Untersucht wird der Auswirkung von Anisotropie auf den unordnungsinduzierten Metall-Isolator-Übergang (MIÜ) im Rahmen des dreidimensionalen Anderson-Modells der Lokalisierung für (schwach) gekoppelte Ebenen bzw. Ketten. Mittels numerischer Verfahren (Lanczos- und Transfer-Matrix-Methode) werden Eigenwerte und -vektoren bzw. die Lokalisierungslänge berechnet. Zur Bestimmung des kritischen Exponenten dieses Phasenüberganges 2. Ordnung wird ein allgemeiner Skalenansatz verwendet, der auch den Einfluss einer irrelevanten Skalenvariablen und Nichtlinearitäten berücksichtigt. Ein Kapitel untersucht die verwendeten numerischen Verfahren, verschiedene Methoden werden verglichen und die Portierbarkeit zu Parallelrechnern diskutiert.
Der MIÜ wird mit zwei unabhängigen Methoden charakterisiert: Eigenwertstatistik und Transfer-Matrix-Methode. Die Systemgrößenunabhängigkeit der betrachteten Größen am Phasenübergang wird benutzt um den MIÜ zu identifizieren. Sie resultiert aus der Multifraktalität der kritischen Eigenzustände, die für den isotropen Fall bis zu einer Systemgröße von 111^3 Gitterplätzen gezeigt wird. Es stellt sich heraus, daß der MIÜ auch bei sehr starker Anisotropie existiert und bereits bei geringerer Potentialunordnung als im isotropen Fall auftritt. Für den Fall sehr schwach gekoppelter Ebenen wird gezeigt, daß der kritische Exponent mit dem des isotropen Falles übereinstimmt und damit die übliche Einteilung in Universalitätsklassen bestätigt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:17635 |
Date | 13 July 2000 |
Creators | Milde, Frank |
Contributors | Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds