• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 2
  • 2
  • 2
  • Tagged with
  • 43
  • 20
  • 20
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The sensitivity of the EMC algorithm to the light intensity and amount of diffraction patterns in diffraction experiments

Rogvall, Johanna January 2021 (has links)
To understand the function of macromolecules like proteins it helps to know the structure of the molecule. Coherent diffraction imaging is an emerging method that might be used to figure out the structures of macromolecules. In this method diffraction patterns of the macromolecule are recorded by shining light on the molecule from many unknown orientations and detecting the pattern of the diffracted photons. By assembling the diffraction patterns in a specific way and finding the phase of the photons that gave rise to the diffraction patterns, it is theoretically possible to obtain the electronstructure of the molecule and thus the molecular structure. The assembling of several thousand diffraction patterns representing unknown orientations of the molecule is hard to do by hand, but there are several methods that can be used. The EMC (Expand-Maximize-Compress) algorithm is one of those methods. It is an iterative algorithm that tries to create a model describing the Fourier Transform of the electron density of the molecule by maximizing each diffraction patterns fit to the model. This work examines how sensitive the EMC algorithm is to datasets with few diffraction patterns or a low intensity of the light being diffracted by the molecule, for the proteins phytochrome and lysozyme. The result of the work could be used to make sure enough data in collected in real experiments. Diffraction patterns simulated with the program Condor is used in this work, instead of diffraction patterns from real experiments.EMC finds the correct model when the data set contains about 1/3 fewer photons for the smaller more symmetrical molecule lysozyme than it does for phytochrome. This might be because the shapes in lysozymes diffraction patterns are larger than in phyochrome’s patterns. For phytochrome the EMC algorithm assembled the diffraction patterns correctly, with fewest photons for the light intensity 0.764 J/μm2 and 1250 diffraction patterns. For lysozyme it was with an intensity 1.910 J/μm2 and 1425 diffraction patterns. More investigation of the data is needed to understand what factors that affect the EMC algorithms ability to assemble the diffraction patterns correctly. / För att förstå makromolekylers kemiska eller biologiska funktion so underlättar det om man känner till molekylens kemiska struktur. Med den nya tekniken “coherent diffraction imaging” ska det vara möjligt att lista ut makromolekylers struktur. I denna teknik detekterar man diffraktionsmönster av molekylen genom att belysa molekylen med ljus från många olika okända vinklar and registrera mönstret som skapas av det diffrakterade ljuset. Genom att sätta ihop alla dessa diffraktionsmönster på rätt sätt och sen återskapa fasen för ljuset i diffraktionsmönstret så kan man generera molekylens elektronstruktur och från elektronstrukturen kan man få tag i molekylens struktur. Att sätta ihop tio tusentals diffraktionsmönster med okända vinklar på rätt sätt är väldigt svårt att göra, men det finns flera olika metoder som kan användas. EMC (Expand-Maximize-Compress) är en sådan metod. EMC är en iterativ algoritm som skapar en modell av (Fourier transformen av) molekylens elektronstruktur genom att maximera hur bra diffraktionsmönstren passar med modellen. Detta arbete utreder hur bra EMC algoritmen är på att hitta rätt (Fourier transform av) elektronstruktur när väldigt få diffraktionsmönster används eller när intensiteten på ljuset som sprids av molekylen är lågt. Programmet Condor används för att generera teoretiska diffraktionsmönster för de 2 molekylerna lysozym och fytokrom. EMC används sedan med olika uppsättningar av intensitet och antal diffraktionsmönster för att skapa en modell av elektronstrukturen. EMC behövde ca 1/3 färre antal fotoner i sin modell för att hittar den rätta modellen av elektronstrukturen för den lilla symmetriskt formade molekylen lysozym än för fytokrom. Att det är lättare för EMC algoritmen att hitta den korrekta modellen för lysozym än fytokrom kan bero på att lysozyms diffraktionsmönster har större former/features eller på lysozyms storlek och form. EMC körningen som behövde minst antal fotoner för att hitta den korrekta elektronstrukturen för fytokrom hade intensiteten 0,764 J/μm2 på det inkommande ljuset och behövde 1250 diffraktionsmönster. För lysozym behövdes det 1,910 J/μm2 och 1425 diffraktionsmönster för att EMC algoritmen skulle hitta rätt modell av elektronstrukturen.
22

