• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 12
  • 3
  • 2
  • Tagged with
  • 35
  • 35
  • 22
  • 17
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Papel das proteínas XPD e DNA polimerase eta nas respostas de células humanas a danos no genoma / Role of XPD and DNA polymerase eta in the response of human cells to DNA damage

Lerner, Leticia Koch 02 July 2014 (has links)
A via de Reparo por Excisão de Nucleotídeos (NER) é responsável pelo reparo das lesões causadas pela luz ultravioleta (UV) e de outras lesões capazes de distorcer a dupla hélice, bloqueando a replicação e a transcrição. Os pacientes que apresentam as síndromes recessivas raras Xeroderma Pigmentosum (XP), tricotiodistrofia (TTD) e síndrome de Cockayne (CS) possuem mutações em algum dos 11 genes relacionados ao NER e à transcrição basal. Mutações na proteína XPD levam ao surgimento de diferentes fenótipos: XP, TTD, XP/CS ou COFS (Cerebro-Oculo-Facio-Skeletal Syndrome), uma forma rara de CS. Os pacientes XP apresentam alta incidência de câncer de pele, o que não ocorre com os pacientes TTD e CS, além de poderem apresentar perda neuronal progressiva, enquanto todos os CS e TTD apresentam uma diminuição na mielinização do cérebro. As neuropatologias são provavelmente associadas a problemas no reparo de danos endógenos no DNA das células nervosas. Diversos trabalhos mostraram o envolvimento do NER no reparo desses danos, os quais pensava-se serem reparados apenas por outro mecanismo, o Reparo por Excisão de Base. Neste trabalho mostramos que fibroblastos de pacientes XP-D, XP-D/CS e TTD, portadores de mutações em XPD, são sensíveis ao estresse oxidativo induzido pelo tratamento com azul de metileno fotoativado, apresentando bloqueio prolongado no ciclo celular e permanência da sinalização de danos ao DNA. A complementação das diferentes linhagens com o gene XPD/ERCC2 foi capaz de restaurar a sobrevivência celular. Foram detectadas diferenças importantes na capacidade de reparo/retomada da transcrição após danos gerados por estresse oxidativo em DNA plasmidial, além da ativação de vias diferentes de morte celular: fibroblastos XP-D apresentam maior capacidade de reparo e apresentam morte por apoptose após estresse oxidativo, enquanto os fibroblastos XP-D/CS e TTD apresentam menor capacidade de reparo ativação de mais de uma via de morte celular (apoptose e necrose), diferenças que podem estar ligadas ao fenótipo dos pacientes. Mutações no gene codificante para a DNA polimerase n, POLH, estão associadas à forma variante de XP (XP-V). Pol n é uma polimerase especializada na síntese translesão (TLS) de fotoprodutos, além de estar implicada na TLS de outros tipos de lesões como bases oxidadas, e em vias não relacionadas à TLS como a hipermutação somática e à replicação de regiões de DNA com arquiteturas não-canônicas. Neste trabalho mostramos que os fibroblastos de pacientes XP-V apresentam sensibilidade ao estresse oxidativo. Mostramos uma indução da proteína pol n em fibroblastos primários após danos genotóxicos, associada ao aumento da capacidade de lidar com a parada na forquilha de replicação, possibilitando a continuidade da replicação do DNA e ao aumento da sobrevivência celular. Mostramos uma diferença na estabilidade genômica nos genes das imunoglobulinas dos pacientes XP-V idosos em comparação com os pacientes jovens e controles de idade pareada, mostrando que a ausência dessa polimerase pode estar ligada ao aumento da instabilidade genômica nesses genes / The Nucleotide Excision Repair (NER) pathway is responsible for the repair of UV photoproducts and other bulky lesions that block both replication and transcription. Patients with the rare recessive disorders Xeroderma Pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne Syndrome (CS) carry mutations in one of the 11 NER genes, linked to repair and basal transcription. Mutations in XPD lead to different phenotypes: XP, TTD, XP/CS or COFS (Cerebro-Oculo-Facio-Skeletal Syndrome), a rare form of CS. XP patients have high incidence of skin cancer, which does not occur in TTD or CS patients, although ther may present neurodegeneration, while all CS and TTD patients have neurodevelopmental symptoms linked to dysmielynation. The pathology of these neurological diseases is probably associated with deficient repair of DNA lesions in nervous cells, generated by endogenous processes. Many groups including ours have demonstrated the involvement of NER in the repair of these lesions, previously thought to be exclusively repaired by Base Excision Repair. In this work we show high sensitivity of both primary and transformed XP-D, XP-D/CS and TTD human fibroblasts in response to oxidative stress generated by photoactivated methylene blue, with prolonged cell cycle arrest and DNA damage signaling. The complementation of the three different cell lines with the XPD/ERCC2 gene was able to restore cell survival. We detected important differences in repair capacity/transcription resumption after damage generated by oxidative stress in plasmid DNA, besides the activation of different cell death pathways: XP-D cells have higher repair capacity and die by apoptosis, while XP-D/CS and TTD cells have little repair capacity and activate more than one death pathway (apoptosis and necrosis). We believe these differences can be related to the patients\' phenotypes. Mutations in DNA polymerase n coding gene, POLH, are associated with the variant form of XP (XP-V). Pol n is a translesion synthesis (TLS) polymerase specialized in the TLS past CPD photoproducts, besides other lesions like oxidized bases, and in other processes like somatic hypermutation and DNA replication in structured regions. In this work we show XP-V human fibroblasts are sensitive to oxidative stress. We detected an induction of pol n after genotoxic stress in primary cells, associated with increased ability to deal with the stalled replication fork, and consequently to DNA replication restart and cell survival. In addition, we detected a difference in genomic stability in immunoglobulin genes in aged XP-V patients in comparison to both young patients and age-matched controls, showing the absence of this polymerase may be linked to increased genomic instability in these genes
32

Xeroderma-Pigmentosum-Gruppe-C- und -G-Gen-Polymorphismen: Alternatives Splicing und funktionelle DNA-Reparatur beim multiplen Melanom / Xeroderma-Pigmentosum-group-C and -g-gene-polymorphisms: alternative splicing and functional DNA-repair in multiple melanoma patients

Vollert, Seike 23 May 2011 (has links)
No description available.
33

Papel das proteínas XPD e DNA polimerase eta nas respostas de células humanas a danos no genoma / Role of XPD and DNA polymerase eta in the response of human cells to DNA damage

Leticia Koch Lerner 02 July 2014 (has links)
A via de Reparo por Excisão de Nucleotídeos (NER) é responsável pelo reparo das lesões causadas pela luz ultravioleta (UV) e de outras lesões capazes de distorcer a dupla hélice, bloqueando a replicação e a transcrição. Os pacientes que apresentam as síndromes recessivas raras Xeroderma Pigmentosum (XP), tricotiodistrofia (TTD) e síndrome de Cockayne (CS) possuem mutações em algum dos 11 genes relacionados ao NER e à transcrição basal. Mutações na proteína XPD levam ao surgimento de diferentes fenótipos: XP, TTD, XP/CS ou COFS (Cerebro-Oculo-Facio-Skeletal Syndrome), uma forma rara de CS. Os pacientes XP apresentam alta incidência de câncer de pele, o que não ocorre com os pacientes TTD e CS, além de poderem apresentar perda neuronal progressiva, enquanto todos os CS e TTD apresentam uma diminuição na mielinização do cérebro. As neuropatologias são provavelmente associadas a problemas no reparo de danos endógenos no DNA das células nervosas. Diversos trabalhos mostraram o envolvimento do NER no reparo desses danos, os quais pensava-se serem reparados apenas por outro mecanismo, o Reparo por Excisão de Base. Neste trabalho mostramos que fibroblastos de pacientes XP-D, XP-D/CS e TTD, portadores de mutações em XPD, são sensíveis ao estresse oxidativo induzido pelo tratamento com azul de metileno fotoativado, apresentando bloqueio prolongado no ciclo celular e permanência da sinalização de danos ao DNA. A complementação das diferentes linhagens com o gene XPD/ERCC2 foi capaz de restaurar a sobrevivência celular. Foram detectadas diferenças importantes na capacidade de reparo/retomada da transcrição após danos gerados por estresse oxidativo em DNA plasmidial, além da ativação de vias diferentes de morte celular: fibroblastos XP-D apresentam maior capacidade de reparo e apresentam morte por apoptose após estresse oxidativo, enquanto os fibroblastos XP-D/CS e TTD apresentam menor capacidade de reparo ativação de mais de uma via de morte celular (apoptose e necrose), diferenças que podem estar ligadas ao fenótipo dos pacientes. Mutações no gene codificante para a DNA polimerase n, POLH, estão associadas à forma variante de XP (XP-V). Pol n é uma polimerase especializada na síntese translesão (TLS) de fotoprodutos, além de estar implicada na TLS de outros tipos de lesões como bases oxidadas, e em vias não relacionadas à TLS como a hipermutação somática e à replicação de regiões de DNA com arquiteturas não-canônicas. Neste trabalho mostramos que os fibroblastos de pacientes XP-V apresentam sensibilidade ao estresse oxidativo. Mostramos uma indução da proteína pol n em fibroblastos primários após danos genotóxicos, associada