• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 133
  • 50
  • 26
  • 24
  • 16
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 5
  • 4
  • 3
  • Tagged with
  • 507
  • 137
  • 66
  • 49
  • 47
  • 41
  • 38
  • 38
  • 37
  • 36
  • 36
  • 33
  • 33
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Détection hypothalamique du glucose chez le rat soumis à un régime gras enrichi en saccharose : rôle de la dynamique mitochondriale et des espèces actives de l'oxygène d'origine mitochondriale / Hypothalamic glucose sensing in high fat high sucrose fed rats : involvment of mitochondrial dynamics and mitochondrial reactive oxygen species

Desmoulins, Lucie 29 April 2016 (has links)
L’hypothalamus participe au contrôle de l’homéostasie énergétique en détectant les signaux circulants tels que le glucose. L’hypothalamus médiobasal (MBH) en particulier, est capable de détecter l’hyperglycémie afin d’initier des réponses physiologiques adaptées, comme par exemple la sécrétion d’insuline via le système nerveux autonome (par un contrôle vagal). Notre équipe a récemment montré que la détection du glucose nécessite la production d’espèces actives de l’oxygène d’origine mitochondriale (mROS), fortement dépendante de la dynamique mitochondriale (fusion et fission). Récemment, l’étude de modèles génétiques ont permis de faire un lien entre ces évènements dynamiques dans le MBH et le développement de pathologies métaboliques. L’objectif de ma thèse a été tout d’abord été de mettre en place un modèle expérimental présentant uniquement une altération de la détection hypothalamique du glucose induite par l’exposition à un régime gras enrichi en saccharose (HFHS) chez le rat. Après avoir caractérisé ce modèle, nos objectifs ont été de déterminer si l’exposition à ce régime hypercalorique avait un impact sur la dynamique mitochondriale ainsi que la signalisation mROS, via la fonction respiratoire de la mitochondrie dans l’hypothalamus. Nous avons finallement réversé quelques acteurs métaboliques dérégulés, potentiellement impliqués dans la dynamique mitochondriale, dans le but de réverser le phénotype observé chez les rats HFHS. Nos résultats montrent qu’après 3 semaines d’exposition au régime HFHS, les rats ont un poids corporel normal malgré l’augmentation de leur masse grasse, comparés aux rats contrôles. Les rats HFHS présentent aussi une intolérance au glucose et une augmentation de la glycémie basale sans modification de leur insulinémie. La sécrétion d’insuline en réponse à la détection hypothalamique du glucose, mesurée après une injection intra-carotidienne de glucose en direction du cerveau qui induit une hyperglycémie uniquement cérébrale, a été fortement diminuée. Cependant, la capacité sécrétoire des îlots pancréatiques est normale chez les rats HFHS. Ces défauts sont associés à une diminution de la production de ROS dans le MBH en réponse au glucose, sans modification du status redox. L’efficacité de la respiration mitochondriale hypothalamique a été mesurée par oxygraphie, et les résultats montrent une déficience de la respiration mitochondriale chez les rats HFHS. La translocation de la protéine de fission DRP1 à la mitochondrie est diminuée en réponse au glucose, suggérant une diminution de la fission mitochondriale. L’augmentation de l’activation de l’AMPK dans l’hypothalamus n’est pas responsable de l’altération de la détection hypothalamique du glucose car sa réversion avec une injection intracérébroventriculaire (ICV) de composé C, n’a pas permis de restaurer la sécrétion d’insuline en réponse à l’hyperglycémie cérébrale. De même, une injection ICV de leptine induisant l’activation de STAT3 n’a pas permis de restaurer la