• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 3
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 31
  • 27
  • 26
  • 24
  • 19
  • 19
  • 16
  • 16
  • 15
  • 14
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Luminescence prosperties of the wide bandgap nitrides doped with rare earth ions and gallium nitride doped with conventional isoelectornic impurities

Jadwisienczak, Wojciech M. January 2001 (has links)
No description available.
32

Design, Fabrication, and Packaging of Gallium Oxide Schottky Barrier Diodes

Wang, Boyan 17 December 2021 (has links)
Gallium Oxide (Ga2O3) is an ultra-wide bandgap semiconductor with a bandgap of 4.5–4.9 eV, which is higher than the bandgap of Silicon (Si), Silicon Carbide (SiC), and Gallium Nitride (GaN). A benefit of this wide-bandgap is the high critical electric field of Ga2O3, which is estimated to be from 5 MV/cm to 9 MV/cm. This allows a higher Baliga’s figure of merit (BFOM), i.e., unipolar Ga2O3 devices potentially possess a smaller specific on-resistance (Ron,sp) as compared to the Si, SiC, and GaN devices with the same breakdown voltage (BV). This prospect makes Ga2O3 devices promising candidates for next-generation power electronics. This thesis explores the design, fabrication, and packaging of vertical Ga2O3 Schottky barrier diodes (SBDs). The power SBD allows for a small forward voltage and a fast switching speed; thus, it is ubiquitously utilized in power electronics systems. It is also a building block for many advanced power transistors. Hence, the study of Ga2O3 SBDs is expected to pave the way for developing a series of Ga2O3 power devices. In this work, a vertical β-Ga2O3 SBD with a novel edge termination, which is the small-angle beveled field plate (SABFP), is fabricated on thinned Ga2O3 substrates. This SABFP structure decreases the peak electric field (Epeak) at the triple point when the Ga2O3 SBD is reverse biased, resulting in a BV of 1.1 kV and an Epeak of 3.5 MV/cm. This device demonstrates a BFOM of 0.6 GW/cm2, which is among the highest in β-Ga2O3 power devices and is comparable to the state-of-the-art vertical GaN SBDs. The high-temperature characteristics of Ga2O3 SBDs with a 45o beveled angle sidewall edge termination are studied at temperatures up to 600 K. As compared to the state-of-the-art SiC and GaN SBDs with a similar blocking voltage, the vertical Ga2O3 SBDs are capable of operating at higher temperatures and show a smaller leakage current increase with temperature. The leakage current mechanisms were also revealed at various temperatures and reverse biases. A new fabrication method of a dielectric field plate and Ga2O3 mesa of a medium angle (10o~30o) is achieved by controlling the adhesion between the photoresist (PR) and the dielectric surface. As compared to the small-angle termination, this medium-angle edge termination can allow a superior yield and uniformity in device fabrication, at the same time maintaining the major functionalities of beveled edge termination. Good surface morphology of the field plates and Ga2O3 mesa of the medium angle 10o~30o sidewall angle is verified by atomic force microscopy. Finally, large-area Ga2O3 SBDs are fabricated and packaged using silver sintering as the die attach. The sintered silver joint has higher thermal conductivity and better reliability as compared to the solder joint. The metal finish on the anode and cathode has been optimized for silver sintering. Large-area, packaged Ga2O3 SBDs with an anode size of 3×3 mm2 are prototyped. They show a forward current of over 5 A, a current on/off ratio of ~109, and a BV of 190 V. To the best of the author’s knowledge, this is the first experimental demonstration of a large-area, packaged Ga2O3 power device. / M.S. / Power electronics is the processing of electric energy using solid-state electronics. It is ubiquitously used in consumer electronics, data centers, electric vehicles, electricity grids, and renewable energy systems. Advanced power device technologies are paramount to improving the performance of power electronic systems. Power device design centers on the concurrent realization of low on-resistance (RON), high breakdown voltage (BV), and small turn-on/turn-off power losses. The performance of power devices hinges on semiconductor material properties. Over the last several years, power devices based on wide-bandgap semiconductors like Silicon Carbide (SiC) and Gallium Nitride (GaN) have enabled tremendous performance advancements in power electronic systems. Gallium Oxide (Ga2O3) is an ultra-wide bandgap semiconductor with a bandgap of 4.5–4.9 eV, which is higher than the bandgap of Silicon (Si), SiC, and GaN. As a benefit of this wide bandgap, the theoretical performance of Ga2O3 devices is superior to the Si, SiC, and GaN counterparts. Hence, Ga2O3 devices are regarded as promising candidates for next-generation power electronics. This thesis explores the design, fabrication, and packaging of vertical Ga2O3 Schottky barrier diodes (SBDs). The power SBD allows a small forward voltage and a fast switching speed; thus, it is extensively utilized in power electronics systems. It is also a building block for many advanced power transistors. First, a vertical β-Ga2O3 SBD with a novel edge termination is fabricated. This edge termination structure reduces the peak electric field (Epeak) in the device and enhances the BV. The fabricated device shows one of the highest figure of merits in β-Ga2O3 power devices. Next, the high-temperature characteristics of the fabricated Ga2O3 SBDs are studied at temperatures up to 600 K. The leakage current mechanisms were also revealed at various temperatures and reverse biases. Finally, large-area Ga2O3 SBDs are fabricated and packaged using silver sintering as the die attach. The sintered silver joint has higher thermal conductivity and better reliability as compared to the conventional solder joint. The packaged Ga2O3 SBDs show a forward current of over 5 A and a BV of 190 V. To the best of the author’s knowledge, this is the first experimental demonstration of a large-area, packaged Ga2O3 power device.
33