Development of Small-Angle X-Ray Scattering on a Nanometer and Femtosecond Scale for the Investigation of Laser-Driven Matter

Rödel, Melanie 31 January 2023 (has links)
Laser-Plasma-Beschleunigung mittels ultraintensiver Laserstrahlung ist eine vielversprechende Technologie für die Entwicklung kompakter Strahlungsquellen. Diese werden in einem breiten Spektrum technischer Anwendungsfälle genutzt, zum Beispiel zur Krebstherapie, in der Laborastrophysik und für die Trägheitsfusion, weshalb viele interdisziplinären Forschungsfelder ein großes Interesse an ihrer Entwicklung haben. Die ersten Machbarkeitsstudien zur Nutzung gepulster Protonenstrahlung zur Tumorbehandlung haben bereits erfreuliche Ergebnisse geliefert. Dennoch lagen die erzielten Parameter des Protonenstrahls weit unter den erwarteten Werten. Die bekannten Faktoren, die diese Performance einschränken, wurden fast ausschließlich durch Simulationen identifiziert. Der experimentelle Zugang zur Laser-Plasma-Wechselwirkung ist bisher auf die Auswertung der resultierenden Strahlung und auf makroskopische Oberflächeneffekte beschränkt, die mit optischen Messtechniken untersucht werden können. Diese Diagnostiken liefern allerdings keinerlei Informationen über die Vorgänge im Inneren des Plasmas, die letztlich die Parameter der beschleunigten Protonen bestimmen. Diese Prozesse werden in ihrer Größe und Zeitskala durch die Plasmaoszillation bzw. deren Frequenz und Wellenlänge bestimmt. Das Ziel dieses Forschungsprojekts war es, diese Lücke in der Auflösung bestehender Messmethoden zu schließen und eine Diagnostik zu entwickeln, die in der Lage ist, nanoskopische Plasma-Phänomene im Inneren der lasergetriebenen Probe zu untersuchen. Dieses Ziel konnten wir durch die Einführung von Röntgenkleinwinkelstreuung (SAXS) in Laserexperimenten an Röntgen-Freie-Elektronen-Lasern (XFELs) erreichen. In dieser Arbeit erläutere ich das technische Design und die methodische Auswertung des ersten dedizierten SAXS Experiments, das an der Matter in Extreme Conditions Messstation (auch MEC, Materie unter extremen Bedingungen) der Linac Coherent Light Source (auch LCLS, Linearbeschleuniger als kohärente Lichtquelle) durchgeführt wurde. Dieses Experiment war vorrangig eine Machbarkeitsstudie, die als Basis für die weitere Verwendung von SAXS in Laserexperimenten dienen soll. Meine Arbeit wird ausführlich die dafür nötigen experimentellen Techniken, den Aufbau, die Reinigung des gemessenen Beugungsbilds, das Probendesign und den Auswerteprozess erläutern. Um die experimentelle Durchführbarkeit dieser Methode zu testen, nutzten wir SAXS, um die Ausbreitung einer nanostrukturierten Probe in der Zeit kurz vor und während des Beginns des Laserpulses zu messen. Der Ausbreitungsparameter, den wir so aus den experimentellen Daten gewinnen konnten, liegt im einstelligen Nanometer- und teilweise im Subnanometer-Bereich und stimmte gut mit den Ergebnissen einer Particle In Cell (PIC) Simulation zur frühen Ausbreitungsphase überein. Dies zeigt, dass SAXS in der Lage ist, Plasma Prozesse zu messen, die für andere Diagnostiken bisher nicht zugänglich waren. Außerdem beobachteten wir eine Abweichung der experimentellen Daten von dem von uns entwickelten Modell zur Beschreibung der ungehinderten Ausbreitung des Plasmas ins Vakuum. Dies veranlasste uns zu einer genaueren Untersuchung der Ausbreitung mittels PIC Simulation und tatsächlich sahen wir darin die Bildung von Plasma-Strömen, die auch in der SAXS-Auswertung qualitativ bestätigt werden konnten. Die Komplexität des Ausbreitungsprozesses, die wir in diesem Forschungsprojekt aufdecken konnten, zeigt, dass weitere Studien dazu durchgeführt werden sollten. Wenn wir die Ergebnisse der hier präsentierten SAXS Modelle nutzen, um unser Verständnis des Effekts von Vorpulsen und Intensitäts-Plateaus auf die Protonenbeschleunigung mit nanostrukturierten Proben zu verbessern, werden wir zukünftig in der Lage sein, die damit erzielten Strahlparameter zu verbessern. Der entwickelte SAXS Aufbau wurde auch an die Gegebenheiten von Experimenten zur Schockwellenverdichtung mittels Hochenergielasern angepasst und angewendet. Es gibt großes wissenschaftliches Interesse an der Entmischung von Kohlenwasserstoffen im Zustand warmer dichter Materie (WDM). Viele Laborastrophysikexperimente untersuchen das Innere von Eisriesen wie Uranus und Neptun, insbesondere den Verlauf der Phasentrennung von leichten Elementen wie Kohlenstoff und Wasserstoff, die zu Diamantregen führt. Bisher war es bei diesen Messungen nicht möglich, nanoskopische Dichteänderungen im Inneren einer dichten Probe unter extremen Bedingungen zu untersuchen. Im Rahmen dieser Forschungsarbeit wurde SAXS als ergänzende Diagnostik in Hochenergiedichte-Experimenten mit Lasern an Einrichtungen wie an der MEC Messstation und an anderen XFELs etabliert. Ich wendete bekannte SAXS Auswerteroutinen auf den besonderen Fall eines sich von Schuss zu Schuss ändernden Dichtekontrasts an. Die verschiedenen Komponenten der SAXS Daten wurden mit den Informationen korreliert, die aus anderen Diagnostiken wie Beugung und VISAR gewonnen wurden. So konnte ich durch die Auswertung der Nanodiamant-Komponente eine Schätzung der Diamantgröße und des Diamant-Volumenanteils ableiten, indem ich spezifische Modelle fittete, die auf hydrodynamischen Simulationen basieren. Zukünftig möchten wir diese experimentellen Grundlagen auch auf die Untersuchung von Flüssig-Flüssig-Entmischung leichter Elemente im WDM Zustand anwenden. In dieser Arbeit erläutere ich die von mir entwickelten Auswerteprozesse, die auf weitere Messungen angewendet werden können, sobald deren Messbereich und Sensitivität so verbessert wurde, dass die Parameter von Interesse bestimmbar sind. Dieses Projekt half dabei, SAXS als Standarddiagnostik in Forschungseinrichtungen zu etablieren, die XFELs mit Hochleistungslaserexperimenten verbinden. Es bereitet sowohl die technische als auch die methodische Grundlage für weitere Experimente. / Laser plasma acceleration with ultra-high intensity (UHI) lasers is a promising technology for building compact radiation sources. These hold immense potential for a wide array of applications including cancer therapy, laboratory astrophysics and inertial confinement fusion and there is great interest in their development in many interdisciplinary fields of research. But while proof of concept experiments using proton pulses for tumor irradiation have delivered encouraging results, the achieved proton beam parameters fell short of the originally expected values. The limiting factors to this performance have mostly been identified in simulation only. Experimental access to the interaction between the drive laser and the dense plasma is so far limited to the analysis of the emitted radiation and the macroscopic surface effects that can be probed by visible light. These diagnostics cannot provide information about the processes in the bulk of the plasma that eventually determine the properties of the accelerated particles. Their spatial and temporal domain is dominated by the plasma oscillation frequency and wavelength. The aim of this project was to bridge this resolution gap with a diagnostic that is capable of investigating nanoscopic plasma features in the bulk of a laser-driven sample on a femtosecond scale. This was achieved by establishing the use of Small Angle X-Ray Scattering (SAXS) at UHI laser experiments at X-Ray Free Electron Lasers. My thesis will outline the technical design and scientific analysis of the first dedicated SAXS experiment at the Matter in Extreme Conditions (MEC) instrument of the Linac Coherent Light Source. The primary goal of the experiment was proof of concept as a