sécrétion d’insuline en réponse à l’hyperglycémie cérébrale. Enfin, la diminution de l’activation d’AKT suggère une résistance centrale à l’insuline. Ces résultats démontrent pour la première fois que l’altération hypothalamique de la signalisation ROS, de la fission et de la respiration mitochondriale, sont présent chez les rats exposés pendant 3 semaines à un régime HFHS. Ces défauts précoces hypothalamiques pourraient ainsi participer à un défaut primaire du contrôle de la sécrétion d’insuline, et finallement, à l’installation d’un phénotype diabétique. / The hypothalamus participates in the control of energy homeostasis by detecting circulating nutrients, such as glucose. The mediobasal hypothalamus (MBH), in particular, senses hyperglycemia and initiates physiological responses, e.g., insulin secretion via the autonomous (vagal) nervous system. We have recently demonstrated that glucose sensing requires mitochondrial reactive oxygen species (mROS) signaling heavily dependant on mitochondrial fusion and fission (dynamics). Recently, genetic models have associated some of these dynamics within the MBH to their obesogenic susceptibility. The aims of my thesis were first to establish a model that only presents a hypothalamic glucose sensing defect induced by a high fat high sucrose (HFHS) feeding in rats. After caracterizing this model, our objectives were to determine whether modulating the diet affects mitochondrial dynamics, and thus, mROS signaling, through the mitochondrial respiratory function in the hypothalamus. We finally reversed some dysregulated metabolic signalings potentially involved in mitochondrial dynamics in order to reverse the phenotype observed in HFHS fed rats. Our results demonstrate that after 3 weeks of HFHS feeding, rats had a normal body weight despite an increase in the fat mass compared to control rats. HFHS fed rats displayed also a glucose intolerance, increased fasting glycemia but no modification of fasting insulinemia. Hypothalamic glucose sensing induced insulin secretion, measured after an intra-carotid glucose injection towards the brain that only increases brain glycemia without alteration in peripheral glycemia, was drastically decreased. However, glucose stimulated insulin secretion in isolated islets was not different compared to controls. These defects correlate with a decrease of MBH ROS production in response to glucose, with no modification in the redox status. Efficiency of hypothalamic mitochondrial respiration was evaluated using oxygraphy, and results showed mitochondrial respiratory deficiencies in HFHS fed rats. The fission protein DRP1 exhibited decreased mitochondrial translocation in the MBH in response to glucose, suggesting decreased mitochondrial fission. The increase of AMPK activation in the hypothalamus was not responsible for the alteration of hypothalamic glucose sensing since its reversal with an intracerebroventricular (ICV) injection of compound C failed to restore brain hyperglycemia induced insulin secretion. Likewise, an ICV injection of leptin that induced STAT3 activation also failed to restore brain hyperglycemia induced insulin secretion. Finally, the decrease in AKT activation suggested a central insulin resistance. These results demonstrate for the first time that hypothalamic alteration of mitochondrial ROS signaling, fission and respiration were present in rats exposed to a 3 weeks HFHS diet. Such hypothalamic glucose sensing defects are early events preceding those in islets. These early but drastic hypothalamic modifications could participate in a primary nervous defect of the control of insulin secretion, and finally, the etablishment of a diabetic phenotype.
242