Surge-energy and Overvoltage Robustness of Cascode GaN Power Transistors

Song, Qihao 23 May 2022 (has links)
Surge-energy robustness is essential for power devices in many applications such as automotive powertrains and electricity grids. While Si and SiC MOSFETs can dissipate surge energy via avalanche, the GaN high-electron-mobility transistor (HEMT) has no avalanche capability and withstands surge energy by its overvoltage capability. However, a comprehensive study into the surge-energy robustness of the cascode GaN HEMT, a composite device made of a GaN HEMT and a Si metal-oxide-semiconductor field-effect-transistor (MOSFET), is still lacking. This work fills this gap by investigating the failure and degradation of 650-V-rated cascode GaN HEMTs in single-event and repetitive unclamped inductive switching (UIS) tests. The cascode was found to withstand surge energy by the overvoltage capability of the GaN HEMT, accompanied by an avalanche in the Si MOSFET. In single-event UIS tests, the cascode failed in the GaN HEMT at a peak overvoltage of 1.4~1.7 kV, which is statistically lower than the device's static breakdown voltage (1.8~2.2 kV). In repetitive UIS tests, the device failure boundary was found to be frequency-dependent. At 100 kHz, the failure boundary (~1.3 kV) was even lower than the single-event UIS boundary. After 1 million cycles of 1.25-kV UIS stresses, devices showed significant but recoverable parametric shifts. Physics-based device simulation and modeling were then performed to understand the circuit test results. The electron trapping in the buffer layer of the GaN HEMT can explain all the above failure and degradation behaviors in the GaN HEMT and the resulted change in its dynamic breakdown voltage. Moreover, the GaN buffer trapping is believed to be assisted by the Si MOSFET avalanche. An analytical model was also developed to extract the charges and losses produced in the Si avalanche in a UIS cycle. These results provide new insights into the surge-energy and overvoltage robustness of cascode GaN HEMTs. / M.S. / Power conversion technologies are now inseparable in industrial and commercial applications with widespread solar panels, laptops, data centers, and electric vehicles. Power devices are the critical components of power conversion systems. Since the introduction of Si power metal-oxide-semiconductor field-effect-transistor (MOSFET) in the mid-1970s, it has become the go-to device that enables efficient and reliable power conversion. After decades of practice on Si MOSFET, the device performance has reached the theoretical limit of the Si material. The recent introduction of wide-bandgap (WBG) power transistors, represented by silicon carbide (SiC) and gallium nitride (GaN) devices with superior figures of merits, opens the door for faster and more efficient power systems. To exploit the benefits of WBG devices, researchers need to evaluate the reliability and robustness of these devices comprehensively. The work presented here provides a study on the robustness of one mainstream GaN power transistor – the cascode GaN high-electron-mobility transistor (HEMT). This robustness test replicates the surge events in power electronics systems and exams their impact on power devices. Over the years, people have thoroughly investigated the surge-energy robustness of Si MOSFETs and concluded that Si MOSFETs are very robust against these surge events thanks to the avalanche mechanism. However, GaN HEMTs lack p-n junction structures between the two major electrodes, leading to the lack of avalanche ability. Instead, GaN HEMTs rely on the overvoltage capability to sustain the surge energy. For the first time, this work evaluates the surge-energy and overvoltage ruggedness of cascode GaN HEMTs, a major player in the GaN power device market. By analyzing the device failure mechanism and degradation behaviors, this research work provides insight into the weakness of these devices for both device designers and application engineers.
34