foundation for regular use of SAXS in UHI experiments in the future. I will discuss the experimental procedures, the setup, the cleaning of the diffraction pattern, the target design and the analysis process that were developed for this new diagnostic in detail. To test the feasibility of this method, we used SAXS to measure the expansion of a nanostructured target in the femtosecond time span before and around the onset of a low intensity drive laser pulse. The expansion parameter that was extracted from the experimental data is in the in the sub- to single nanometer range and was in good agreement with the results of a particle-in-cell (PIC) simulation describing the early expansion phase. This demonstrates that SAXS is capable of measuring plasma processes on scales that were previously unobtainable by other diagnostics. We also identified a deviation of the experimental data from the simple model that we developed to describe an unobstructed expansion of plasma into vacuum. This lead us to examine the expansion in more detail via PIC simulation and indeed we discovered the formation of plasma jets at a later phase of the plasma expansion in simulation for a grating target. This additional effect was confirmed qualitatively by the SAXS analysis. The complexity of the plasma expansion process for a structured target we found in this project demonstrates the need for further studies. If we use the SAXS models presented here to improve our understanding of the effect of prepulses and pedestals on proton acceleration using nanostructured targets, we can apply this knowledge to the improvement of the proton beam parameters in future developments. %Additionally the technical implementation of SAXS for UHI laser experiments was developed in the framework of this thesis and established as a useful tool for the investigation of other nanoscopic plasma features. The developed experimental setup for SAXS was also adapted and applied to laser shock compression experiments using high energy drive lasers. There is great research interest in the demixing of hydrocarbons in the Warm Dense Matter (WDM) state. Many laboratory astrophysics experiments investigate the internal structure of ice giants like Uranus and Neptune, specifically the dynamics of the phase separation of light elements like carbon and hydrogen which can result in diamond rain. So far these measurements lacked a diagnostic that is capable of probing nanoscopic density modulations in the bulk of a dense target in an extreme state of matter. SAXS allowed us to gain access to the parameters of the demixing process. In the framework of this project SAXS was established as a complementary diagnostic to the standard setup for high energy density laser experiments at the MEC instrument and at other XFELs. I applied existing SAXS analysis procedures to the special case of a density contrast that changes on every shot. The different components of the SAXS data were correlated to information from other standard diagnostics including diffraction and VISAR. I was able to quantitatively analyze the component caused by nanodiamonds and retrieved an estimate of the diamond size and volume fraction from fits to custom models that are based on hydrodynamic simulations. In the future, we would like to extend this experimental basis to the investigation of liquid-liquid demixing of light elements in the WDM state. In this thesis I will discuss the SAXS analysis procedures that I dweveloped so that they can be applied to future measurements, once the experimental range and sensitivity has been improved to retrieve the parameters of interest. This project helped to establish SAXS as a standard diagnostic at facilities combining XFELs with high power laser experiments. It is supposed to lay both the technical and methodical groundwork for further experiments.
23

