11 |
Maximizing propylene selectivity while minimizing dry gas yield in FCC unit through post synthetic modifications of nano ZSM-5Alnaimi, Essa January 2017 (has links)
This research explored different catalytic cracking zeolite additives to improve propylene selectivity and minimize dry gas yield. A comprehensive study of the effect of zeolite structure, pore system and crystal size on maximizing propylene production in FCC unit and the effect of post synthetic modifications on the physicochemical properties and cracking activity of ZSM-5 was investigated using X-ray diffraction (XRD), pyridine adsorption fourier transform infra-red (FTIR), 27Al and 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) and the catalytic cracking using n-heptane, as a model compound for heavy naphtha. The catalytic performances of these additives were evaluated in a fixed-bed reactor unit using n-heptane as a model compound for naphtha at temperatures 450 - 500 oC and W/F 38 - 92 gcat.h/mol. A range of zeolites were tested with ZSM-5 showing the optimum results at high feed conversion. Further studies on ZSM-5 crystal size illustrated that nano ZSM-5 (300 nm) was superior compared to the regular ZSM-5 (2000 - 4000 nm) in achieved conversion level and propylene selectivity. These improvements were attributed to the shorter path lengths for the reactant reducing diffusion constraints significantly. Modifying nano ZSM-5 acidity using steaming, acid leaching and silanation showed significant improvement over nano ZSM-5 parent. Mild steaming of nano ZSM-5 improved both n-heptane conversion and propylene selectivity whilst severe steaming only improved propylene selectivity. This work attempted to address the often discussed catalytic activity enhancement from mild steaming and identified newly created moderate acid sites as the source of increased activity. Dealumination by acid leaching decreased the total aluminium content of nano ZSM-5 and changed the Brønsted/Lewis ratio. Increasing the B/L ratio, increased the conversion and propylene selectivity. In addition, this research focussed for the first time on the silanation of nano ZSM-5 and its effect on n-heptane cracking, in particular, propylene and dry gas selectivity. Silica was deposited on the external surface of nano ZSM-5 neutralising the acidic sites and as a result, dry gas yield was significantly decreased due to the elimination of non-selective cracking. However, the trade off with conversion was high.
|
12 |
Product distribution directed modification of ZSM-5 / Maretha FourieFourie, Maretha January 2012 (has links)
Ethylene and propylene are important chemical feedstocks for the production of polyethylene and polypropylene. Ethylene and propylene can be produced by various methods including steam cracking of liquefied natural gas (LNG), naphta or light olefin fractions. The methanol to olefin (MTO) process provides an alternative means of producing ethylene and propylene, where ZSM-5 is frequently used as catalyst due to its hydrophobicity, strong acidity, molecular sieve properties and low tendency towards coking, which makes ZSM-5 one the most popular zeolite catalysts in the industry. The oil crisis 1973 and the second oil crisis in 1978 caused the development of a commercial MTO process. Mobil Research and Development Corporation built a fixed-bed pilot plant to demonstrate the feasibility of the MTO as well as methanol-to-gasoline (MTG) process. When the oil price dropped again during the 1980’s, further developments of commercial processes were stopped for the time being. However, investigations on a bench scale are still pursued, and applications for patents are still submitted.
During this study ZSM-5 was synthesized with a hydrothermal method, which produced agglomerated polycrystalline grains with characteristic ZSM-5 morphology and a Si/Al ratio of approximately 40. The synthesis time, synthesis temperature and aging time were varied while keeping all the other synthesis parameters constant in order to determine their influence on crystallite size. The synthesis time was varied between 12-72 hours, synthesis temperature was varied between 130-170°C and aging time between 30-90 minutes. Using SEM to determine crystal size, it was found that a variation in the aging time produced the largest crystallites (average of 21.6μm ± 10.8μm) while also having the largest influence on crystallite size followed by synthesis temperature (average of 13.1μm ± 4.9μm) and finally synthesis time (average of 5.7μm ± 0.4μm). In all cases XRD and SEM confirmed the formation of ZSM-5.