High Frequency Bi-directional DC/DC Converter with Integrated Magnetics for Battery Charger Application

Li, Bin 29 October 2018 (has links)
Due to the concerns regarding increasing fuel cost and air pollution, plug-in electric vehicles (PEVs) are drawing more and more attention. PEVs have a rechargeable battery that can be restored to full charge by plugging to an external electrical source. However, the commercialization of the PEV is impeded by the demands of a lightweight, compact, yet efficient on-board charger system. Since the state-of-the-art Level 2 on-board charger products are largely silicon (Si)-based, they operate at less than 100 kHz switching frequency, resulting in a low power density at 3-12 W/in3, as well as an efficiency no more than 92 - 94% Advanced power semiconductor devices have consistently proven to be a major force in pushing the progressive development of power conversion technology. The emerging wide bandgap (WBG) material based power semiconductor devices are considered as game changing devices which can exceed the limit of Si and be used to pursue groundbreaking high frequency, high efficiency, and high power density power conversion. Using wide bandgap devices, a novel two-stage on-board charger system architecture is proposed at first. The first stage, employing an interleaved bridgeless totem-pole AC/DC in critical conduction mode (CRM) to realize zero voltage switching (ZVS), is operated at over 300 kHz. A bi-directional CLLC resonant converter operating at 500 kHz is chosen for the second stage. Instead of using the conventional fixed 400 V DC-link voltage, a variable DC-link voltage concept is proposed to improve the efficiency within the entire battery voltage range. 1.2 kV SiC devices are adopted for the AC/DC stage and the primary side of DC/DC stage while 650 V GaN devices are used for the secondary side of the DC/DC stage. In addition, a two-stage combined control strategy is adopted to eliminate the double line frequency ripple generated by the AC/DC stage. The much higher operating frequency of wide bandgap devices also provides us the opportunity to use PCB winding based magnetics due to the reduced voltage-second. Compared with conventional litz-wire based transformer. The manufacture process is greatly simplified and the parasitic is much easier to control. In addition, the resonant inductors are integrated into the PCB transformer so that the total number of magnetic components is reduced. A transformer loss model based on finite element analysis is built and used to optimize the transformer loss and volume to get the best performance under high frequency operation. Due to the larger inter-winding capacitor of PCB winding transformer, common mode noise becomes a severe issue. A symmetrical resonant converter structure as well as a symmetrical transformer structure is proposed. By utilizing the two transformer cells, the common mode current is cancelled within the transformers and the total system common mode noise can be suppressed. In order to charge the battery faster, the single-phase on-board charger concept is extended to a higher power level. By using the three-phase interleaved CLLC resonant converter, the charging power is pushed to 12.5 kW. In addition, the integrated PCB winding transformer in single phase is also extended to the three phase. Due to the interleaving between each phase, further integration is achieved and the transformer size is further reduced. / PHD / Plug-in electric vehicles (PEVs) are drawing more and more attention due to the advantages of energy saving, low CO₂ emission and cost effective in the long run. The power source of PEVs is a high voltage DC rechargeable battery that can be restored to full charge by plugging to an external electrical source, during which the battery charger plays an essential role by converting the grid AC voltage to the required battery DC voltage. Silicon based power semiconductor devices have been dominating the market over the past several decades and achieved numerous outstanding performances. As they almost reach their theatrical limit, the progress to purse the high-efficiency, high-density and high-reliability power conversion also slows down. On this avenue, the emerging wide bandgap (WBG) material based power semiconductor devices are envisioned as the game changer: they can help increase the switching frequency by a factor of ten compared with their silicon counterparts while keeping the same efficiency, resulting in a small size, lightweight yet high efficiency power converter. With WBG devices, magnetics benefit the most from the high switching frequency. Higher switching speed means less energy to store during one switching cycle. Consequently, the size of the magnetic component can be greatly reduced. In addition, the reduced number of turns provides the opportunity to adopt print circuit board as windings. Compared with the conventional litz-wire based magnetics, planar magnetics not only can effectively reduce the converter size, but also offer improved reliability through automated manufacturing process with repeatable parasitics. This dissertation is dedicated to address the key high-frequency oriented challenges of adopting WBG devices (including both SiC and GaN) and integrated PCB winding magnetics in the battery charger applications. First, a novel two-stage on-board charger system architecture is proposed. The first stage employs an interleaved bridgeless totem-pole AC/DC with zero voltage switching, and a bi-directional CLLC resonant converter is chosen for the second stage. Second, a PCB winding based transformer with integrated resonant inductors is designed, so that the total number of magnetic components is reduced and the manufacturability is greatly improved. A transformer loss model based on finite element analysis is built and employed to optimize the transformer loss and volume to get the best performance under high frequency operations. In addition, a symmetrical resonant converter structure as well as a symmetrical transformer structure is proposed to solve the common noise issue brought by the large parasitic capacitance in PCB winding magnetics. By utilizing the two transformer cells, the common mode current is cancelled within the transformers, and the total system common mode noise can be suppressed. Finally, the single-phase on-board charger concept is extended to a higher power level to charge the battery faster. By utilizing the three-phase interleaved CLLC resonant converter as DC/DC stage, the charging power is pushed to 12.5 kW. In addition, the integrated PCB winding magnetic in single phase is also extended to the three phase. Due to the interleaving between the three phase, further integration is achieved and the transformer size is further reduced.
35