Laser à rayons X ultra-compact Raman XFEL / Ultra-compact X-ray free electron laser Raman XFEL

Hadj-Bachir, Mokrane 15 December 2016 (has links)
L’obtention d’un Laser à Électrons Libres X (LEL-X) compact est un objectif majeur pour le développement des lasers. Plusieurs schémas prometteurs de LEL-X ont été proposés en utilisant à la fois l’accélération d’électrons dans les plasmas et des onduleurs optiques en régime Compton ou Compton inverse. Nous avons proposé un nouveau concept de LEL-X compact baptisé Raman XFEL, en combinant la physique des LEL en régime Compton, des lasers XUV conventionnels basés sur l’interaction laser plasma, et de l’optique non-linéaire. Nous étudions dans cette thèse les étapes préalables pour déclencher un effet laser à rayons X lors de l’interaction entre un paquet d’électrons libres relativistes et un réseau optique créé par l’interférence transverse de deux impulsions laser intenses. Dans cet objectif j’ai développé un code particulaire baptisé RELIC. Les études menées avec le code RELIC nous ont permis d’étudier la dynamique d’électrons relativistes et les processus d’injection du paquet d’électrons dans le réseau optique. Grâce à RELIC, nous avons distingué de nouveaux régimes d’interaction en fonction des paramètres du paquet d’électrons, ainsi que de la géométrie du réseau optique. Ces études ont été appliquées à l’amplification du rayonnement X et appuyées par des simulations PIC. RELIC a également permis de modéliser et d’analyser la première expérience réalisée en octobre 2015 sur l’installation laser ’Salle Jaune’ au Laboratoire d’Optique Appliquée (LOA). Cette première expérience a été une étape très importante pour la validation des modèles théoriques, et pour la réalisation future d’un laser à électrons libre X Raman. / The quest for a compact X-ray laser has long been a major objective of laser science. Several schemes using optical undulators are currently considered, in order to trigger the amplification of back scattered radiation, in Compton or inverse Compton regime. We have proposed a new concept of compact XFEL based on a combination between the physics of free electron lasers, of laser-plasma interactions, and of nonlinear optics. In this thesis, we study the necessary steps to trigger a X-ray laser during the interaction between a free relativistic electron bunch and an optical lattice created by the interference of two intense transverse laser pulses. For this purpose I developed a particular tracking code dubbed RELIC. RELIC allowed us to study the dynamics and injection process of a bunch of relativistic electrons into the optical lattice. Thanks to RELIC, we distinguished several interaction regimes depending on the relativistic electron bunch parameters, and on those of the optical lattice and its geometry. These studies are applied to the X ray amplification and supported by PIC simulations. RELIC also allowed us to model and analyze the first experiment conducted in october 2015 on the ”Salle Jaune” laser facility at LOA. This first experiment was very important to validate our theoretical models, and should prove to be an essential milestone for the development of a Raman X-ray free electron laser.
24

Kinetische, theoretische und strukturelle Charakterisierung des Cytochrom c-Photosystem I-Komplexes

