• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 17
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 53
  • 18
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

Diaz, Edwin Hernandez 06 1900 (has links)
Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.
12

Inverse modelling to forecast enclosure fire dynamics

Jahn, Wolfram January 2010 (has links)
Despite advances in the understanding of fire dynamics over the past decades and despite the advances in computational capacity, our ability to predict the behaviour of fires in general and building fires in particular remains very limited. This thesis proposes and studies a method to use measurements of the real event in order to steer and accelerate fire simulations. This technology aims at providing forecasts of the fire development with a positive lead time, i.e. the forecast of future events is ready before those events take place. A simplified fire spread model is implemented, and sensor data are assimilated into the model in order to estimate the parameters that characterize the spread model and thus recover information lost by approximations. The assimilation process is posed as an inverse problem, which is solved minimizing a non linear cost function that measures the distance between sensor data and the forward model. In order to accelerate the optimization procedure, the ‘tangent linear model’ is implemented, i.e. the forward model is linearized around the initial guess of the governing parameters that are to be estimated, thus approximating the cost function by a quadratic function. The methodology was tested first with a simple two-zone forward model, and then with a coarse grid Computational Fluid Dynamics (CFD) fire model as forward model. Observations for the inverse modelling were generated using a fine grid CFD simulation in order to illustrate the methodology. A test case with observations from a real scale fire test is presented at the end of this document. In the two-zone model approach the spread rate, entrainment coefficient and gas transport time are the governing invariant parameters that are estimated. The parameters could be estimated correctly and the temperature and the height of the hot layer were reproduced satisfactorily. Moreover, the heat release rate and growth rate were estimated correctly with a positive lead time of up to 30 s. The results showed that the simple mass and heat balances and plume correlation of the zone model were enough to satisfactorily forecast the main features of the fire, and that positive lead times are possible. With the CFD forward model the growth rate, fuel mass loss rate and other parameters of a fire were estimated by assimilating measurements from the fire into the model. It was shown that with a field type forward model it is possible to estimate the growth rates of several different spread rates simultaneously. A coarse grid CFD model with very short computation times was used to assimilate measurements and it was shown that spatially resolved forecasts can be obtained in reasonable time, when combined with observations from the fire. The assimilation of observations from a real scale fire test into a coarse grid CFD model showed that the estimation of a fire growth parameter is possible in complicated scenarios in reasonable time, and that the resulting forecasts at localized level present good levels of accuracy. The proposed methodology is still subject to ongoing research. The limited capability of the forward model to represent the true fire has to be addressed with more detail, and the additional information that has to be provided in order to run the simulations has to be investigated. When using a CFD type forward model, additional to the detailed geometry, it is necessary to establish the location of the fire origin and the potential fuel load before starting the assimilation cycle. While the fire origin can be located easily (as a first approximation the location of the highest temperature reading can be used), the fuel load is potentially very variable and its exact distribution might be impractical to continually keep track of. It was however shown that for relatively small compartments the exact fuel distribution is not essential in order to produce an adequate forecast, and the fuel load could for example be established based on a statistical analysis of typical compartment layouts.
13

Numerical Study on Cohesive Zone Elements for Static and Time Dependent Damage and its Application in Pipeline Failure Analysis

January 2016 (has links)
abstract: Cohesive zone model is one of the most widely used model for fracture analysis, but still remains open ended field for research. The earlier works using the cohesive zone model and Extended finite element analysis (XFEM) have been briefly introduced followed by an elaborate elucidation of the same concepts. Cohesive zone model in conjugation with XFEM is used for analysis in static condition in order to check its applicability in failure analysis. A real time setup of pipeline failure due to impingement is analyzed along with a detailed parametric study to understand the influence of the prominent design variable. After verifying its good applicability, a creep model is built for analysis where the cohesive zone model with XFEM is used for a time dependent creep loading. The challenge in this simulation was to achieve coupled behavior of cracks initiation and propagation along with creep loading. By using Design of Experiment, the results from numerical simulation were used to build an equation for life prediction for creep loading condition. The work was further extended to account for fatigue damage accumulation for high cycle fatigue loading in cohesive elements. A model was conceived to account for damage due to fatigue loading along within cohesive zone model for cohesive elements in ABAQUS simulation software. The model was verified by comparing numerical modelling of Double cantilever beam under high cycle fatigue loading and experiment results from literature. The model was also applied to a major industrial problem of blistering in Cured-In-Plane liner pipelines and a demonstration of its failure is shown. In conclusion, various models built on cohesive zone to address static and time dependent loading with real time scenarios and future scope of work in this field is discussed. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
14