Développement de briques technologiques pour la réalisation des composants de puissance en diamant monocristallin / Development of technologies for single crystal diamond power devices processing

Koné, Sodjan 19 July 2011 (has links)
A mesure que les demandes dans le domaine de l'électronique de puissance tendent vers des conditions de plus en plus extrêmes (forte densité de puissance, haute fréquence, haute température,…), l'évolution des systèmes de traitement de l'énergie électrique se heurte aux limites physiques du silicium. Une nouvelle approche basée sur l'utilisation des matériaux semi-conducteurs grand gap permettra de lever ces limites. Parmi ces matériaux, le diamant possède les propriétés les plus intéressantes pour l'électronique de puissance: champ de rupture et conductivité thermique exceptionnels, grandes mobilités des porteurs électriques, possibilité de fonctionnement à haute température… Les récents progrès dans la synthèse du diamant par des méthodes de dépôt en phase vapeur (CVD) permettent d'obtenir des substrats de caractéristiques cristallographiques compatibles avec l'exploitation de ces propriétés en électronique de puissance. Cependant, l'utilisation du diamant en tant que matériau électronique reste toutefois délicate à ce jour du fait de la grande difficulté de trouver des dopants convenables (en particulier les donneurs) dans le diamant. En outre, certaines propriétés du diamant telles que sa dureté extrême et son inertie chimique, faisant de lui un matériau unique, posent aussi des difficultés dans son utilisation technologique. L'objectif de ces travaux de thèse a été dans un premier temps d'évaluer les bénéfices que pourrait apporter le diamant en électronique de puissance ainsi que l'état de l'art de sa synthèse par dépôt en phase vapeur. Ensuite, différentes étapes technologiques nécessaires à la fabrication de composants sur diamant ont été étudiées: Gravure RIE, dépôt de contacts électriques. Enfin, ces travaux ont été illustrés par la réalisation et la caractérisation de diodes Schottky, dispositifs élémentaires de l'électronique de puissance. Les résultats obtenus permettent d'établir un bilan des verrous scientifiques et technologiques qu'il reste à relever pour une exploitation industrielle de la filière diamant. / As applications in the field of power electronics tend toward more extreme conditions (high power density, high frequency, high temperature ...), evolution of electric power treatment systems comes up against physical limits of silicon, the main semiconductor material used in electronic industry for over 50 years. A new approach based on the use of wide bandgap semiconductor materials will permit to overcome those limits. Among these materials, diamond is a very attractive material for power electronics switch devices due to its exceptional properties: high electric breakdown field, high carriers mobilities, exceptional thermal conductivity, high temperature operating possibility... However, the use of diamond as an electronic material is still very problematic due to the difficulty in the synthesis of high electronic grade CVD diamond and to find suitable dopants (in particular donors) in diamond. Besides, some of the unique properties of diamond, such as its extreme hardness and chemical inertness that make it an attractive material also cause difficulties in its application. Nevertheless, recent progress in the field of chemical vapor deposition (CVD) synthesis of diamond allow the study of the technological steps (RIE etching, ohmic and Schottky contacts, passivation,...) necessary for future diamond power devices processing. This is the aim of this thesis. In a first section, the uniqueness of diamond, the promise it bears as a potential material for specific electronic devices and the difficulties related to its application were reviewed. Then, the different technological steps required for power switching devices processing were studied: RIE etching, Ohmic and Schottky contacts. Finally, these works were illustrated by carrying out and electrical characterizations of Schottky Barrier Diodes. The achieved results allow us to make a summary of scientific and technological locks that remain for an industrial exploitation of diamond in power electronic switch devices field.
36