Kölsch, Adrian 14 September 2020 (has links)
Photosystem I (PSI) aus dem thermophilen Cyanobakterium Thermosynechococcus elongatus ist ein transmembraner Protein-Pigment-Superkomplex der photosynthetischen Elektronentransportkette. Er wandelt die Energie des Lichts in elektrische Energie mit einer Quanteneffizienz von nahezu 100 % um. Dazu uberträgt PSI Elektronen von Plastocyanin bzw. Cytochrom c6 (Cyt c6) auf Ferredoxin. Die Struktur des PSI wurde bereits 2001 mit einer Auflösung von 2,5 Å beschrieben (Jordan et al. 2001). Es lässt sich zur Generierung von Photoströmen auf Elektrodenoberflächen assemblieren und zur Produktion von Biokraftstoffen mit Enzymen koppeln. Die elektrische Kontaktierung des PSI mit Elektrodenoberflächen kann durch Komplexierung mit dem mitochondrialem Cytochrom c aus Pferdeherz (Cyt cHH) erhöht werden. Aufgrund der Nutzbarkeit dieses Proteinkomplexes sollte geklärt werden, wie PSI und Cyt cHH wechselwirken und wie sich die Interaktion von der des nativen PSI-Cyt c6-Komplexes unterscheidet. Deshalb lag der Fokus meiner Arbeit darauf, die Bindung des Cyt c6 und seines Analogons Cyt cHH an PSI mit kinetischen, kalorimetrischen, theoretischen und strukturellen Methoden zu untersuchen. Das Cyt c6 bindet im reduzierten Zustand an PSI und verringert nach erfolgtem Elektronentransfer seine Affinität. Das Cyt cHH bindet dagegen sowohl im reduzierten als auch im oxidierten Zustand an PSI. Mit Hilfe der kinetischen Messungen habe ich Bedingungen identifiziert, unter denen PSI mit dem jeweiligen Cytochrom c einen stabilen Komplex eingeht. Mit Hilfe eines rigid-body dockings wurden potenzielle Bindungsstellen der beiden Cytochrome berechnet. Fur Cyt c6 ergab sich eine spezifische Bindungsstelle, die eine gute Übereinstimmung mit den von mir gemessenen Kinetiken sowie mit weiteren Literaturdaten zeigt. Diese Bindungsstelle korreliert mit der veröffentlichten Kostruktur des bakteriellen Reaktionszentrums mit Cyt c2 aus Rhodobacter sphaeroides. Demgegenüber sind mehrere Cyt cHH-Bindungsstellen ... / Photosystem I (PSI) from the thermophilic cyanobacterium Thermosynechococcus elongatus is a membrane-bound, multipigment protein supercomplex. It converts light to electrochemical energy with a quantum efficiency of almost 100 %. It reduces the luminal proteins plastocyanin and cytochrome c6 (Cyt c6) to oxidize the stromal protein Ferredoxin. The structure of PSI has been solved in 2001 at a resolution of 2,5 Å (Jordan et al. 2001). PSI can be assembled on an electrode surface to produce photocurrents and the generated electrons can be used for the production of biofuels. The mitochondrial cytochrome c from horse heart (Cyt cHH) binds strongly to both, PSI and the electrode surface, and can therefore be applied to improve the electrical coupling. Due to the practical use of the PSI-Cyt c complex, the aim of my thesis is to characterize the interaction of PSI with Cyt c6 and the analog Cyt cHH. To this end, the binding of both cytochromes to PSI was analyzed by kinetic, calorimetric, theory-based and structural methods. Cyt c6 binds to PSI while being reduced and decreases its affinity after transferring its electron. In contrast, Cyt cHH binds to PSI in both oxidation states, reduced and oxidized, with identical affinity. By means of kinetic measurements, I identified conditions in which PSI forms a stable complex with either of the two cytochromes. The positions of the cytochrome binding sites at PSI were calculated by a rigid-body docking. For the calculation with Cyt c6, the majority of the potential binding sites are located at the luminal side of PSI, close to P700. The theoretic properties of one of these binding sites are in good agreement with my own kinetic measurements and literature data. The position and orientation of Cyt c6 in this theoretic binding site is almost identical to the localization of Cyt c2 in cocrystals with the bacterial reaction center from Rhodobacter sphaeroides. The potential Cyt cHH binding sites are uniformly distributed over ...
25

Auger decay in double core ionized molecules

Inhester, Ludger 08 August 2013 (has links)
Röntgen Freie Elektronen Laser ermöglichen es Doppel-K-Schalen Löchern in Molekülen in aufeinanderfolgenden mehrfachen Ionisationsschritten in bedeutender Anzahl zu erzeugen. Die Eigenschaften dieser zweifach ionisierten Zustände ist insbesondere relevant für die Strahlungsschäden bei Beugungsexperimenten mit kohärenter Röntgenstrahlung zur Bildgebung einzelner Moleküle. In dieser Arbeit wird der Auger Zerfall doppelt K-Schalen ionisierter Moleküle mittels quantenchemischer ab-initio Methoden untersucht. Zur Beschreibung des emittierten Auger Elektrons im kontinuierlichen Energiespektrum wird dabei die Ein-Zentrums Methode verwendet, in der die elektronische Wellenfunktion auf einem radialen Gitter beschrieben wird unter Verwendung von sphärischen Harmonischen. Wie anhand desWassermoleküls gezeigt wird, ergeben sich durch die Doppel-K-Loch induzierte Protonendynamik in dem Auger Spektrum ausgeprägte Flanken im höherenergetischen Teil jeder Spektralspitze. Die Lebensdauer von Doppel-K-Schalen Löchern in Molekülen ist deutlich verringert im Vergleich zu einfachen K-Löchern durch die K-Loch induzierten Abschirmeffekte der Valenzelektronen. Dieser Mechanismus wird durch ein einfaches Modell erklärt aus dem eine Beziehung zwischen Zerfallsrate und Valenzelektronenpopulation abgeleitet. Mögliche Konsequenzen dieser Ergebnisse für Röntgenbeugungsexperimente sind: Erstens, auch für Röntgenpulse kürzer als 10fs wird das Beugungsbild durch die K-Loch induzierten Umstrukturierungen der Valenzelektronen beeinflußt. Zweitens, die Gesamt-Ionisationsrate ist erhöht aufgrund der schnelleren Neubesetzung der K-Löcher.
26