To evaluate the as-synthesized ZSM-5 and compare it to a commercial ZSM-5 catalyst, Catalyst A using the MTO process, ZSM-5 was synthesized for 72 hours at 170°C with an aging time of 60 minutes before synthesis. The as-synthesized as well as Catalyst A’s agglomerated polycrystalline grains were sieved into three size fractions: smaller than 75μm, 75-150μm and 150-300μm. All six ZSM-5 fractions of ZSM-5 were used as catalysts for the MTO process in a fixed bed reactor at 400°C, atmospheric pressure and a 20wt% methanol to water feed. At 3.5 hours time on stream (TOS), the intermediate 75-150μm fraction had the highest light olefin selectivity for both the as-synthesized as well as Catalyst A, followed by the 150-300μm fraction and finally the smaller than 75μm fraction with the lowest light olefin selectivity. From this results it is clear that the as-synthesised ZSM-5 did not perform as well as Catalyst A.
While the intercrystalline voids of the agglomerated ZSM-5 form second-order pores where self-diffusion is enhanced, the increased diffusional barriers created by the intercrystalline boundaries reduce the diffusion rate, promoting secondary reactions at the strong Brönsted acid sites thereby reducing ethylene and propylene selectivity. Coking reduces access to the Brönsted acid sites and plays a more influencial role for smaller crystallite sizes. Accordingly, the smaller than 75μm fraction had the lowest light olefin selectivity, while the 150-300μm fraction was probably least influenced by coking. The increased pathways for products and reagents in the 150-300μm fraction resulted in more secondary reactions taking place within this catalyst than the 75-150μm fraction explaining the superior performance of the 75-150μm fraction. Since the grain size determines the ratio of the external to the internal surface areas as well as the amount of intercrystalline boundaries in the catalyst, it follows that the catalytic activity and polycrystalline grain size ratio should actually be tailored when optimising the product distribution of the ZSM-5 catalysed MTO process. The as-synthesized ZSM-5 didn’t perform very well when compared to Catalyst A and modification of the synthesis method is recommended. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
13 |
Conversion of 2,3-butanediol over bifunctional catalystsZheng, Quanxing January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / In this study, Cu/ZSM-5 catalysts were used to catalyze the hydrodeoxygenation of 2,3-butanediol to butenes in a single reactor in the presence of hydrogen. The carbon selectivity of butenes increased with increasing SiO₂/Al₂O₃ ratio (lowering acidity of zeolite) and H₂/2,3-butanediol ratio. Cu/ZSM-5 with a SiO₂/Al₂O₃ ratio of 280 showed the best activity toward the production of butenes. On zeolite ZSM-5(280), the carbon selectivity of butenes increased with increasing copper loading and 19.2wt% of CuO showed the highest selectivity of butenes (maximum 71%). The optimal reaction temperature is around 250 °C. Experiments demonstrated that methyl ethyl ketone (MEK) and 2-methylpropanal are the intermediates in the conversion of 2,3-butanediol to butenes. The optimal performance toward the production of butene is the result of a balance between copper and acid catalytic functions.
Due to the functionalized nature of 2,3-butanediol, a variety of reactions can occur during the conversion of 2,3-butanediol, especially when multiple catalyst functionalities are present. To investigate the role of the metal (Cu) and acid sites in the process of reaction, the reaction kinetics for all major intermediate products (acetoin, MEK, 2-methylpropanal, 2-butanol and 2-methyl-1-propanol) were measured over Cu/ZSM-5(280), HZSM-5(280), and Cu/SiO₂ at 250 °C. The results showed that Cu is the active site for hydrogenation reactions, while the acidic sites on the zeolite are active for dehydration reactions. In addition, dehydration of alcohols over the zeolite is much faster than hydrogenation of ketone (MEK) and aldehyde (2-methylpropanal). A kinetic model employing Langmuir-Hinshelwood kinetics was constructed in order to predict 2,3-butanediol chemistry over Cu/ZSM-5(280). The goal of this model was to predict the trends for all species involved in the reactions. Reactions were assumed to occur on two sites (acid and metal sites) with competitive adsorption between all species on those sites.
Two different types of mesoporous materials (Al-MCM-48, Al-SBA-15) and hierarchical zeolite (meso-ZSM-5) were loaded with ~20wt% CuO and investigated in the conversion of 2,3-butanediol to butenes. The results showed that the existence of mesopores on the catalysts (Al-MCM-48 and Al-SBA-15 types) could decrease the selectivities of products from cracking reactions, especially C₃= and C₅=−C₇= by comparison with the catalyst with ~20wt% CuO loaded on the regular HZSM-5(280); meanwhile, the selectivity of C₈= from oligomerization of butenes was found to increase with increasing pore size of the catalysts. With respect to Cu/meso-ZSM-5(280) catalyst, it can be seen that the catalyst performs in a similar way to both Cu/ZSM-5(280) catalyst and mesoporous copper catalysts (Cu/Al-MCM-48 and Cu/Al-SBA-15) since both micropores (diameter of ~0.55 nm) and mesopores (pore size of ~23 nm) exist on meso-ZSM-5(280).