Efeito de escala no crescimento de trincas por fadiga em materiais quase-frágeis / Size effect on fatigue crack growth in quase-brittle materials

Cayro, Evandro Esteban Pandia January 2016 (has links)
No trabalho estuda-se o crescimento de trincas em carga monotônica e cíclica nos casos de materiais quase-frágeis, introduzindo uma lei de dano cíclico. Revisam-se conceitos sobre modelos coesivos, leis de carga-descarga, leis de evolução de dano e efeito de escala. É seguido o modelo coesivo irreversível proposto por Wang e Siegmund (2006). Em particular se dá ênfase aos efeitos de escala não estatísticos. O modelo de zona coesiva irreversível apresenta uma formulação de dano e considera carregamento em fadiga. Quando o tamanho estrutural é reduzido (ou as trinca se extendem), a fratura por fadiga não mais ocorre por propagação de trinca, mas sim por uma decoesão uniforme. O objetivo desde trabalho é implementar este modelo e verificar sua potencialidade na captura de efeitos de escala, comparando com experimentos e dados disponíveis na literatura. / At present work is intended to study crack growth in cyclic and monotonic loading in the case of quasi-brittle materials, introducing a damage mechanism, is reviewed concepts of cohesive models, loading-unloading laws, damage evolution laws and effect of scale. The irreversible cohesive zone model proposed by Wang e Siegmund (2006) is followed. In particular emphasizes in the not statistical size effects. The irreversible cohesive zone model, presents a damage formulation and considers fatigue loading. It is demonstrated in this study that, when the structure size is reduced (or extend cracks), the fatigue fracture no longer occurs by crack propagation, then occurs by uniform decohesion . The objetive of this work is implementing this model and verify its capability to capture the scale effect compared with experiments and data available in literature.
15

Multiple-Scale Numerical Analysis of Composites Based on Augmented Finite Element Method

Zhou, Zhiqiang 21 July 2010 (has links)
Advanced composites are playing a rapidly increasing role in all fields of material and structural related engineering practices. Damage tolerance analysis must be a critical integral part of composite structural design. The predictive capabilities of existing models have met with limited success because they typically can not account for multiple damage evolution and their coupling. As a result, current composite design is heavily dependent upon lengthy and costly test programs and empirical design methods. There is an urgent need for efficient numerical tools that are capable of analyzing the progressive failure caused by nonlinearly coupled, multiple damage evolution in composite materials. Such numerical tools are a necessity in achieving virtual testing of composites and other heterogeneous materials. In this thesis, an advanced finite element method named augmented finite element method (A-FEM) has been developed. This method is capable of incorporating nonlinear cohesive damage descriptions for major damage modes observed in composite materials. It also allows for arbitrary nucleation and propagation of such cohesive damages upon satisfactory of prescribed initiation and propagation criterion. Major advantages of the A-FEM include: 1) arbitrary cohesive cracking without the need of remeshing; 2) full compatibility with existing FEM packages; and 3) easy inclusion of intra-element material heterogeneity. The numerical capabilities of the A-FEM have been demonstrated through direct comparisons between prediction results and experimental observations of typical composite tests including 3-point bending of unidirectional laminates, open-hole tension of quasi-isotropic laminates, and double-notched tension of orthogonal laminates. In all these tests, A-FEM can predict not only the qualitative damage patterns but also quantitatively the nonlinear stress-strain curves and other history-dependent results. The excellent numerical capability of A-FEM in accurately accounting for multiple cracking in composites enables the use of A-FEM as a multi-scale numerical platform for virtual testing of composites. This has been demonstrated by a series of representative volume element (RVE) analyses which explicitly considered microscopic matrix cracking and fiber matrix interface debonding. In these cases the A-FEM successfully predicted the cohesive failure descriptions which can be used for macroscopic composite failure analyses. At the sublaminate scale, the problem of a transverse tunneling crack and its induced local delamination has been studied in detail. Two major coupling modes, which depends on the mode-I to mode-II fracture toughness ratio and cohesive strength values, has been revealed and their implications in composite engineering has been fully discussed. Finally, future improvements to the A-FEM so that it can be more powerful in serving as a numerical platform for virtual testing of composites are discussed.
16