Single-molecule X-ray free-electron laser imaging : Interconnecting sample orientation with explosion data

Östlin, Christofer January 2014 (has links)
X-ray crystallography has been around for 100 years and remains the preferred technique for solving molecular structures today. However, its reliance on the production of sufficiently large crystals is limiting, considering that crystallization cannot be achieved for a vast range of biomolecules. A promising way of circumventing this problem is the method of serial femtosecond imaging of single-molecules or nanocrystals utilizing an X-ray free-electron laser. In such an approach, X-ray pulses brief enough to outrun radiation damage and intense enough to provide usable diffraction signals are employed. This way accurate snapshots can be collected one at a time, despite the sample molecule exploding immediately following the pulse due to extreme ionization. But as opposed to in conventional crystallography, the spatial orientation of the molecule at the time of X-ray exposure is generally unknown. Consequentially, assembling the snapshots to form a three-dimensional representation of the structure of interest is cumbersome, and normally tackled using algorithms to analyze the diffraction patterns. Here we explore the idea that the explosion data can provide useful insights regarding the orientation of ubiquitin, a eukaryotic regulatory protein. Through two series of molecular dynamics simulations totaling 588 unique explosions, we found that a majority of the carbon atoms prevalent in ubiquitin are directionally limited in their respective escape paths. As such we conclude it to be theoretically possible to orient a sample with known structure based on its explosion pattern. Working with an unknown sample, we suggest these discoveries could be applicable in tandem with X-ray diffraction data to optimize image assembly.
27

Spontaneous and stimulated X-ray Raman scattering

Sun, Yu-Ping January 2011 (has links)
The present thesis is devoted to theoretical studies of resonant X-ray scattering and propagation of strong X-ray pulses. In the first part of the thesis the nuclear dynamics of different molecules is studied using resonant X-ray Raman and resonant Auger scattering techniques. We show that the shortening of the scattering duration by the detuning results in a purification of the Raman spectra from overtones and soft vibrational modes. The simulations are in a good agreement with measurements, performed at the MAX-II and the Swiss Light Source with vibrational resolution. We explain why the scattering to the ground state nicely displays the vibrational structure of liquid acetone in contrast to excited final state. Theory of resonant X-ray scattering by liquids is developed. We show that, contrary to aqueous acetone, the environmental broadening in pure liquid acetone is twice smaller than the broadening by soft vibrational modes significantly populated at room temperature. Similar to acetone, the "elastic" band of X-ray Raman spectra of molecular oxygen is strongly affected by the Thomson scattering. The Raman spectrum demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the oxygen atoms separate. It is found that the vibrational scattering anisotropy caused by the interference of the "inelastic" Thomson and resonant scattering channels in O2. A new spin selection rule is established in inelastic X-ray Raman spectra of O2. It is shown that the breakdown of the symmetry selection rule based on the parity of the core hole, as the core hole and excited electron swap parity. Multimode calculations explain the two thresholds of formation of the resonant Auger spectra of the ethene molecule by the double-edge structure of absorption spectrum caused by the out-of- and in-plane modes. We predict the rotational Doppler effect and related broadening of X-ray photoelectron and resonant Auger spectra, which has the same magnitude as its counterpart-the translational Doppler effect. The second part of the thesis explores the interaction of the medium with strong X-ray free-electron laser (XFEL) fields. We perform simulations of nonlinear propagation of femtosecond XFEL pulses in atomic vapors by solving coupled Maxwell's and density matrix equations. We show that self-seeded stimulated X-ray Raman scattering strongly influences the temporal and spectral structure of the XFEL pulse. The generation of Stokes and four-wave mixing fields starts from the seed field created during pulse propagation due to the formation of extensive ringing pattern with long spectral tail. We demonstrate a compression into the attosecond region and a slowdown of the XFEL pulse up to two orders of magnitude. In the course of pulse propagation, the Auger yield is strongly suppressed due to the competitive channel of stimulated emission. We predict a strong X-ray fluorescence from the two-core-hole states of Ne created in the course of the two-photon X-ray absorption. / QC 20110426
28

