• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 10
  • 10
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 53
  • 44
  • 14
  • 14
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulating radiation effects in iron with embedded oxide nanoparticles

Lazauskas, Tomas January 2014 (has links)
Alloys used in fission and in future fusion reactors are subjected to extreme conditions including high temperatures, corrosive and intense radiation environments. Understanding the processes occurring at the microscopic level during radiation events is essential for the further development of them. As a prospective candidate material for new reactors, oxide dispersion strengthened (ODS) steels have shown good radiation resistance and the ability to trap He into fine scale bubbles, thus preventing swelling and preserving high-temperature strength. This thesis represents the findings obtained by performing computational studies of radiation effects in pure iron, Y-Ti-O systems and a simplified model of ODS using Molecular Dynamics (MD) and on-the-fly Kinetic Monte Carlo (otf-KMC) techniques. MD studies of radiation damage were carried out in a perfect body-centred cubic (bcc) iron matrix (alpha-Fe) in which yttria nanoparticles are embedded as a simplified model of an ODS steel. The results have shown how the nanoparticles interact with nearby initiated collision cascades, through cascade blocking and energy absorption. Fe defects accumulate at the interface both directly from the ballistic collisions and also by attraction of defects generated close by. The nanoparticles generally remain intact during a radiation event and release absorbed energy over times longer than the ballistic phase of the collision cascade. Also the nanoparticles have shown ability to attract He atoms as a product of fission and fusion reactions. Moreover, studies showed that He clusters containing up to 4 He atoms are very mobile and clusters containing 5 He or more become stable by pushing an Fe atom out of its lattice position. The radiation damage study in the Y-Ti-O materials showed two types of residual damage behaviour: when the damage is localized in a region, usually close to the initial primary knock-on atom (PKA) position and when PKA is directed in the channelling direction and creates less defects compared to the localised damage case, but with a wider spread. The Y2TiO5 and Y2Ti2O7 systems showed increased recombination of defects with increased temperature, suggesting that the Y-Ti-O systems could have a higher radiation resistance at higher temperatures. The otf-KMC technique was used to estimate the influence of the prefactor in the Arrhenius equation for the long time scale motion of defects in alpha-Fe. It is shown that calculated prefactors vary widely between different defect types and it is thus important to determine these accurately when implementing KMC simulations. The technique was also used to study the recombination and clustering processes of post-cascade defects that occur on the longer time scales.
12

Processamento coloidal de componentes cerâmicos para queimadores de gás / Colloidal processing of ceramic components for gas burners

Santos, Silas Cardoso dos 25 February 2010 (has links)
A ítria vem sendo muito utilizada como material luminescente e estrutural resistente a altas temperaturas, devido às suas excelentes características ópticas e refratárias. No processamento coloidal da ítria, o controle da estabilidade da suspensão consiste em uma importante etapa quando se objetiva produzir componentes reprodutivos, com densidade controlada, microestrutura homogênea e estabilidade estrutural. Desta maneira, os estudos envolvendo o comportamento de superfície, as condições de estabilidade das suspensões e o comportamento frente às condições de conformação (fluxo), fornecem importantes subsídios para controle dos processos na fabricação de componentes cerâmicos para queimadores de gás. Neste sentido, realizaram-se estudos sobre o comportamento de superfície, de estabilidade e reológico de suspensões aquosas de ítria e do concentrado de terras raras contendo ítria a fim de adequá-las para o processo de conformação por impregnação, onde foram testados diferentes materiais orgânicos como matrizes de réplica, para a confecção de membranas porosas para queimadores de gás. Neste estudo foram avaliados os parâmetros como: pH do meio, concentrações de dispersante, sólidos e ligante na estabilidade e no comportamento ao fluxo das suspensões cerâmicas, e também os aspectos dos distintos materiais orgânicos selecionados como matrizes de réplica para impregnação com as suspensões cerâmicas otimizadas. Os resultados obtidos indicam que se pode confeccionar membranas cerâmicas porosas pelo método de réplica a partir das suspensões aquosas de ítria e do concentrado de terras raras contendo ítria, utilizando-se pH alcalino, polieletrólito aniônico e uma tela mista de nylon-algodão como matriz de réplica. / Yttria has been used very much as luminescent and high temperature material due to its excellent optical and refractory characteristics. In yttria colloidal processing, the control of the stability of suspension is an important step in the fabrication of reproducible products with controlled density, homogeneous microstructure and structural stability. So, the studies concerning surface behavior, stability conditions of the suspensions and the behavior under conformation conditions (flow), give important information for the control of fabrication process of ceramic components for gas burners. In this way, studies concerning surface behavior, stability and rheology of aqueous suspensions of yttria and rare earth concentrate containing yttria were carried out, in order to adequate them for impregnation method, where different organic materials were tested as replica matrix to fabricate porous membranes for gas burners. In this study, the effect of some parameters as pH and concentrations of dispersant, solids and binder on stability and flow behavior of ceramic suspensions were evaluated, and also, different kinds of organic materials selected as replica matrix for impregnation method using optimized ceramic suspensions. The results show that porous ceramics membranes can be produced by replica using yttria and rare earth concentrate containing yttria, using alkaline pH, anionic polyelectrolyte and a nylon-cotton cloth as replica matrix.
13