The results from Cu catalysts were compared with four other metal catalysts (Ni, Pd, Rh and Pt). It was found that Cu is not very active for hydrogenation of butenes, but is active for hydrogenation of carbonyl groups (C=O) to form hydroxyl groups (−OH). Pd, on the other hand, is active in further hydrogenating butenes and other unsaturated hydrocarbons. Both Ni and Rh catalysts are good for hydrogenation of olefins and cracking of heavy hydrocarbons; however, Rh is not as good as Ni for the hydrogenation of the carbonyl group (C=O) of MEK. In addition, Pt favors the formation of heavy aromatics such as 5-ethyl-1,2,3,4-tetrahydro-naphthalene, while Pd is active for the production of xylene.
|
14 |
Effect of supercritical water on coke formed during dodecane cracking with ZSM-5Guerra, Patricia 11 September 2018 (has links)
The objective of this work was to study the effect of supercritical water on coke formed on ZSM-5 during its use as a dodecane cracking catalyst. ZSM-5 coking was quantified at different reaction times, finding that the presence of supercritical water reduced coke formation by an order of magnitude or more. Coked samples were analyzed using several methods, including temperature programmed oxidation (TPO), attenuated total reflectance infrared (ATR-IR) spectroscopy, carbon-13 nuclear magnetic resonance (13C NMR), diffuse reflectance ultraviolet-visible spectroscopy (DR-UV-vis) and UV-Raman. Coked produced in the absence of SCW was formed by polycyclic aromatic hydrocarbons (PAHs) with more than 4 aromatic rings containing alkyl side chains. Coke produced in the presence of SCW was formed by aromatics with 1 to 3 aromatic rings. The characteristics of coke formed in the absence of water on ZSM-5 that had been pretreated in SCW were intermediate to those of coke formed on fresh ZSM-5 in the presence and absence of water, suggesting that the presence of water influences coke properties. It was also verified that SCW can decrease coke formation due to its effect on Bronsted acidity of the catalyst and ability to promote coke gasification. The effect of coke deposits produced in the presence and absence of SCW on the rate of ethanol dehydration, a model reaction studied under diffusion-controlled conditions, indicated that SCD/SWC coke deactivated less the catalyst than SCD coke.
|
15 |
Removal of methylene blue from aqueous solutions using hierarchical ZSM-5Mbokane, Bafana Njabulo January 2018 (has links)
Thesis (M.Sc.(Chemistry)) -- University of Limpopo, 2018. / Refer to the document / NRF-Sasol Inzalo Foundation
|
16 |
Study on the Characteristics of Transalkylation over Pt/ZSM-12 CatalystLiao, Ping-Hsi 15 September 2006 (has links)
Zeolite structure can profoundly promote the activity of supported platinum. In addition, catalytic performances of Pt/ZSM-12 catalysts vary dramatically with platinum deposition procedure, namely ion exchange (IE) and impregnation procedure (IMP). Supported platinum prepared by IMP is more active than the Pt prepared by IE. The MCP/MCH ratio in benzene hydrogenation as an indication of bifunctional catalysis is significantly higher for IE Pt than IMP Pt. IE preparing platinum is located inside ZSM-12 pore and IMP preparing platinum is deposited on the external surface of ZSM-12. After steam treatment, it is found that Pt-atom perfectly migrates from internal channel to external surface and agglomerates into larger particle size for Pt(IE,0.100%,c) and Pt(IMP,0.123,a) catalysts. In contrast to the results of pure benzene hydrogenation at lower temperature (210¢J/240¢J), they are found that if all prepared various Pt/ZSM-12 catalysts were above the inversion temperature (Ti) then the benzene hydrogenation conversion over Pt(IE,0.100%,c) sample is higher than over Pt(IMP,0.123%,a) sample owing to latter provides less Pt-H+ active sites, as well as Pt(IMP,0.123%,a) sample is the most effective catalyst for toluene disproportionation and transalkylation with 1,2,4-trimethylbenzene. Owing to transformation generally is performed at higher temperature, such as above 400¢J, their operation temperatures are indeed above the inversion temperature (Ti) for all Pt/ZSM-12 catalysts. In situ comparing their benzene hydrogenation in transformation, including disproportionation and transalkylation, is suitable and valuable for understanding and determinating the characteristics of Pt/ZSM-12 zeolite catalysts. Relative conversion of benzene hydrogenation in transformation is the probe of characterizing the Pt-location onto ZSM-12 zeolite.