Dissection du rôle de la voie intracellulaire de mTORC1 dans les circuits hypothalamiques à la mélanocortine régulant la prise alimentaire / Dissecting the role of the intacellular mTORC1 pathway in hypothalamic melanocortin circuitry regulating food intake

Saucisse, Nicolas 06 December 2016 (has links)
L’hypothalamus est une structure cérébrale ayant un rôle clé dans la régulation de la prise alimentaire. Parmi les différentes populations neuronales qui le composent, les neurones produisant la pro-opiomélanocortine (POMC) sont classiquement connus pour diminuer la prise alimentaire et le poids corporel via la libération de neuropeptides produits par le clivage de POMC. Notre étude, grâce à l’utilisation d’approches génétiques, pharmacologiques, électrophysiologiques et moléculaires, remet en question les notions classiques sur la fonction des neurones à POMC dans la balance énergétique, en démontrant qu’il existe deux sous-populations fonctionnellement distinctes de neurones à POMC, qui augmentent ou diminuent la prise alimentaire en fonction du neurotransmetteur qu’elles libèrent, l’acide γ-aminobutyrique (GABA) ou le glutamate. Une troisième population capable de produire aussi bien du GABA que du glutamate a également été identifiée. La régulation des neurones à POMC GABAergiques et glutamatergiques dépend de la voie de la cible de la rapamycine chez les mammifères (mTORC1), qui fonctionne comme un détecteur d’énergie cellulaire, et du système endocannabinoïde (ECS), qui régule la libération de neurotransmetteurs. De plus, nous avons également démontré, via l’utilisation de souris mutantes conditionnelles, l’importance de la protéine p62 ou séquestrome 1 (p62/SQSTM1), qui régule l’activité de mTORC1 et l’autophagie, dans les neurones à POMC dans la régulation de l’homéostasie énergétique. Nos données offrent un nouvel aperçu sur les mécanismes moléculaires impliqués dans la régulation de la balance énergétique. / The hypothalamus is a brain structure with a key role in the regulation of food intake. Among the different neuronal populations of which it is composed, pro-opiomelanocortin (POMC) neurons are classically known to decrease food intake and body weight through the release of neuropeptides produced by the cleavage of POMC. Our study, through the use of genetic, pharmacological, electrophysiological and molecular approaches, challenges conventional notions about POMC neuron function in energy balance by showing that there are two functionally distinct POMC neuronal sub-populations, which increase or decrease food intake depending on which neurotransmitter they release, γ-aminobutyric acid (GABA) or glutamate. A third population capable of producing both GABA and glutamate has also been identified. The regulation of POMC GABAergic and glutamatergic neurons depends on the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which functions as a cellular energy sensor, and the endocannabinoid system (ECS), which regulates neurotransmitters release. In addition, we have also demonstrated through the use of a conditional knockout mice, the importance of the protein p62 or sequestrome 1 (p62/SQSTM1), which regulates mTORC1 activity and autophagy, in POMC neurons for the regulation of energy homeostasis. Our data provide new insights on the molecular mechanisms involved in the regulation of energy balance.
243

Ovulation-inducing factor/nerve growth factor (OIF/NGF) : Immunohistochemical studies of the bovine ovary and the llama hypothalamus

2016 January 1900 (has links)
The overall objective was to elucidate the mechanism of action of ovulation-inducing factor/nerve growth factor (OIF/NGF) in the reproductive function of spontaneous and induced ovulators, using cow and llama as models. In Study 1, the dynamics of trkA, the high affinity receptor for OIF/NGF, were studied during periovulatory period in cows. Unilateral ovariectomies were performed by colpotomy on Days 2, 4 and 6 of the estrous cycle (Day 0= ovulation), and before and after LH administration. Ovarian samples were processed for immunofluorescent detection of trkA. The intensity and area of immuno-positive staining, and the proportion of immuno-positive cells in both the granulosa and theca layers were higher in dominant than in subordinate follicles (P<0.05). Dominant follicles displayed a different intracellular distribution of trkA from subordinate follicles. The number of positive cells was higher in the developing CL (Day 2 and 4) than in the mature or regressing CL (Day 6, Pre-LH, and Post-LH). In Study 2, the distribution of GnRH neurons in the hypothalamus was examined in female llamas (n = 4). Hypothalamic samples were processed for immunohistochemistry for GnRH. The distribution of GnRH neurons had no evident accumulation in specific hypothalamic nuclei. The majority of GnRH neurons were detected in the anterior and medio-basal hypothalamus (P<0.05). The GnRH neuron fibers were detected primarily in the median eminence and in the medio-basal hypothalamus. In Study 3, the relationship between trkA and GnRH neurons in the llama diencephalon was examined in llama brains (n = 4) obtained in Study 2. Samples were stained using double immunofluorescence. TrkA immuno-reactivity was present in most hypothalamic areas examined; the highest density was found in the diagonal band of Broca and the periventricular nuclei. A low percentage of GnRH cells (1%) showed immuno-reactivity to trkA. Close association between immuno-reactive cells (i.e., GnRH and trkA in the same microscopic field) was detected rarely (3/160 GnRH neurons). We concluded that: 1) the high affinity receptor for OIF/NGF is expressed in greater quantities in dominant than subordinate follicles and in the developing CL; 2) GnRH neurons of llamas are concentrated in the anterior and middle hypothalamus, in close relationship to the third ventricle; and, 3) expression of trkA receptors on GnRH neurons was rare, suggesting that the ovulatory effect of OIF/NGF is not via direct interaction with GnRH neurons.
244