Zero-direct-carbon-emission aluminum production by solid oxide membrane-based electrolysis process

Su, Shizhao 21 June 2016 (has links)
The traditional aluminum production process (Hall-Héroult process) involves electrolyzing the alumina dissolved in the molten cryolite salt. This process is energy intensive and emits massive amounts of CO2 and other greenhouse gases. The market demand of aluminum and the environmental impact of the current aluminum production process justify research and development of alternative electrolytic processes for aluminum production that can both reduce the cost and eliminate adverse environment impacts. Solid oxide membrane (SOM) based electrolysis process is an innovative technology that has been demonstrated to successfully produce many energy-intensive metals directly from their oxides in an efficient, economical and environmentally sound way. During the SOM electrolysis process, an oxygen-ion-conducting SOM tube made of ytteria-stabilized zirconia (YSZ) separates the pre-selected molten flux with dissolved metal oxide from the inert anode assembly inside the YSZ tube. When the applied DC potential between the cathode and the anode exceeds the dissociation potential of desired metal oxide, the metal is reduced at the cathode while oxygen ions migrate through the YSZ membrane and are oxidized at the anode. Employing the inert anode allows the oxygen to be collected at the anode as a value added byproduct. In this work, a zero-direct-carbon-emission aluminum production process utilizing SOM electrolysis is presented. The molten flux used in the electrolysis process is optimized through careful measurements of its physio-chemical properties. The liquidus temperature, volatilization rate, alumina solubility, aluminum solubility, YSZ membrane degradation rate and electrical conductivity of various flux compositions were measured, and the flux chosen for SOM electrolysis was a eutectic MgF2-CaF2 system containing optimized amounts of YF3, CaO and Al2O3. Laboratory scale SOM electrolysis employing the inert anode were performed at 1100 ~ 1200oC to demonstrate the feasibility of producing and collecting aluminum while producing pure oxygen as a byproduct. The aluminum product was characterized by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). An equivalent circuit model for the electrolysis process was developed in order to identify the polarization losses in the SOM electrolysis cell. / 2016-12-21T00:00:00Z
14

Processamento coloidal de componentes cerâmicos para queimadores de gás / Colloidal processing of ceramic components for gas burners

Silas Cardoso dos Santos 25 February 2010 (has links)
A ítria vem sendo muito utilizada como material luminescente e estrutural resistente a altas temperaturas, devido às suas excelentes características ópticas e refratárias. No processamento coloidal da ítria, o controle da estabilidade da suspensão consiste em uma importante etapa quando se objetiva produzir componentes reprodutivos, com densidade controlada, microestrutura homogênea e estabilidade estrutural. Desta maneira, os estudos envolvendo o comportamento de superfície, as condições de estabilidade das suspensões e o comportamento frente às condições de conformação (fluxo), fornecem importantes subsídios para controle dos processos na fabricação de componentes cerâmicos para queimadores de gás. Neste sentido, realizaram-se estudos sobre o comportamento de superfície, de estabilidade e reológico de suspensões aquosas de ítria e do concentrado de terras raras contendo ítria a fim de adequá-las para o processo de conformação por impregnação, onde foram testados diferentes materiais orgânicos como matrizes de réplica, para a confecção de membranas porosas para queimadores de gás. Neste estudo foram avaliados os parâmetros como: pH do meio, concentrações de dispersante, sólidos e ligante na estabilidade e no comportamento ao fluxo das suspensões cerâmicas, e também os aspectos dos distintos materiais orgânicos selecionados como matrizes de réplica para impregnação com as suspensões cerâmicas otimizadas. Os resultados obtidos indicam que se pode confeccionar membranas cerâmicas porosas pelo método de réplica a partir das suspensões aquosas de ítria e do concentrado de terras raras contendo ítria, utilizando-se pH alcalino, polieletrólito aniônico e uma tela mista de nylon-algodão como matriz de réplica. / Yttria has been used very much as luminescent and high temperature material due to its excellent optical and refractory characteristics. In yttria colloidal processing, the control of the stability of suspension is an important step in the fabrication of reproducible products with controlled density, homogeneous microstructure and structural stability. So, the studies concerning surface behavior, stability conditions of the suspensions and the behavior under conformation conditions (flow), give important information for the control of fabrication process of ceramic components for gas burners. In this way, studies concerning surface behavior, stability and rheology of aqueous suspensions of yttria and rare earth concentrate containing yttria were carried out, in order to adequate them for impregnation method, where different organic materials were tested as replica matrix to fabricate porous membranes for gas burners. In this study, the effect of some parameters as pH and concentrations of dispersant, solids and binder on stability and flow behavior of ceramic suspensions were evaluated, and also, different kinds of organic materials selected as replica matrix for impregnation method using optimized ceramic suspensions. The results show that porous ceramics membranes can be produced by replica using yttria and rare earth concentrate containing yttria, using alkaline pH, anionic polyelectrolyte and a nylon-cotton cloth as replica matrix.
15