ao aumento da capacidade de lidar com a parada na forquilha de replicação, possibilitando a continuidade da replicação do DNA e ao aumento da sobrevivência celular. Mostramos uma diferença na estabilidade genômica nos genes das imunoglobulinas dos pacientes XP-V idosos em comparação com os pacientes jovens e controles de idade pareada, mostrando que a ausência dessa polimerase pode estar ligada ao aumento da instabilidade genômica nesses genes / The Nucleotide Excision Repair (NER) pathway is responsible for the repair of UV photoproducts and other bulky lesions that block both replication and transcription. Patients with the rare recessive disorders Xeroderma Pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne Syndrome (CS) carry mutations in one of the 11 NER genes, linked to repair and basal transcription. Mutations in XPD lead to different phenotypes: XP, TTD, XP/CS or COFS (Cerebro-Oculo-Facio-Skeletal Syndrome), a rare form of CS. XP patients have high incidence of skin cancer, which does not occur in TTD or CS patients, although ther may present neurodegeneration, while all CS and TTD patients have neurodevelopmental symptoms linked to dysmielynation. The pathology of these neurological diseases is probably associated with deficient repair of DNA lesions in nervous cells, generated by endogenous processes. Many groups including ours have demonstrated the involvement of NER in the repair of these lesions, previously thought to be exclusively repaired by Base Excision Repair. In this work we show high sensitivity of both primary and transformed XP-D, XP-D/CS and TTD human fibroblasts in response to oxidative stress generated by photoactivated methylene blue, with prolonged cell cycle arrest and DNA damage signaling. The complementation of the three different cell lines with the XPD/ERCC2 gene was able to restore cell survival. We detected important differences in repair capacity/transcription resumption after damage generated by oxidative stress in plasmid DNA, besides the activation of different cell death pathways: XP-D cells have higher repair capacity and die by apoptosis, while XP-D/CS and TTD cells have little repair capacity and activate more than one death pathway (apoptosis and necrosis). We believe these differences can be related to the patients\' phenotypes. Mutations in DNA polymerase n coding gene, POLH, are associated with the variant form of XP (XP-V). Pol n is a translesion synthesis (TLS) polymerase specialized in the TLS past CPD photoproducts, besides other lesions like oxidized bases, and in other processes like somatic hypermutation and DNA replication in structured regions. In this work we show XP-V human fibroblasts are sensitive to oxidative stress. We detected an induction of pol n after genotoxic stress in primary cells, associated with increased ability to deal with the stalled replication fork, and consequently to DNA replication restart and cell survival. In addition, we detected a difference in genomic stability in immunoglobulin genes in aged XP-V patients in comparison to both young patients and age-matched controls, showing the absence of this polymerase may be linked to increased genomic instability in these genes
34