X-Ray Near-Field Holography: Beyond Idealized Assumptions of the Probe

Hagemann, Johannes 16 August 2017 (has links)
No description available.
29

Dynamics of heterogeneous clusters under intense laser fields

Di Cintio, Pierfrancesco 07 August 2014 (has links)
By means of N-body simulations we study the ion and electron dynamics in molecular first-row hydride clusters when exposed to intense and short X-ray pulses. We find that, for a particular range of X-ray intensities, fast protons are ejected from the system on a considerably shorter time scale than that of the screened core. As a consequence, the structure of heavy atoms is kept intact", which may be relevant in the context of X-ray based molecular imaging. Moreover the final charge states of the heavy ions are considerably lower than those of the ions in pristine atomic clusters exposed to the same laser pulses, which is in agreement with recent measurement of methane cluster at the LCLS in Stanford.
30

Generation of attosecond X-ray pulses in free-electron lasers using electron energy modulation and undulator tapering

Boholm Kylesten, Karl-Fredrik January 2023 (has links)
Free-electron lasers (FELs) are among the world's most intense artificial artificial sources of coherent light and are tunable to various wavelengths, including the X-ray spectrum. X-ray FELs (XFELs) are extremely useful for diffraction experiments to study molecules, materials, and quantum systems. A FEL consists of an electron accelerator and a structure of magnets called an undulator. The undulator has a periodic magnetic field, and when an electron beam passes through the undulator, the Lorentz force forces the electrons to oscillate and emit what is known asspontaneous undulator radiation. Initially, the undulator radiation is spontaneously emitted and incoherent. However, aAs the electrons interact with this initial spontaneous undulator radiation, they change their relative positions and form micro-bunches of electrons. These microbunches are shorter than the undulator radiation wavelength. Hence, the waves emitted by the electrons from the same microbunch arethey become in phase, meaning the radiation is now coherent with the radiation field, and the state of coherence develops. This process is known as self-amplified spontaneous emission (SASE). Due to the coherence, tThe radiation intensity grows exponentially along the undulator, forming several peaks in the radiation pulse known as SASE spikes. One technique for obtaining ultra-short laser pulses is to isolate single SASE spikes by controlling where, along the electron beam, the SASE spikes can grow. This growth limitation is archieved by modulating the electron energies, thus only allowing electrons at specific positions along the electron beam to radiate. In addition, to keep positive interference between undulator radiation from electrons with different energies, the energy modulation must be compensated with a gradient of the magnetic field amplitude of the undulator, so-called tapering. There are plans to implement this technique at one of the beamlines at the European X-ray FEL (EuXFEL) to generate attosecond X-ray pulses and study quantum systems. One goal of the design process is to choose design parameters for the electron beam's modulation amplitude and the undulator's tapering coefficient. These design parameters shall be chosen so that the XFEL will have as short pulse duration as possible while at the same time not getting too low peak power. This thesis aims to study the effect of electron energy modulation and undulator tapering on the SASE and how the modulation amplitude and the tapering coefficient affect the XFEL's peak power and pulse duration. A model was developed to simulate SASE with a modulated electron beam in a tapered undulator. With this model, a parameter scan gave the average peak power and pulse duration as functions of the modulation amplitude and the tapering coefficient. The parameter scan showed that the peak power and the pulse duration decrease as the modulation amplitude and the tapering coefficient increase. Therefore, a trade-off exists between high peak power and short pulse duration. It was possible to exclude sets of the parameters that gave too low peak power or long pulse duration. This study also found an optimum range for the tapering coefficient where the peak power had a local maximum without a significant increase in pulse duration. The physics behind this optimal tapering coefficient is also discussed in connection to the electrons' energy modulation.

Page generated in 0.0496 seconds