Wide Bandgap Semiconductors Based Energy-Efficient Optoelectronics and Power Electronics

January 2019 (has links)
abstract: Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion. In this dissertation, two types of devices are demonstrated: optoelectronic and electronic devices. Commercial polar c-plane LEDs suffer from reduced efficiency with increasing current densities, knowns as “efficiency droop”, while nonpolar/semipolar LEDs exhibit a very low efficiency droop. A modified ABC model with weak phase space filling effects is proposed to explain the low droop performance, providing insights for designing droop-free LEDs. The other emerging optoelectronics is nonpolar/semipolar III-nitride intersubband transition (ISBT) based photodetectors in terahertz and far infrared regime due to the large optical phonon energy and band offset, and the potential of room-temperature operation. ISBT properties are systematically studied for devices with different structures parameters. In terms of electronic devices, vertical GaN p-n diodes and Schottky barrier diodes (SBDs) with high breakdown voltages are homoepitaxially grown on GaN bulk substrates with much reduced defect densities and improved device performance. The advantages of the vertical structure over the lateral structure are multifold: smaller chip area, larger current, less sensitivity to surface states, better scalability, and smaller current dispersion. Three methods are proposed to boost the device performances: thick buffer layer design, hydrogen-plasma based edge termination technique, and multiple drift layer design. In addition, newly emerged Ga2O3 and AlN power electronics may outperform GaN devices. Because of the highly anisotropic crystal structure of Ga2O3, anisotropic electrical properties have been observed in Ga2O3 electronics. The first 1-kV-class AlN SBDs are demonstrated on cost-effective sapphire substrates. Several future topics are also proposed including selective-area doping in GaN power devices, vertical AlN power devices, and (Al,Ga,In)2O3 materials and devices. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
37

T-Type Modular Dc Circuit Breaker (T-Breaker) with Integrated Energy Storage for Future Dc Networks

Zhang, Yue 24 August 2022 (has links)
No description available.
38

Partial Discharge Characteristics under Square-wave Voltage Pulses with Ultra-short Rise Times under Various Pressures