Computer simulation studies of fastion yttria-stabilised cubic zirconia

Chaba, Pudumo Jimmy January 1999 (has links)
Thesis (M. Sc) --University of Limpopo, 1999 / refer to ducument
16

Electrochemical Promotion of Gold Nanoparticles Supported on Yttria-Stabilized Zirconia

Kim, Jong Min 23 November 2011 (has links)
The feasibility of highly dispersed gold nanocatalyst supported on yttria-stabilized zirconia (YSZ) for the model reactions of C2H4 and CO oxidation is demonstrated for the first time. Gold nanoparticles are synthesized on YSZ powder by chemical reduction of the precursor salt in the mixture of ethanol, water and polyvinylpyrrolidone (PVP). Resulting metal loading of the catalysts are 1 wt.% with average particle sizes ranging from 6 to 9 nm. Results of CO and C2H4 oxidation display catalytic activity at 65 0C and 25 0C for CO and C2H4 oxidation, respectively. The catalytic properties of the catalysts are different due to their average particle size. Electrochemical Promotion of Catalysis (EPOC) of C2H4 oxidation is demonstrated. Application of constant potential difference between two electrodes in the bipolar electrochemical cell led to increase in C2H4 conversion. A proposed mechanism explains the bipolar EPOC phenomenon through formation of O2- flux across the electrochemical cell, resulting in the change of Work Function of gold nanoparticles placed in between the electrodes and is electronically isolated.
17

Electrochemical Promotion of Gold Nanoparticles Supported on Yttria-Stabilized Zirconia

Kim, Jong Min 23 November 2011 (has links)
The feasibility of highly dispersed gold nanocatalyst supported on yttria-stabilized zirconia (YSZ) for the model reactions of C2H4 and CO oxidation is demonstrated for the first time. Gold nanoparticles are synthesized on YSZ powder by chemical reduction of the precursor salt in the mixture of ethanol, water and polyvinylpyrrolidone (PVP). Resulting metal loading of the catalysts are 1 wt.% with average particle sizes ranging from 6 to 9 nm. Results of CO and C2H4 oxidation display catalytic activity at 65 0C and 25 0C for CO and C2H4 oxidation, respectively. The catalytic properties of the catalysts are different due to their average particle size. Electrochemical Promotion of Catalysis (EPOC) of C2H4 oxidation is demonstrated. Application of constant potential difference between two electrodes in the bipolar electrochemical cell led to increase in C2H4 conversion. A proposed mechanism explains the bipolar EPOC phenomenon through formation of O2- flux across the electrochemical cell, resulting in the change of Work Function of gold nanoparticles placed in between the electrodes and is electronically isolated.
18

Establishment of Relationships between Coating Microstructure and Thermal Conductivity in Thermal Barrier Coatings by Finite Element Modelling

Gupta, Mohit January 2010 (has links)
Plasma sprayed Thermal Barrier Coating systems (TBCs) are commonly used for thermal protection of components in modern gas turbine application such as power generation, marine and aero engines. The material that is most commonly used in these applications is Yttria Partially Stabilized Zirconia (YPSZ) because of this ceramic’s favourable properties, such as low thermal conductivity, phase stability to high temperature, and good erosion resistance. The coating microstructures in YPSZ coatings are highly heterogeneous, consisting of defects such as pores and cracks of different sizes which determine the coating’s final thermal and mechanical properties, and the service lives of the coatings. Determination of quantitative microstructure–property correlations is of great interest as experimental procedures are time consuming and expensive. Significant attention has been given to this field, especially in last fifteen years. The usual approach for modelling was to describe various microstructural features in some way, so as to determine their influence on the overall thermal conductivity of the coating. As the analytical models over-simplified the description of the defects, various numerical models were developed which incorporated real microstructure images.This thesis work describes two modelling approaches to further investigate the relationships between microstructure and thermal conductivity of TBCs. The first modelling approach uses a combination of a statistical model and a finite element model which could be used to evaluate and verify the relationship between microstructural defects and thermal conductivity. The second modelling approach uses the same finite element model along with a coating morphology generator, and can be used to design low thermal conductivity TBCs. A tentative verification of both the approaches has been done in this work.
19