|
17 |
Product distribution directed modification of ZSM-5 / Maretha FourieFourie, Maretha January 2012 (has links)
Ethylene and propylene are important chemical feedstocks for the production of polyethylene and polypropylene. Ethylene and propylene can be produced by various methods including steam cracking of liquefied natural gas (LNG), naphta or light olefin fractions. The methanol to olefin (MTO) process provides an alternative means of producing ethylene and propylene, where ZSM-5 is frequently used as catalyst due to its hydrophobicity, strong acidity, molecular sieve properties and low tendency towards coking, which makes ZSM-5 one the most popular zeolite catalysts in the industry. The oil crisis 1973 and the second oil crisis in 1978 caused the development of a commercial MTO process. Mobil Research and Development Corporation built a fixed-bed pilot plant to demonstrate the feasibility of the MTO as well as methanol-to-gasoline (MTG) process. When the oil price dropped again during the 1980’s, further developments of commercial processes were stopped for the time being. However, investigations on a bench scale are still pursued, and applications for patents are still submitted.
During this study ZSM-5 was synthesized with a hydrothermal method, which produced agglomerated polycrystalline grains with characteristic ZSM-5 morphology and a Si/Al ratio of approximately 40. The synthesis time, synthesis temperature and aging time were varied while keeping all the other synthesis parameters constant in order to determine their influence on crystallite size. The synthesis time was varied between 12-72 hours, synthesis temperature was varied between 130-170°C and aging time between 30-90 minutes. Using SEM to determine crystal size, it was found that a variation in the aging time produced the largest crystallites (average of 21.6μm ± 10.8μm) while also having the largest influence on crystallite size followed by synthesis temperature (average of 13.1μm ± 4.9μm) and finally synthesis time (average of 5.7μm ± 0.4μm). In all cases XRD and SEM confirmed the formation of ZSM-5.
To evaluate the as-synthesized ZSM-5 and compare it to a commercial ZSM-5 catalyst, Catalyst A using the MTO process, ZSM-5 was synthesized for 72 hours at 170°C with an aging time of 60 minutes before synthesis. The as-synthesized as well as Catalyst A’s agglomerated polycrystalline grains were sieved into three size fractions: smaller than 75μm, 75-150μm and 150-300μm. All six ZSM-5 fractions of ZSM-5 were used as catalysts for the MTO process in a fixed bed reactor at 400°C, atmospheric pressure and a 20wt% methanol to water feed. At 3.5 hours time on stream (TOS), the intermediate 75-150μm fraction had the highest light olefin selectivity for both the as-synthesized as well as Catalyst A, followed by the 150-300μm fraction and finally the smaller than 75μm fraction with the lowest light olefin selectivity. From this results it is clear that the as-synthesised ZSM-5 did not perform as well as Catalyst A.