Fracture and delamination of elastic thin films on compliant substrates : modeling and simulations

Mei, Haixia 21 October 2011 (has links)
Different fracture modes have been observed in thin film structures. One common approach used in fracture analysis is based on the principle of linear elastic fracture mechanics (LEFM), which assumes pre-existing cracks and treats the materials as linear elastic except for the damage zone around the crack tip. Alternatively, a nonlinear cohesive zone model (CZM) can be used to simulate both nucleation and growth of cracks. In this dissertation, the approaches of LEFM and CZM are employed to study fracture and delamination of elastic thin films on compliant substrates under various loading conditions. First, compression-induced buckling of elastic thin films on elastic compliant substrates is studied by analytical and numerical methods. The critical condition for onset of buckling instability without and with a pre-existing delamination crack is predicted. By comparing the critical strains, a map for the initial buckling modes is constructed with respect to the film/substrate stiffness ratio and the interfacial defect size. For an elastic film on a highly compliant substrate, nonlinear post-buckling analysis is conducted to simulate concomitant wrinkling and buckle-delamination, with a long-range interaction between the two buckling modes through the compliant substrate. By using a layer of cohesive elements for the interface, progressive co-evolution of wrinkling and delamination is simulated. In particular, the effects of interfacial properties (strength and toughness) on the initiation and propagation of wrinkle-induced interfacial delamination are examined. Next, using a set of finite element models, the effects of interfacial delamination and substrate penetration on channel cracking of brittle thin films are analyzed. It is found that, depending on the elastic mismatch and the toughness of interface and substrate, a channel crack may grow with interfacial delamination and/or substrate cracking. By comparing the effective energy release rates, the competition between the two fracture modes is discussed. Cohesive zone modeling is then employed to simulate nucleation and growth of delamination and penetration from the root of a channel crack. By comparing the results from the approaches of LEFM and CZM, the characteristic fracture resistance from small-scale bridging to large-scale bridging is identified. Finally, to determine the nonlinear traction-separation relation for cohesive zone modeling of a bimaterial interface, a hybrid approach is developed by combining experimental measurements and finite element simulations. In particular, both analytical and numerical models for wedge-loaded double cantilever beam specimens are developed. A two-step fitting procedure is proposed to determine the interface toughness and strength based on the measurements of the steady-state crack length and the local crack opening displacements. / text
17

Methods to determine spatial variations of herbicide and estrogen sorption coefficients in undulating to hummocky terrains for pesticide fate modeling at the large scale

