacts on whitebark pine growth in the southern Coast Mountains. / Graduate / 0329 / carlsonkim@hotmail.com
13

Interactions of white pine blister rust, host species, and mountain pine beetle in whitebark pine ecosystems in the Greater Yellowstone

Bockino, Nancy Karin. January 2008 (has links)
Thesis (M.S.)--University of Wyoming, 2008. / Title from PDF title page (viewed on June 26, 2009). Includes bibliographical references (p. 86-111).
14

Spatiotemporal relationships between climate and whitebark pine mortality in the greater Yellowstone ecosystem

Jewett, Jeffrey Thomas. January 2009 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Rick L. Lawrence. Includes bibliographical references (leaves 93-106).
15

Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

Gross, Donovan 01 December 2008 (has links)
Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, lodgepole pine (Pinus contorta Engelmann), and whitebark pine. We tested the effects of natal host and brood host on beetle fecundity, offspring size, and brood sex-ratio. We reared mountain pine beetles from whitebark pine and from lodgepole pine, and infested half of them into their natal host and half into the other host. Fecundity was greater overall in lodgepole pine brood hosts. Among lodgepole brood hosts, beetles from whitebark pine had greater fecundity. Fecundity was also significantly related to phloem thickness, which was greater in lodgepole pine. Offspring were larger from whitebark brood hosts than from lodgepole, regardless of their parents’ natal host. Finally, sex-ratio was closer to 1:1 in lodgepole than in whitebark brood hosts. We conclude that host species affects life history of mountain pine beetle with consequences for individual beetle fitness.
16

Clark's Nutcracker Seed Harvest Patterns in Glacier National Park and a Novel Method for Monitoring Whitebark Pine Cones

Maier, Monika E. 01 May 2012 (has links)
Clark's Nutcracker (Nucifraga columbiana) is the primary seed disperser of whitebark pine (Pinus albicaulis), which is in decline throughout its range. There is concern that a decline in whitebark pine will lead to a subsequent decline in local populations of Clark's Nutcracker. Because natural regeneration depends on the presence of Clark's Nutcracker, the process of harvesting whitebark pine seeds needs to be fully understood. In addition, resource managers need a cost-effective method for monitoring nutcracker occurrence in whitebark pine stands during the seed harvest season. I visited eleven study sites in Glacier National Park, Montana, where I searched for Clark's Nutcracker and surveyed whitebark pine cones for seed harvesting scars, the presence of which indicated that nutcrackers harvested seeds. I documented cone use patterns of Clark's Nutcracker and the major cone predator, red squirrel (Tamiasciurus hudsonicus), at five sites. To identify factors that influence cone use, I ran a correlation analysis with nutcracker and red squirrel seed harvesting variables with physical, compositional, and whitebark pine-related factors. I found that nutcrackers harvested seed at every site that had cones available. Nutcrackers harvested seed from a greater proportion of whitebark pine cones in stands where they started intensively harvesting seeds earlier. Nutcrackers began intensively harvesting seeds earlier in stands with higher relative dominance of whitebark pine. Red squirrels depleted the cone source more rapidly in stands with greater whitebark pine mortality, and at one site depleted the cone source completely before nutcrackers began intensively harvesting seeds from that site. The results of this study suggest that Clark's Nutcracker will continue to harvest seeds even as whitebark pine declines, but the decline in whitebark pine may lead to decreased seed dispersal due to greater pre-dispersal cone predation by red squirrels. Finally, I evaluated direct and indirect monitoring methods to identify a cost-effective method to accurately monitor Clark's Nutcracker occurrence in whitebark pine stands during the seed harvest season. I found that surveying scars made by seed-harvesting nutcrackers on whitebark pine cones was the most accurate and economical method of monitoring Clark's Nutcracker occurrence in an area with a low population of Clark's Nutcracker.
17

Evaluation of Semiochemical Strategies for the Protection of Whitebark Pine Stands Against Mountain Pine Beetle Attack Within the Greater Yellowstone Ecosystem

Schen-Langenheim, Greta Katherine 01 May 2010 (has links)
High-dose verbenone, verbenone plus nonhost volatiles (NHVs), and both semiochemicals in combination with aggregant-baited funnel traps were tested for stand- level protection against mountain pine beetle attack for two consecutive years (2004-2005) at three seral high elevation whitebark pine sites in the Greater Yellowstone Ecosystem. In 2004, two 0.25-hectare treatments comprised of 25 high-dose verbenone pouches or verbenone pouches combined with single baited funnel traps were tested in a push-pull strategy. In 2005, 25 high-dose verbenone and 25 NHV pouches, or verbenone and NHV in combination with baited funnel trap clusters were tested. In both years, treatments were compared to 0.25-hectare control plots with no semiochemicals or funnel traps. The proportion of trees attacked by mountain pine beetle in treated plots was significantly reduced, when compared to control plots, at only one site treated with verbenone in 2004, and at only one site in 2005. High-dose verbenone alone, verbenone and NHVs, and both semiochemicals combined with baited funnel traps in a push-pull strategy did not consistently reduce the proportion of mountain pine beetle attacked trees relative to control plots. No covariates tested, including stand density, beetle population size, or tree size were consistently significant in explaining proportion of trees attacked.
18

Ecology of Treeline Whitebark Pine (Pinus albicaulis) Populations in Central Idaho: Successional Status, Recruitment, and Mortality, and A Spring Temperature Reconstruction from Whitebark Pine Tree Rings