Effet de l'humidité du gaz vecteur et de l'assistance UV dans le procédé aérosol CVD pour l'élaboration de couches mines fluorescentes dopées terre rare

Salhi, Rached 19 July 2011 (has links) (PDF)
Le développement de couches minces dopées terres rares a suscité un regain d'intérêt au cours des dernières années. Dans ce mémoire nous présentons l'élaboration des couches minces d'yttria (Y2O3), d'alumine (Al2O3) et les couches mixtes Y2O3-Al2O3 dopées erbium. La technique utilisée est le procédé de dépôt chimique en phase vapeur à partir de précurseurs organométallique (MOCVD) assisté par aérosol. Un dispositif d'irradiation UV est appliqué afin d'assister le processus de réaction avec une modification de l'hygrométrie de l'air vecteur. Les meilleures propriétés sont obtenues pour les couches déposées sous une forte humidité de l'air vecteur et avec l'assistance UV. Dans ces conditions les couches d'yttria présentent une faible vitesse de croissance, une faible contamination organique et une bonne cristallinité dans la phase cubique de l'yttria. Plusieurs phénomènes d'Up-conversion ont été mis en évidence dans les spectres de fluorescence visible de l'erbium dans l'yttria. Une durée de vie du niveau 4I13/2 de l'erbium de 3.07 ms a été mesurée pour ce matériau après recuit à 800°C. Cette valeur est supérieure à celle obtenue pour l'échantillon déposé sous une faible humidité de l'air et sans l'assistance UV après recuit à 1000°C. Les couches d'alumine déposées dans les conditions optimales présentent des vitesses de croissance élevées et se caractérisent par une grande stabilité thermique, permettant l'élimination complète des impuretés tout en restant amorphe. Enfin, l'étude du système Y2O3-Al2O3 montre que les conditions de dépôt jouent un rôle important sur la composition et les propriétés physico-chimiques des dépôts.
20

Synthesis & characterization of yttria stabilised zirconia (YSZ) hollow fibre support for Pd based membrane

Tshamano Matamela Bridget January 2013 (has links)
Inorganic based membranes which have a symmetric/asymmetric structure have been produced using an immersion induced phase inversion and sintering method. An organic binder solution (dope) containing yttria-stabilised zirconium (YSZ) particles is spun through a triple orifice spinneret to form a hollow fibre precursor, which is then sintered at elevated temperatures to form a ceramic support. The phase inversion process for the formation of hollow fibre membranes was studied in order to produce the best morphological structure/support for palladium based membranes. The spinning parameters, particle size, non-solvent concentration, internal coagulant as well as the calcination temperature were investigated in order to determine the optimum values. Sintering temperature was also investigated, which would yield a sponge-like structure with an optimized permeability, while retaining a smooth outer surface. The supports produced by phase inversion were characterized in terms of dimension by mercury porosimetry, compressed air permeability, Surface Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The morphology of the produced ceramic support showed either dense or porous characteristics governed by the dynamics of the phase inversion process. The particle size of YSZ was examined in order to decrease the amount of agglomerates in the spinning suspension. Zetasizer tests indicated that at 15 minutes, the ultrasonic bath effectively homogenised the YSZ particles and prohibited soft agglomerates from reforming in the spinning suspension. In this study, an increase in air gap had no noticeable effect on the finger like voids but it had a considerable effect on both the inner diameter (ID) and outer diameter (OD) of the green fibres, while an increase in bore liquid flow rate and extrusion pressure promoted viscous fingering and significant effect on the ID and OD of the fibres, respectively. There was a decrease in porosity and permeability with increasing sintering temperature, addition of water concentration in the spinning suspension and varying Nmethylpyrrolidone (NMP) aqueous solution of the internal coagulant. The amount of YSZ added to the starting suspension influenced the properties of the support structure. Viscous deformation was observed for dope with lower particle loading thus resulted in the formation of cracks and defects during sintering. / >Magister Scientiae - MSc

Page generated in 0.0386 seconds