Singh, Baljeet January 2014 (has links)
To reduce the uncertainty associated with pesticide fate model predictions on the large scale, a rapid method is needed that can generate sorption coefficients (Kd values) with sufficient spatial detail. The feasibility of near-infrared spectroscopy (NIRS) to act as such a method was examined, using weak-acidic (2,4-D), weak-basic (atrazine) and zwitterion (glyphosate) herbicides and the natural steroid estrogen (17β-estradiol). A total of 609 horizons in 140 soil profiles were collected in agricultural fields near Brandon, Manitoba and near Saskatoon, Saskatchewan. In both agricultural fields, Kd values in horizons generally increased in the order of 2,4-D < atrazine < 17β-estradiol < glyphosate. Soil organic carbon content (SOC) followed by the soil pH were the major factors controlling the sorption of 2,4-D, atrazine and 17β-estradiol but glyphosate showed very strong sorption to soil particles regardless of measured SOC and soil pH values. For the chemicals studied, Kd values decreased from A to C horizons regardless of the segment of the slope from which the soil samples were collected, with the exception of glyphosate that showed relatively large Kd values in B-horizons illuviated with clay. Both the Zeiss Corona and the Foss 6500 spectrophotometers produced significantly strong predictive models for soil properties and Kd values of 2,4-D, atrazine and 17β-estradiol. However, models for glyphosate Kd values were weak or not significant. Using a test set approach and either soil spectral or soil properties data as independent variables, partial least squares regressions were successfully developed to estimate Kd values for use in the Pesticide Root Zone Model (PRZM) to calculate the herbicide mass leached. The study concluded that the added benefit of NIRS will be most useful if the pesticides under study have small sorption potentials and short half-lives in soil. Regional approaches to predicting Kd values from NIRS spectral data can also be developed if the calibration model is derived by combining a set of fields where each has a similar statistical population characteristic in Kd values. / February 2016
18

Investigation of CO2 Tracer Gas-Based Calibration of Multi-Zone Airflow Models

January 2011 (has links)
abstract: The modeling and simulation of airflow dynamics in buildings has many applications including indoor air quality and ventilation analysis, contaminant dispersion prediction, and the calculation of personal occupant exposure. Multi-zone airflow model software programs provide such capabilities in a manner that is practical for whole building analysis. This research addresses the need for calibration methodologies to improve the prediction accuracy of multi-zone software programs. Of particular interest is accurate modeling of airflow dynamics in response to extraordinary events, i.e. chemical and biological attacks. This research developed and explored a candidate calibration methodology which utilizes tracer gas (e.g., CO2) data. A key concept behind this research was that calibration of airflow models is a highly over-parameterized problem and that some form of model reduction is imperative. Model reduction was achieved by proposing the concept of macro-zones, i.e. groups of rooms that can be combined into one zone for the purposes of predicting or studying dynamic airflow behavior under different types of stimuli. The proposed calibration methodology consists of five steps: (i) develop a "somewhat" realistic or partially calibrated multi-zone model of a building so that the subsequent steps yield meaningful results, (ii) perform an airflow-based sensitivity analysis to determine influential system drivers, (iii) perform a tracer gas-based sensitivity analysis to identify macro-zones for model reduction, (iv) release CO2 in the building and measure tracer gas concentrations in at least one room within each macro-zone (some replication in other rooms is highly desirable) and use these measurements to further calibrate aggregate flow parameters of macro-zone flow elements so as to improve the model fit, and (v) evaluate model adequacy of the updated model based on some metric. The proposed methodology was first evaluated with a synthetic building and subsequently refined using actual measured airflows and CO2 concentrations for a real building. The airflow dynamics of the buildings analyzed were found to be dominated by the HVAC system. In such buildings, rectifying differences between measured and predicted tracer gas behavior should focus on factors impacting room air change rates first and flow parameter assumptions between zones second. / Dissertation/Thesis / M.S. Built Environment 2011
19

Mécanismes et modélisations de dégradation et décollement des interfaces de couches de chaussées / Damage interface and debonding modeling in multilayered asphalt pavements