L'hypothalamus latéral contiendrait le générateur principal du sommeil paradoxal : arguments neuroanatomiques et pharmacologiques chez le rat

Clément, Olivier 18 November 2011 (has links) (PDF)
Les mécanismes neurologiques responsables du déclenchement et de l'homéostasie du sommeil, et du sommeil paradoxal (SP) en particulier, sont l'objet d'un nombre toujours plus important d'études du fait notamment de l'attention croissante portée aux pathologies associées. Les travaux rapportés dans cette thèse s'inscrivent parfaitement dans cette dynamique puisqu'ils ont pour objectif de mieux caractériser les populations neuronales mises en jeu dans la régulation du SP ainsi que leurs interactions. Dans cette optique, nous avons combiné différentes approches techniques complémentaires à savoir : neuroanatomie fonctionnelle, polysomnographie et pharmacologie sur animal libre de se mouvoir. Nous avons ainsi pu démontrer pour la première fois la nature glutamatergique des neurones du SLD, région pontique jouant un rôle central dans la mise en place du SP. De plus, s'il est généralement admis que ces neurones du SLD sont sous le contrôle de neurones GABAergiques situés au niveau de la partie ventrolatérale de la substance grise périaqueducale (VLPAG), le contrôle de ces derniers est encore soumis à controverse. Les résultats que nous avons obtenus suggèrent fortement que l'aire latérale de l'hypothalamus (LH) serait responsable de ce contrôle et donc de celui du SP. En effet, la LH est l'afférence majeure à la VLPAG activée lors d'une hypersomnie de SP. En outre, son inactivation par application locale de muscimol entraine la disparition totale du SP et l'activation des neurones GABAergiques de la VLPAG projetant sur le SLD. En parallèle, nous avons étudié le rôle du noyau réticulé paragigantocellulaire dorsal (DPGi) dans la genèse du SP. Bien que le DPGi fût déjà connu pour être responsable de l'inhibition du locus coeruleus (LC) durant les phases de SP, nous apportons ici un certain nombre d'arguments suggérant que le DPGi pourrait être responsable de l'inhibition, non seulement du LC, mais également de l'ensemble des neurones adrénergiques et noradrénergiques. Cela suggère donc que ce noyau joue également un rôle majeur dans la régulation du SP. Les données rapportées dans cette thèse permettent donc de mieux appréhender les mécanismes neuronaux contrôlant la survenue et la régulation du SP. En particulier, ils apportent de nouvelles données en faveur d'un rôle central de l'hypothalamus dans la régulation du SP puisqu'il constituerait le générateur principal de cet état.
245

Brain Activity in Rats Exposed to Short-Term External Electrical Fields

Hines, Gregory M. (Gregory Manuel) 05 1900 (has links)
The effects of external electric fields (EEF) on brain activity in anesthetized rats were studied. The field strengths used, 9 kV/m and 5 kV/m, both D.C. and A.C. (60Hz) were in the range of those measured beneath current overhead transmission lines. Brain activity was monitored from surface electrodes and from electrodes stereotaxically implanted in the posterior-lateral portion of the hypothalamus. It was found that 9 kV/m and 5 kV/m EEF's both D.C. and A.C. brought about statistically significant changes in hypothalamic activity, however, the effects were bi-directional, (i.e. increases and decreases). Only seven of the 60 animals exposed showed changes in the EEG recorded with surface electrodes. The data clearly indicate that (1) anesthetized animals do respond to a change in the external electric field around them, (2) the hypothalamus may contain special electro-receptors that, in turn, may alter various other physiological processes, and (3) the data indicates the need for further research to help government agencies to establish more adequate safety guidelines.
246

