Seit mehr als 10 Jahren kann biologische Aktivität durch eine Vielzahl photosensorischer Proteine beeinflusst werden. In diesem als Optogenetik bezeichneten Forschungsgebiet, werden Kationen leitende Kanalrhodopsine (CCRs) als lichtinduzierte neuronale Aktivatoren eingesetzt. Diese Arbeit soll zur Vervollständigung von optogenetischen Werkzeugen durch die Entwicklung Anionen leitender Kanalrhodopsine (ACRs) dienen, um die bestehenden Nachteile mikrobieller lichtgetriebener Ionenpumpen zu überwinden, die bislang zur neuronale Inhibition genutzt wurden.
Der Austausch von E90 in C. reinhardtii Kanalrhodopsin 2 (CrChR2) durch positiv geladene Aminosäuren führte zu Entwicklung Chlorid leitender ChRs (ChloCs), die jedoch eine Restkationen-permeabilität aufwiesen. Durch Substitution zweier weiterer negativen Ladungen innerhalb des Ionenpermeationsweges, konnte die Kationenleitung vollständig aufgehoben werden.
Parallel wurde durch A. Berndt et al. ein inhibitorisches C1C2 (iC1C2), basierend auf der CrChR1/2 Chimäre entwickelt. Wie auch bei den ChloCs, zeigte iC1C2 verbesserungswürdige biophysikalische Eigenschaften. Mutagenesestudien des Ionenpermeationsweges führten zur Entwicklung der verbesserten Nachfolgervariante iC++.
Um ausgehend von weiteren CCRs neuartige ACRs zu entwickeln (eACRs), wurden die zuvor angewandten Mutagenesestrategien auf weitere CCRs übertragen. Zwei neue eACRs, Phobos und Aurora, mit jeweils blau- und rotverschobenen Aktionsspektrum konnten generiert werden. Bistabile eACRs wurden erzeugt, die ein lichtgesteuertes Schalten zwischen offenen und geschlossenen Zuständen ermöglichen.
Schlussendlich wurde ein natürlich vorkommendes ACR (nACR) aus Proteomonas sulcata (PsACR1) identifiziert und charakterisiert. Die Maximalaktivität von PsACR1 zählt mit 540 nm zu den am stärksten rotverschobenen unter den nACRs. Elektrophysiologische und spektroskopische Untersuchungen ergaben, dass sich der Photozyklus von PsACR1 signifikant von jenen der CCRs unterscheidet. / For more than 10 years, photosensory proteins have developed as powerful tools to manipulate biological activity. In this research field termed optogenetics, cation-conducting channelrhodopsins (CCRs) mainly are utilized as light-induced neural activators. This study aimed at a complementation of the optogenetic tool box by engineering anion-conducting channelrhodopsins (ACRs) to overcome the existing drawbacks of microbial light-driven ion pumps utilized for neural inhibition so far.
Replacement of E90 in the cation-conducting C. reinhardtii channelrhodopsin 2 (CrChR2) with positively charged residues reversed the ion selectivity and yielded chloride-conducting ChRs (ChloCs). Applied in neuronal cell culture, ChloCs showed residual cation permeability occasionally leading to excitation instead of the desired inhibition. Further charge elimination within the ion permeation pathway completely abolished cation conduction.
In parallel, an inhibitory C1C2 (iC1C2) was developed by A. Berndt et al. based on a CrChR1/2 chimera. Though, iC1C2 displayed unsatisfactory biophysical properties as well. Further mutational modifications of the ion permeation pathway led to the development of the improved successor variant iC++.
A systematic transfer of both conversion strategies to other CCRs was conducted to create engineered ACRs (eACRs) with distinct biophysical properties. Two novel eACRs, Phobos and Aurora, with blue- and red-shifted action were obtained. Additionally, step-function mutations greatly enhanced the operational light sensitivity and enabled temporally precise toggling between open and closed states using two different light colors.
Finally, a natural ACR (nACR) originating from Proteomonas sulcata (PsACR1) was identified and characterized. With a maximum activation at 540 nm it is one of most red-shifted nACRs. Single turnover electrophysiological measurements and spectroscopic investigations revealed an unusual photocycle compared to that of CCRs.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/20086 |
Date | 09 August 2018 |
Creators | Wietek, Jonas |
Contributors | Peter, Hegemann, Franz, Bartl, Wiegert, J. Simon |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0027 seconds