Wir studieren die perturbative Quantisierung von Eichtheorien und Gravitation. Unsere Untersuchungen beginnen mit der Geometrie von Raumzeiten und Teilchenfeldern. Danach diskutieren wir die verschiedenen Lagrangedichten in der Kopplung der (effektiven) Quanten-Allgemeinen-Relativitätstheorie zum Standardmodell. Desweiteren studieren wir den zugehörigen BRST-Doppelkomplex von Diffeomorphismen und Eichtransformationen. Danach wenden wir Connes--Kreimer-Renormierungstheorie auf die perturbative Feynmangraph-Entwicklung an: In dieser Formulierung werden Subdivergenzen mittels des Koprodukts einer Hopfalgebra strukturiert und die Renormierungsoperation mittels einer algebraischen Birkhoff-Zerlegung beschrieben. Dafür verallgemeinern und verbessern wir bekannte Koprodukt-Identitäten und ein Theorem von van Suijlekom (2007), das (verallgemeinerte) Eichsymmetrien mit Hopfidealen verbindet. Insbesondere lässt sich unsere Verallgemeinerung auf Gravitation anwenden, wie von Kreimer (2008) vorgeschlagen. Darüberhinaus sind unsere Resultate anwendbar auf Theorien mit mehreren Vertexresuiden, Kopplungskonstanten und ebensolchen mit einer transversalen Struktur. Zusätzlich zeigen wir Kriterien für die Kompatibilität dieser Hopfideale mit Feynmanregeln und dem gewählten Renormierungsschema. Als nächsten Schritt berechnen wir die entsprechenden Gravitations-Materie Feynmanregeln für alle Vertexvalenzen und mit einem allgemeinen Eichparameter. Danach listen wir alle Propagator- und dreivalenten Vertex-Feynmanregeln auf und berechnen die entsprechenden Kürzungsidentitäten. Abschließend stellen wir geplante Folgeprojekte vor: Diese schließen eine Verallgemeinerung von Wigners Klassifikation von Elementarteilchen für linearisierte Gravitation ein, ebenso wie die Darstellung von Kürzungsidentitäten mittels Feynmangraph-Kohomologie und eine Untersuchung der Äquivalenz verschiedener Definitionen des Gravitonfeldes. Insbesondere argumentieren wir, dass das richtige Setup um perturbative BRST-Kohomologie zu studieren eine differentialgraduierte Hopfalgebra ist. / We study the perturbative quantization of gauge theories and gravity. Our investigations start with the geometry of spacetimes and particle fields. Then we discuss the various Lagrange densities of (effective) Quantum General Relativity coupled to the Standard Model. In addition, we study the corresponding BRST double complex of diffeomorphisms and gauge transformations. Next we apply Connes--Kreimer renormalization theory to the perturbative Feynman graph expansion: In this framework subdivergences are organized via the coproduct of a Hopf algebra and the renormalization operation is described as an algebraic Birkhoff decomposition. To this end, we generalize and improve known coproduct identities and a theorem of van Suijlekom (2007) that relates (generalized) gauge symmetries to Hopf ideals. In particular, our generalization applies to gravity, as was suggested by Kreimer (2008). In addition, our results are applicable to theories with multiple vertex residues, coupling constants and such with a transversal structure. Additionally, we also provide criteria for the compatibility of these Hopf ideals with Feynman rules and the chosen renormalization scheme. We proceed by calculating the corresponding gravity-matter Feynman rules for any valence and with a general gauge parameter. Then we display all propagator and three-valent vertex Feynman rules and calculate the respective cancellation identities. Finally, we propose planned follow-up projects: This includes a generalization of Wigner's classification of elementary particles to linearized gravity, the representation of cancellation identities via Feynman graph cohomology and an investigation on the equivalence of different definitions for the graviton field. In particular, we argue that the appropriate setup to study perturbative BRST cohomology is a differential-graded Hopf algebra.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/26190 |
Date | 22 November 2022 |
Creators | Prinz, David Nicolas |
Contributors | Kreimer, Dirk, van Suijlekom, Walter, Yeats, Karen |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Relation | 10.1016/j.aop.2021.168395, 10.1007/s11040-022-09423-8, 10.1088/1361-6382/ac1cc9, 10.48550/arXiv.2206.00780, 10.48550/arXiv.2208.14166 |
Page generated in 0.0031 seconds