Le complexe TFIIH dans la transcription effectuée par l'ARN polymèrase II et l'ARN polymèrase III / TFIIH complex in transcription mediated by RNA polymerase II and RNA polymerase III

Zadorin, Anton 28 September 2012 (has links)
Deux phénomènes liés au TFIIH ont été étudiés : l'influence des mutations spécifiques dans la sous-unité XPD de TFIIH sur la réponse transcriptionnelle de certains gènes après l'irradiation UV, et l'interaction entre le TFIIH et la transcription des gènes de classe III. Une analyse détaillée de la dynamique du transcriptome a été effectuée pour la réponse des cellules humaines mutantes XP-D/CS à l'UV. Il a été démontré que la dysrégulation sélective observée de l’expression des gènes était liée à l'incapacité pour la ré-initiation transcriptionnelle et à l'hétérochromatinisation suivante, où l'histonedésacétylase SIRT1 a été identifiée comme le principal facteur. Son inhibition a permis de recouvrer l'expression normale d'un nombre substantiel des gènes affectés. Une étude de la participation pangénomique du coeur de TFIIH dans latranscription a découvert son association avec les gènes actifs de classe III. Cette association a été démontrée être indépendante de Pol II. Le coeur de TFIIH a été montré participer directement à la transcription effectuée in vitro par Pol III. / In this work, two TFIIH-related phenomena were investigated : the influence of specific mutations in TFIIH XPD subunits on the transcriptional response of different genes on UV irradiation and the interaction between TFIIH and transcription of class III genes. For the first time the detailed investigation of transcriptome dynamics was carried out for the response of XP-D/CS mutant human cells to UV-irradiation. The transcription regulation nature of the observed selective gene expression dysregulation was clearly observed. Its relation to failure of transcription re-initiation and consequentheterochromatisation was demonstrated. SIRT1 histone deacetylase was identified as the main driver of the repressive chromatin establishment on the certain genes upon UV. Inhibition of SIRT1 was found to recover normal expression of substantial number of affected genes. SIRT1 mediated mechanism was shown to be XP-D/CS specific. A potential link between this longevity related protein and progeria features of XP-D/CS mutants was hypothesised. Genome-wide study of the involvement of the core TFIIH in transcription revealed its association with active class III genes, not described previously. This association was demonstrated to be Pol II-independent. The core TFIIH was shown to be directly involved in Pol III mediated transcription in vitro.
35

Xeroderma Pigmentosa Group a (XPA), Nucleotide Excision Repair and Regulation by ATR in Response to Ultraviolet Irradiation

Musich, Phillip R., Li, Zhengke, Zou, Yue 01 January 2017 (has links)
The sensitivity of Xeroderma pigmentosa (XP) patients to sunlight has spurred the discovery and genetic and biochemical analysis of the eight XP gene products (XPA-XPG plus XPV) responsible for this disorder. These studies also have served to elucidate the nucleotide excision repair (NER) process, especially the critical role played by the XPA protein. More recent studies have shown that NER also involves numerous other proteins normally employed in DNA metabolism and cell cycle regulation. Central among these is ataxia telangiectasia and Rad3-related (ATR), a protein kinase involved in intracellular signaling in response to DNA damage, especially DNA damage-induced replicative stresses. This review summarizes recent findings on the interplay between ATR as a DNA damage signaling kinase and as a novel ligand for intrinsic cell death proteins to delay damage-induced apoptosis, and on ATR’s regulation of XPA and the NER process for repair of UV-induced DNA adducts. ATR’s regulatory role in the cytosolic-to-nuclear translocation of XPA will be discussed. In addition, recent findings elucidating a non-NER role for XPA in DNA metabolism and genome stabilization at ds-ssDNA junctions, as exemplified in prematurely aging progeroid cells, also will be reviewed.

Page generated in 0.0962 seconds