The Hypothermic Perfusion of the Isolated Thyroid Gland and Its Release of T₃ And T₄

Haenke, Richard F. 12 1900 (has links)
Investigations have shown that the hypothalamus and pituitary respond to decreases in body temperature by stimulating thyroid release of T_3 and T_4 . This study was designed to bypass the control of the hypothalamus and pituitary gland and investigate the direct effect of temperature on the thyroid gland. Hypothermia was by an in vivo isolated perfusion of the thyroid gland. Radio-immunoassay was used to measure T_3 and T_4 concentrations. Significant increases were observed in animals perfused between 36º and 25ºc. These results indicate that the thyroid gland is directly effected by decreased temperature and that it is capable of exerting control over body temperature independent of the hypothalamus and pituitary gland. Lower perfusion temperatures produced no significant increases.
247

Serotonin, Norepinephrine, and the Hypothalamic Ventromedial Nucleus: a Proposed Mechanism Mediating Hyperphagia and Obesity

McDermott, Kathy Howard 05 1900 (has links)
Serotonin has been implicated as a modulator of feeding behavior. This experiment was designed to alter brain serotonin levels through dietary means in hypothalamic ventromedial-lesioned and unlesioned rats. Daily food, water, and animal weights were measured. The purpose was to determine if VMH lesions altered the feeding pattern found in unlesioned rats. Although food intake for tryptophanenriched diets and tryptophan-deficient diets did not differ from their respective control groups, in some cases gross animal weights did differ significantly between experimental and control groups and between lesioned and unlesioned groups. A proposed model explains how a "low" energy signal and a "high" protein signal cycles amino acids through gluconeogenesis to comPensate for an energy deficit.
248

Rôle de l'habenula dans le circuit neuronal de l'autostimulation intracérébrale

Morissette, Marie-Claude January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
249

A importância da ação do hormônio do crescimento sobre os neurônios NPY/AgPR do hipotálamo. / The importance of the action of growth hormone on the hypothalamus NPY/AgRP neurons.