Perkins, Dana Lee 01 May 2001 (has links)
T his research investigated the successional status of treeline whitebark pine (Pinus albicaulis) populations on 14 stands in central Idaho and used empirical statistical models to determine the principal factors affecting recruitment and mortality. The longest lived whitebark pines from four additional high-elevation sites were used to develop a tree-ring chronology to reconstruct over 1,000 years of average April-May temperature. The assessment of stand structures using size-frequency distributions generally provides evidence that treeline whitebark pine populations are currently self-sustaining in areas of low to nonexistent incidence of white pine blister rust (Cronartium ribicola). However the presence of subalpine fir (Abies lasiocarpa) in all size classes on sample plots suggests potential replacement of, or codominant climax with whitebark pine. Inference from Poisson regression models suggests that stand structure variables are important to whitebark pine establishment, which may be constrained by interference competition and available growing space. Subalpine fir establishment appears to be constrained by distance to seed source at lower elevations and by favorable site water-balance effects on northly aspects. Inferences from logistic regression models calibrated from pre-epidemic stand conditions and post-epidemic mortality levels surrounding a historic mountain pine beetle (Dendroctonus ponderosae) outbreak suggest that density and tree size variables are significant predictors of stand and individual tree attack. The significance of the predictor variables in these models corroborates the susceptible host characteristics identified in other pine-mountain pine beetle system risk assessments. A composite whitebark pine tree-ring chronology from 24 trees from four sites was used to develop a 1028-year long reconstruction of spring temperature for the Sawtooth-Salmon River region of central Idaho. The chronology was calibrated against Ketchum and New Meadows, Idaho US Historical Stations, April-May average monthly temperature using half-sample calibration-verification tests for the period that contained historic climate data, 1909-1992. The chronology accounted for 41% of the variability in the climatic data and successfully simulated medium to high frequency trends. A 19th century cold period coincides with the "Little Ice Age." Neither the instrumental nor the proxy temperature records show evidence of warming in the 20th century.
19

An Investigation of the Cone and Seed Insects of Whitebark Pine and Alpine Larch Emphasizing the Western Conifer Seed Bug (Hemiptera: Coreidae) and the Larch Cone Fly (Diptera: Anthomyiidae)

Anderton, Laurel K. 01 May 2000 (has links)
Laboratory and field feeding tests with Leptoglossus occidentalis Heidemann proved that both immature and mature seed bugs can use cones and foliage of whitebark pine, Pinus albicaulis Engelmann, as a food source for 1- to 2-week periods. Damage to unprotected whitebark pine cones by seed bugs ranged from 0.3 to 2.1 % of seeds per cone, and for bagged cones averaged 0.7% of seeds per cone. Total insect damage ranged from 0.4 to 7.2% of seeds per cone. A seed chalcid, Megastigmus sp., was documented for the first time on whitebark pine and damaged 4.7% of examined seeds at one site. Four out of five upper elevation subsites had an average of 24.9% fewer filled seeds per cone than lower elevation subsites. Within-site elevation differences had no significant effect on cone length, number of seeds per cone, percentage of potential seeds per cone, or percentages of seed bug and insect-damaged seeds per cone. The larch cone fly Strobilomyia macalpinei Michelsen was found in cones of alpine larch, Larix lyallii Parl., in the Bitterroot Range of Montana. This is the first record of this species in the United States and the first since its description in 1988. Ninety-four percent of a sample of alpine larch cones were damaged by cone fly larvae, and 64% contained larvae or puparia. Colored traps did not succeed in trapping adult cone flies in an alpine larch stand with no cone crop.
20

Geospatial Variation of an Invasive Forest Disease and the Effects on Treeline Dynamics in the Rocky Mountains

Smith-McKenna, Emily Katherine 22 November 2013 (has links)
Whitebark pine is an important keystone and foundation species in western North American mountain ranges, and facilitates tree island development in Rocky Mountain treelines. The manifestation of white pine blister rust in the cold and dry treelines of the Rockies, and the subsequent infection and mortality of whitebark pines raises questions as to how these extreme environments harbor the invasive disease, and what the consequences may be for treeline dynamics. This dissertation research comprises three studies that investigate abiotic factors influential for blister rust infection in treeline whitebark pines, how disease coupled with changing climate may affect whitebark pine treeline dynamics, and the connection between treeline spatial patterns and disease. The first study examined the spatial variation of blister rust infection in two whitebark pine treeline communities, and potential topographic correlates. Using geospatial and field approaches to generate high resolution terrain models of treeline landscapes, microtopography associated with solar radiation and moisture were found most influential to blister rust infection in treeline whitebark pines. Using field-based observations from sampled treeline communities, the second study developed an agent-based model to examine the effects of disease and climate on treeline pattern and process. Treeline dynamics were simulated under five hypothetical scenarios to assess changes in tree spatial patterns and populations. Blister rust-induced loss of whitebark pines resulted in a decline of facilitative processes, and an overall negative treeline response to disease—despite the beneficial effects of climate amelioration. The objective of the third study was to explore whether spatial patterns of tree proximity, size, and growth infer disease patterns. Comparing spatial patterns of tree characteristics between diseased and undiseased treeline communities, I found that trees growing near trees with larger stem diameters, and larger tree islands, tended to have more blister rust cankers, and displayed clustered spatial patterns. Undiseased treeline patterns revealed near neighbors smaller in stem diameter and tree island size, and were randomly dispersed. Blister rust diseased whitebark pines reveal spatial autocorrelation, despite the complex blister rust disease life cycle. Overall, findings from this dissertation reveal the implications of invasive disease on sensitive treeline ecotones dependent on a keystone species. / Ph. D.

Page generated in 0.0607 seconds