While the intercrystalline voids of the agglomerated ZSM-5 form second-order pores where self-diffusion is enhanced, the increased diffusional barriers created by the intercrystalline boundaries reduce the diffusion rate, promoting secondary reactions at the strong Brönsted acid sites thereby reducing ethylene and propylene selectivity. Coking reduces access to the Brönsted acid sites and plays a more influencial role for smaller crystallite sizes. Accordingly, the smaller than 75μm fraction had the lowest light olefin selectivity, while the 150-300μm fraction was probably least influenced by coking. The increased pathways for products and reagents in the 150-300μm fraction resulted in more secondary reactions taking place within this catalyst than the 75-150μm fraction explaining the superior performance of the 75-150μm fraction. Since the grain size determines the ratio of the external to the internal surface areas as well as the amount of intercrystalline boundaries in the catalyst, it follows that the catalytic activity and polycrystalline grain size ratio should actually be tailored when optimising the product distribution of the ZSM-5 catalysed MTO process. The as-synthesized ZSM-5 didn’t perform very well when compared to Catalyst A and modification of the synthesis method is recommended. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
18 |
Sólidos micro-mesoestruturados tipo zeólita ZSM-5/peneira molecular MCM-41 - síntese e estudo de propriedades.Gonçalves, Marli Lansoni 16 August 2006 (has links)
Made available in DSpace on 2016-06-02T19:56:28Z (GMT). No. of bitstreams: 1
DissMLG.pdf: 4644860 bytes, checksum: 745bf2fba935eb4bb3fc032321ab36e7 (MD5)
Previous issue date: 2006-08-16 / Universidade Federal de Sao Carlos / In the transformation of bulky molecules, the necessity of catalysts that allow the diffusion to and from the active sites located in the interior of the porous system has become of higher interest. The restriction for the diffusion of this type of molecule in zeolites has led the community to study routes that can make possible to obtain solids that allow the diffusion in mesoporous and
simultaneously possess the intrinsic properties of microporous zeolites. In this context, the objective of this work was the synthesis of micro-mesostructured Zeolite ZSM-5/MCM-41 Molecular Sieve type solids. These solids were
prepared under hydrothermal conditions in two stages. Initially was prepared a gel of ZSM-5 seeds, which was subsequently crystallized in the presence of cetyltrimetylammonium bromide (CTABr), used as structure directing agent in
the synthesis of the MCM-41. The influence of the Si/Al ratio in the seeding gel and the effect of both the time and temperature used in the preparation of such gel and during crystallization were evaluated. X-ray diffraction in the low and wide angle region, nitrogen adsorption/desorption, FTIR spectroscopy and scanning and transmission electron microscopy data evidenced the formation of micro-mesostructured ZSM-5/MCM-41 materials. It is suggested that the formation of the microporous
structure occurs by an intraparticle "solid-to-solid" process through the transformation of the walls of the mesoporous into crystalline structure. During
the growth of the crystals, the surfactant micelles are dislocated, causing loss of the symmetry of the mesoporous arrangement. However, the micelles remain unchanged in a random array, generating after calcination irregularly arranged
mesoporous, but possessing uniform diameters.
The cristallinity of the formed ZSM-5 crystals, the volume of the mesoporous and the specific surface area of the final solid were influenced by
the Si/Al ratio in the seeding gel and by the time and temperature used in the aging and during the stage of mesostructuration/crystallization. The optimization of this set of variables will allow the control of the ratio between the obtained
microporous and mesoporous phases, thus making possible the preparation of
tailor-made adsorbents and catalysts for the separation and transformation of bulky molecules. / No processamento de moléculas volumosas, é cada vez maior a necessidade de dispor-se de catalisadores que permitam a difusão para os
sítios ativos localizados no interior do sistema poroso. A restrição à difusão desse tipo de molécula em zeólitas tem levado a comunidade a estudar rotas que tornem possível a obtenção de um sólido que permita a difusão nos
mesoporos e que, ao mesmo tempo, possua as propriedades intrínsecas das zeólitas microporosas. Nesse contexto, este trabalho teve como objetivo a síntese de sólidos micro-mesoestruturados do tipo Zeólita ZSM-5/Peneira
Molecular MCM-41. Estes sólidos foram preparados sob condições hidrotérmicas em duas etapas. Inicialmente preparou-se um gel de sementes da zeólita ZSM-5, sendo estas posteriormente cristalizadas na presença de
brometo de cetiltrimetilamônio (CTABr), agente mesoestruturante utilizado na síntese da peneira molecular MCM-41. Nessas sínteses, foram avaliadas as influências da relação Si/Al no gel de síntese e o efeito do tempo e da
temperatura utilizados na etapa de preparação do gel e na de cristalização. Dados de difração de raios-X em pequenos e altos ângulos,
adsorção/dessorção de nitrogênio, espectroscopia no infravermelho e
microscopia eletrônica de varredura e de transmissão evidenciaram a formação
de materiais micro-mesoestruturados ZSM-5/MCM-41 a partir de géis de sementes , cristalizadas na presença do surfactante catiônico CTA+. Sugere-se que a formação da estrutura microporosa ocorre via um processo sólidosólido intrapartícula, com a transformação das paredes dos mesoporos em estrutura cristalina. Durante o crescimento dos cristais, as micelas do surfactante ocluídas nas partículas são deslocadas, ocasionando perda de
simetria do arranjo mesoporoso. Entretanto, as micelas permanecem inalteradas num arranjo aleatório, gerando após a calcinação mesoporos num arranjo irregular, mas possuindo diâmetros uniformes. A cristalinidade da fase ZSM-5 formada, o volume de mesoporos e a
área superficial específica do sólido final dependem da relação Si/Al no gel de sementes, do tempo e da temperatura usados durante o envelhecimento e na etapa de mesoestruturação/cristalização. A otimização desse conjunto de varáveis permitirá o controle da proporção entre as fases micro e mesoporosas possibilitando a preparação, sob medida, de novos adsorventes e catalisadores, para a separação e transformação de moléculas volumosas.