Couto, Gisele Cristina Lopes 09 April 2019 (has links)
O hormônio do crescimento (GH) age sobre tecidos periféricos e está relacionado com várias funções do organismo como, o controle do metabolismo, crescimento somático e processos celulares. Existem evidências que o GH pode exercer efeitos sobre o sistema nervoso central (SNC). Neurônios que co-expressam o neuropeptideo Y (NPY) e a proteína relacionada agouti (AgRP) estão localizados na parte ventromedial do núcleo arqueado do hipotálamo (ARH). Com intuito de estudar a ação do GH especificamente em neurônios NPY/AgRP, iremos utilizar o sistema Cre-LoxP que permite a manipulação gênica de maneira tecido-específica. Sendo assim, inativamos o receptor de GH em neurônios NPY/AgRP em animais fêmeas (GHR/AgRP KO). Como já é bem sabido, essa população de neurônios é conhecida como um potente estimulador do apetite, objetivamos verificar se a falta do receptor de GH (GHR), pode impactar fatores metabólicos. Na validação do modelo observamos que os neurônios NPY/AgRP são responsivos ao GH. As fêmeas GHR/AgRP KO não apresentam diferença no peso corporal. Além disso, não foram observadas diferenças na avaliação metabólica, como, tolerância à glicose, sensibilidade à insulina ou na resposta à leptina. Assim como não observamos diferenças significativa no gasto energético. Quando desafiadas à restrição alimentar, as fêmeas GHR/AgRP KO apresentam maior dificuldade de sustentar a glicemia e perdem mais peso que as fêmeas controles. Por outro lado, a resposta contra regulatória à hipoglicemia é similar entre os animais GHR/AgRP KO e os controles. Ainda, quando expostas ao estresse por contenção, as fêmeas GHR/AgRP KO apresentaram consumo alimentar similar aos animais do grupo controle. Um segundo grupo foi gerado com o intuito de analisarmos o equilíbrio energético e homeostase da glicose durante a gestação e lactação. Os grupos responderam de forma similar tanto ao que se refere ao equilíbrio energético, quanto em relação a glicemia. Por fim, após os aspectos relacionados ao metabolismo energético, utilizando a técnica de ensaio de flexão de três pontos, que analisa parâmetros relacionados ao metabolismo ósseo, observamos que o grupo controle e GHR/AgRP KO não apresentaram diferenças significantes nos parâmetros ósseos analisados. Nossos resultados sugerem que o GH exerce efeito sobre o metabolismo via neurônios NPY/AgRP apenas durante situações de estresse crônico como por exemplo, em situação de privação alimentar. / Growth hormone (GH) acts on peripheral tissues and is related to various functions of the organism such as metabolism control, somatic growth and cellular processes. There is evidence that GH may exert effects on the central nervous system (CNS). Neurons co-expressing the neuropeptide Y (NPY) and related protein agouti (AgRP) are located in the ventromedial part of the arcuate nucleus of the hypothalamus (ARH). In order to study the action of GH specifically on NPY/AgRP neurons, we will use the Cre-LoxP system that allows a genetic manipulation in a tissue-specific manner. Thus, we inactivate the GH receptor in NPY/AgRP neurons in female animals (GHR/AgRP KO). It is well established that this population of neurons is known as a potent stimulator of appetite, so we aim to verify if the lack of the GH receptor (GHR) can impact metabolic factors. In the validation of the model we observed that NPY/AgRP neurons are responsive to GH. GHR/AgRP KO females shown no difference in body weight. In addition, no differences were observed in metabolic evaluation, such as glucose tolerance, insulin sensitivity or leptin response. As well as we didn\'t observe significant differences in energy expenditure. When challenged with dietary restriction, GHR/AgRP KO females presented greater difficulty in sustaining glycemia and lost more weight than control females. On the other hand, the counter-regulatory response to hypoglycemia is similar between the GHR/AgRP KO and control animals. Also, when exposed to containment stress, the GHR/AgRP KO females presented similar food consumption to the control animals. A second group was generated with the purpose of analyzing the energy balance and glucose homeostasis during pregnancy and lactation. The groups responded similarly to both energy balance and glycemia. Finally, after the aspects related to energy metabolism, using the three-point flexural test technique, which analyzes parameters related to bone metabolism, we observed that the control and GHR/AgRP KO groups didn\'t present significant differences in the analyzed bone parameters. Our results suggest that GH exerts an effect on the metabolism via NPY/AgRP neurons only during situations of chronic stress such as food deprivation.
250

Brain Signaling Mechanisms Through Which Dopamine Stimulates Maternal Behavior in Rats

Zhang, Ke-You January 2008 (has links)
Thesis advisor: Michael Numan / This paper will review research from our laboratory dealing with the neural basis of maternal behavior in rats. Specifically, my work investigates hypothalamic interaction with the mesolimbic dopamine system and the regulation of maternal responsiveness. Recent evidence has shown that increased dopamine activity in the nucleus accumbens, a major terminus of the mesolimbic dopamine pathway, results in a facilitation of maternal behavior in female rats who have been partially primed by hormones. However, the way in which dopamine and hormones act on these neural circuits is unclear. We hypothesize that one of these hormones, estradiol, acts on the MPOA and mesolimbic dopamine system through similar intracellular mechanisms as dopamine. My research goals are twofold: (1) to discern which G-protein coupled pathway dopamine utilizes to act in the nucleus accumbens and (2) to investigate whether estradiol is having rapid effects at the cell membrane and whether these effects are mediated by G-protein coupled receptors. / Thesis (BA) — Boston College, 2008. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Psychology. / Discipline: College Honors Program.

Page generated in 0.0702 seconds