Wei, Zhuo 24 August 2022 (has links)
No description available.
39

Third Quadrant Operation of 1.2-10 kV SiC Power MOSFETs

Zhang, Ruizhe 22 April 2022 (has links)
The third quadrant (3rd-quad) conduction (or reverse conduction) of power transistors is critical for synchronous power converters. For power metal-oxide-semiconductor field-effect-transistors (MOSFETs), there are two current paths in the 3rd-quad conduction, namely the MOS channel path and the body diode path. It is well known that, for 1.2 kV silicon carbide (SiC) planar MOSFETs, the conduction loss in the 3rd-quad is reduced by turning on the MOS channel with a positive gate bias (VGS) and keeping the dead time as small as possible. Under this scenario, the current is conducted through both paths, allowing the device to take advantage of the zero 3rd-quad forward voltage drop (VF3rd) of the MOS channel path and the small differential resistance of the body diode path. However, in this thesis work, this popular belief is found to be invalid for power MOSFETs with higher voltage ratings (e.g., 3.3 kV and 10 kV), particularly at high temperatures and current levels. The aforementioned MOS channel and body diode paths compete in the device’s 3rd-quad conduction, and their competition is affected by VGS and device structure. This thesis work presents a comparative study on the 3rd-quad behavior of 1.2 kV to 10 kV SiC planar MOSFET through a combination of device characterization, TCAD simulation and analytical modeling. It is revealed that, once the MOS channel turns on, it changes the potential distribution within the device, which further makes the body diode turn on at a source-to-drain voltage (VSD) much higher than the built-in potential of the pn junction. In 10 kV SiC MOSFETs, with the MOS channel on, the body diode does not turn on over the entire practical VSD range. As a result, the positive VGS leads to a completely unipolar conduction via the MOS channel, which could induce a higher VF3rd than the bipolar body diode at high temperatures. Circuit test is performed, which validates that a negative VGS control provides the smallest 3rd-quad voltage drop and conduction loss at high temperatures in 10 kV SiC planar MOSFET. The study is also extended to the trench MOSFET, another major structure of commercial SiC MOSFETs. Based on the revealed physics for planar MOSFETs, the optimal VGS control for the 3rd-quad conduction in different types of commercial trench MOSFETs is discussed, which provides insights for the design of high-voltage trench MOSFETs. These results provide key guidelines for the circuit applications of medium-voltage SiC power MOSFETs. / M.S. / Recent years, the prosperity of power electronics applications such as electric vehicle and smart grid has led to a rapid increase in the adoption of wide bandgap (WBG) power devices. Silicon Carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) is one of the most attractive candidates in WBG devices, owing to its good tradeoff between breakdown voltage and on resistance, capability of operation at high temperatures, and superior device robustness over other WBG power devices. In most power converters, power device is required to conduct current in its third quadrant (3rd-quad) (i.e., conduct reverse current) either for handling current during the dead time or acting as a commutation switch. In a SiC MOSFET, there are two current paths in the 3rd-quad conduction, namely the MOS channel path and the body diode path. It is widely accepted that by turning on the MOS channel with a positive gate-to-source bias (VGS), both paths are turned on in parallel such that the 3rd-quad conduction loss can be reduced. In this thesis work, it is shown that this long-held opinion does not hold for SiC MOSFETs with high voltage ratings (e.g., 3.3 kV and 10 kV). Through a combination of device characterization, TCAD simulation, and analytical modeling, this thesis work unveils the competing current sharing between the MOS channel and the body diode. Once the MOS channel turns on, it delays the turn-on of the body diode and suppresses the diode current. This effect is more pronounced in MOSFETs with higher voltage ratings. In 10 kV SiC MOSFETs, with the MOS channel on, the body diode does not turn on in the practical operation conditions. At high temperatures, as the bipolar diode path possesses the conductivity modulation, which can significantly lower the voltage drop and is absent in the MOS channel, it would be optimal to turn off the MOS channel. Circuit test is also performed to validate these device findings and evaluate their impact on device applications. Finally, the study is also extended to the commercial SiC trench MOSFET, the other mainstream type of SiC power MOSFETs. These results provide key guidelines for the circuit applications of medium-voltage SiC power MOSFETs.
40

T-Type Modular DC Circuit Breaker (T-Breaker) for the Stabilization of Future High Voltage DC Networks

Alsaif, Faisal January 2022 (has links)
No description available.

Page generated in 0.0535 seconds