|
19 |
Síntese de materiais compósitos micro-mesoporosos visando a captura de CO2Silva, Silvia Caroline Gomes dos Santos 29 July 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / factor responsible for climate change worldwide. In recent years, several research are intended to developing new methods and technologies to capture and separation CO2.
The use of the adsorption method for separating CO2 is a promising alternative in view of the potential to reduce energy costs by eliminating aqueous solutions and providing capture and regeneration rates adequate. In this context, this paper presents the synthesis of composite type materials ZSM-12 / MCM-41 and ZSM-12 / MCM-48, seeking to combining the properties of the zeolitic material to the structural advantages of mesoporous materials, resulting in obtaining materials with high CO2 adsorption capacity. For this, the materials were synthesized by hydrothermal method and mechanosynthesis. The materials were characterized by XRD, absorption spectroscopy in the infrared, thermal analysis, adsorption-desorption analysis of N2 A 77 K, SEM and TEM. The CO2 adsorption capacity of these materials were investigated by gravimetric analysis. The results obtained from the characterization techniques showed that the synthesis methodology, used for desilication phase of ZSM-12, was efficient in obtaining a composite material with integrated micro and mesoporous phases. On the other hand, the results showed that by mechanosynthesis was possible to obtain materials formed by mixing between the micro and mesoporous phases. Also, comparing the results of adsorption CO2 the obtained composite materials by hydrothermal method with those obtained by mechanosynthesis it was concluded that the adsorption capacity is influenced by crystallinity and amount of the phase ZSM-12. The results showed from adsorption, in general, ZM48-75 samples, ZM41 A/MH R3 and ZM41-50 showed higher adsorption capacity than pure zeolitic and mesoporous materials, respectively. Thus, the composite materials of the type ZSM-12/ZSM-41 and MCM-12/MCM-48 are promising adsorbents for CO2 separation. / O aumento da concentração de dióxido de carbono na atmosfera é apontado como o principal fator responsável pelas mudanças climáticas em escala mundial. Nos últimos anos, várias pesquisas têm por finalidade o desenvolvimento de novos métodos e tecnologias para captura e separação de CO2. A utilização do método de adsorção para separação de CO2 é uma alternativa promissora, tendo em vista o potencial para reduzir os custos energéticos, eliminando soluções aquosas e proporcionando captura e taxa de regeneração adequadas. Nesse contexto, neste trabalho apresenta-se a síntese de materiais compósitos do tipo ZSM-12/MCM-41 e ZSM-12/MCM-48, visando combinar as propriedades do material zeolítico com as vantagens estruturais dos materiais mesoporosos, resultando na obtenção de materiais com elevadas capacidades de adsorção de CO2. Para isto, os materiais foram sintetizados pelo método hidrotérmico e por mecanosíntese. Os materiais obtidos foram caracterizados por DRX, espectroscopia de absorção na região do infravermelho, análise térmica, analise de adsorção-desorção de N2 A 77 K, MEV e TEM. A capacidade de adsorção de CO2 destes materiais foi investigadas através da análise gravimétrica. As técnicas de caracterização mostraram que a metodologia de síntese adotada via dessilicalização da fase ZSM-12 foi satisfatória na obtenção de um material compósito com as fases micro e mesoporosas integradas. Por outro lado, os resultados evidenciaram que através da mecanosíntese foi possível obter materiais formados pela mistura entre as fases micro e mesoporosas. Além disso, comparando-se os resultados de adsorção de CO2 dos materiais compósitos obtidos via método hidrotérmico com os obtidos via mecanosíntese foi possível concluir que a capacidade de adsorção é influenciada pela cristalinidade ou teor da fase ZSM-12. Considerando-se os resultados de adsorção apresentados, de maneira geral, as amostras ZM48-75, ZM41-A/R3-MH e ZM41-50, apresentaram maior capacidade de adsorção que os materiais zeolíticos e mesoporosos puros, respectivamente. Sendo assim, os materiais compósitos do tipo ZSM-12/MCM-41e ZSM-12/MCM-48 são promissores adsorventes para separação de CO2.
|
20 |
Síntese de materiais compósitos micro-mesoporosos visando a captura de CO2Silva, Silvia Caroline Gomes dos Santos 29 July 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / factor responsible for climate change worldwide. In recent years, several research are intended to developing new methods and technologies to capture and separation CO2.