Ktari, Rahma 22 June 2016 (has links)
Si, pour les matériaux composites élaborés, de nombreuses études expérimentales ainsi que des modèles locaux de comportement ont été développés, la maîtrise du comportement des interfaces entre couches de surface ou d’assise de chaussées est actuellement un réel verrou scientifique. La méthode de dimensionnement française actuelle ne prend en compte, aux interfaces, que des conditions conventionnelles de collage ou de glissement parfait. Afin d’appréhender le comportement local de l’interphase\interface, les outils de la photomécanique apparaissent incontournables. La présente thèse propose une modélisation de l’interface rugueuse et endommageable par un modèle de zone cohésive en mode mixte. Ce manuscrit de thèse comporte trois chapitres. D’abord, le chapitre I présente un état de l’art sur les interfaces dans les matériaux et les structures et en particulier dans les couches de chaussées. Ensuite dans le chapitre II, une identification expérimentale des paramètres mécaniques et géométriques du modèle d’interface est proposée à travers des essais de traction et de cisaillement et des mesures de la texture (PMT et projections de franges). Les résultats obtenus (adhésion, rugosité,…) seront les paramètres d’entrée d’un modèle d’endommagement d’interface. Enfin, le chapitre III aborde la modélisation des interfaces entre couches de chaussées sous l’angle des modèles de zones cohésives avec la prise en compte de la rugosité géométrique. A l’issu de cette étude, une loi est proposée permettant de prendre en compte l’effet de la rugosité à une échelle locale dans une interface lisse équivalente à l’échelle globale. / Interface between bituminous layers is an important parameter for the pavement computational design.New pathologies in pavement structure require today rational methods taking into account theinterfaces behavior. Due to these concerns, the current study is based on a damage cohesive zonemodel (CZM) in mixed mode of the rough interfaces. The model was initially proposed by Allix-Ladevèze. This thesis presents a comprehensive interface modeling including delay effect, based ondamage energy release rate. The process of the present study is presented in three chapters. The firstchapter present the stat of art of interfaces. The second devoted to identify the parameters of theinterface model and material properties through advanced optical method as Digital Image Correlation(DIC) and (H-DIC). In the third chapter, a study of the influence of the elastic normal and tangentialstiffness and coupling parameters in the mixed mode on the debonding interfacial energy is presented.An analytical model provides relations between the interfaces stiffness, the coupling parameter of theCZM and the interfacial roughness. Then, a parametric numerical analysis is conducted to study theroughness effect on the interface constitutive law. Results show clearly the roughness influence in thiskind of structures. The damage behaviours predicted by the proposed model for pure mode I, puremode II and for mixed mode with taking into account of roughness are found in good agreement withexperimental results.
20

Efeito de escala no crescimento de trincas por fadiga em materiais quase-frágeis / Size effect on fatigue crack growth in quase-brittle materials

Cayro, Evandro Esteban Pandia January 2016 (has links)
No trabalho estuda-se o crescimento de trincas em carga monotônica e cíclica nos casos de materiais quase-frágeis, introduzindo uma lei de dano cíclico. Revisam-se conceitos sobre modelos coesivos, leis de carga-descarga, leis de evolução de dano e efeito de escala. É seguido o modelo coesivo irreversível proposto por Wang e Siegmund (2006). Em particular se dá ênfase aos efeitos de escala não estatísticos. O modelo de zona coesiva irreversível apresenta uma formulação de dano e considera carregamento em fadiga. Quando o tamanho estrutural é reduzido (ou as trinca se extendem), a fratura por fadiga não mais ocorre por propagação de trinca, mas sim por uma decoesão uniforme. O objetivo desde trabalho é implementar este modelo e verificar sua potencialidade na captura de efeitos de escala, comparando com experimentos e dados disponíveis na literatura. / At present work is intended to study crack growth in cyclic and monotonic loading in the case of quasi-brittle materials, introducing a damage mechanism, is reviewed concepts of cohesive models, loading-unloading laws, damage evolution laws and effect of scale. The irreversible cohesive zone model proposed by Wang e Siegmund (2006) is followed. In particular emphasizes in the not statistical size effects. The irreversible cohesive zone model, presents a damage formulation and considers fatigue loading. It is demonstrated in this study that, when the structure size is reduced (or extend cracks), the fatigue fracture no longer occurs by crack propagation, then occurs by uniform decohesion . The objetive of this work is implementing this model and verify its capability to capture the scale effect compared with experiments and data available in literature.

Page generated in 0.0521 seconds