The use of the adsorption method for separating CO2 is a promising alternative in view of the potential to reduce energy costs by eliminating aqueous solutions and providing capture and regeneration rates adequate. In this context, this paper presents the synthesis of composite type materials ZSM-12 / MCM-41 and ZSM-12 / MCM-48, seeking to combining the properties of the zeolitic material to the structural advantages of mesoporous materials, resulting in obtaining materials with high CO2 adsorption capacity. For this, the materials were synthesized by hydrothermal method and mechanosynthesis. The materials were characterized by XRD, absorption spectroscopy in the infrared, thermal analysis, adsorption-desorption analysis of N2 A 77 K, SEM and TEM. The CO2 adsorption capacity of these materials were investigated by gravimetric analysis. The results obtained from the characterization techniques showed that the synthesis methodology, used for desilication phase of ZSM-12, was efficient in obtaining a composite material with integrated micro and mesoporous phases. On the other hand, the results showed that by mechanosynthesis was possible to obtain materials formed by mixing between the micro and mesoporous phases. Also, comparing the results of adsorption CO2 the obtained composite materials by hydrothermal method with those obtained by mechanosynthesis it was concluded that the adsorption capacity is influenced by crystallinity and amount of the phase ZSM-12. The results showed from adsorption, in general, ZM48-75 samples, ZM41 A/MH R3 and ZM41-50 showed higher adsorption capacity than pure zeolitic and mesoporous materials, respectively. Thus, the composite materials of the type ZSM-12/ZSM-41 and MCM-12/MCM-48 are promising adsorbents for CO2 separation. / O aumento da concentração de dióxido de carbono na atmosfera é apontado como o principal fator responsável pelas mudanças climáticas em escala mundial. Nos últimos anos, várias pesquisas têm por finalidade o desenvolvimento de novos métodos e tecnologias para captura e separação de CO2. A utilização do método de adsorção para separação de CO2 é uma alternativa promissora, tendo em vista o potencial para reduzir os custos energéticos, eliminando soluções aquosas e proporcionando captura e taxa de regeneração adequadas. Nesse contexto, neste trabalho apresenta-se a síntese de materiais compósitos do tipo ZSM-12/MCM-41 e ZSM-12/MCM-48, visando combinar as propriedades do material zeolítico com as vantagens estruturais dos materiais mesoporosos, resultando na obtenção de materiais com elevadas capacidades de adsorção de CO2. Para isto, os materiais foram sintetizados pelo método hidrotérmico e por mecanosíntese. Os materiais obtidos foram caracterizados por DRX, espectroscopia de absorção na região do infravermelho, análise térmica, analise de adsorção-desorção de N2 A 77 K, MEV e TEM. A capacidade de adsorção de CO2 destes materiais foi investigadas através da análise gravimétrica. As técnicas de caracterização mostraram que a metodologia de síntese adotada via dessilicalização da fase ZSM-12 foi satisfatória na obtenção de um material compósito com as fases micro e mesoporosas integradas. Por outro lado, os resultados evidenciaram que através da mecanosíntese foi possível obter materiais formados pela mistura entre as fases micro e mesoporosas. Além disso, comparando-se os resultados de adsorção de CO2 dos materiais compósitos obtidos via método hidrotérmico com os obtidos via mecanosíntese foi possível concluir que a capacidade de adsorção é influenciada pela cristalinidade ou teor da fase ZSM-12. Considerando-se os resultados de adsorção apresentados, de maneira geral, as amostras ZM48-75, ZM41-A/R3-MH e ZM41-50, apresentaram maior capacidade de adsorção que os materiais zeolíticos e mesoporosos puros, respectivamente. Sendo assim, os materiais compósitos do tipo ZSM-12/MCM-41e ZSM-12/MCM-48 são promissores adsorventes para separação de CO2.
|
Page generated in 0.0724 seconds