Spelling suggestions: "subject:"(risco)plasticity"" "subject:"(disco)plasticity""
1 |
Effet des contraintes et de la température sur l'intégrité des ciments des puits pétroliers / Effect of stress and temperature on the integrity of cement of oil wellsVu, Manh Huyen 23 February 2012 (has links)
Durant la phase de construction des puits pétrolier, le ciment est coulé dans l'espace annulaire entre le cuvelage et la roche environnante. La gaine de ciment a pour but de tenir le cuvelage, garantir l'étanchéité des puits pétroliers, ou des réservoirs de stockage de CO2, et de protéger le cuvelage de la corrosion. Au cours de la vie du puits, cette gaine de ciment est soumise tout le long du puits à des sollicitations thermiques et mécaniques qui varient au cours du temps et qui peuvent modifier ses propriétés et altérer son étanchéité. L'objet de cette thèse est d'étudier l'effet de la température et des contraintes sur les propriétés mécaniques de la pâte de ciment en cours de prise et de la pâte de ciment durcie. L'approche est basée sur une étude expérimentale qui combine des essais calorimétriques, des mesures de vitesse des ondes et des essais oedométriques avec le système des cellules STCA (Slurry To Cement Analyzer) sur le ciment en cours de prise ainsi que des essais de compression uniaxiale et triaxiale sur la pâte de ciment durcie. Les résultats expérimentaux ont montré que la température et la pression accélèrent la cinétique d'hydratation et que la température affecte significativement les propriétés élastiques du matériau tandis que la pression ne les influence pas pour une gamme de pression limitée à 20MPa. Une modélisation de la cinétique d'hydratation associée à une technique d'homogénéisation est proposée afin d'interpréter les essais. On a mis aussi en évidence que lorsque la prise se fait sous contraintes mécaniques, des déformations irréversibles peuvent se développer dans la pâte de ciment, ce qui peut conduire à la formation d'un micro-annulaire entre la gaine ciment, le cuvelage et la formation géologique. Le comportement différé de la pâte de ciment durcie a été étudié à partir d'essais de fluage uniaxiaux et d'essais de compression isotrope. Les essais ont mis en évidence que le fluage sous chargement uniaxial est plus important pour un ciment hydraté à une température plus élevée, ce qui est attribué à une microstructure plus hétérogène. Un modèle visco-endommageable permettant de reproduire les phases de fluage primaire et tertiaire a été développé. Les essais de compression isotrope drainés et non-drainé isothermes sous forte contrainte ont montré un comportement différé avec hystérésis lors de cycles décharge-recharge. Ces essais ont été analysés à partir d'un modèle de comportement poro-visco-plastique. Le comportement élastoplastique à court terme a été abordé à l'aide des essais triaxiaux sous chargement déviatorique drainé. Ces essais ont mis en évidence que la température d'essai affecte fortement la surface de charge initiale et les déformations tandis qu'elle ne modifie pas significativement la surface de rupture. Un modèle de plasticité avec une surface de charge fermée et un écrouissage dépendant des déformations plastiques accumulées a été développé pour décrire ces essais. Enfin, une étude préliminaire sur les effets des cycles mécaniques et thermiques a été menée. Des cycles thermiques ne dépassant pas la température d'hydratation ne semblent pas affecter les propriétés mécaniques du matériau. Cependant, une dégradation très rapide avec le nombre de cycles mécaniques a été mise en évidence lorsque la contrainte dépasse 60% de la résistance en compression simple / During the construction phase of oil wells, a cement slurry is pumped into the annular space between the casing and the rock. The cement sheath aims to support the casing, provide zonal isolation in the well and reservoirs of CO2 storage and protect the casing against corrosion. During the life of the well, the cement is submitted to various thermal and mechanical solicitations along the well that can modify its mechanical properties and damage its sealing performance. The aim of this thesis is to study the effect of temperature and stresses on the mechanical properties of cement paste during hydration and in the hardened state. The used approach is based on an experimental study that combine the calorimetric tests, waves velocity measurement and oedometric tests in STCA system (Slurry To Cement Analyzer) on cement paste during hydration as well as the uniaxial and triaxial compression tests on hardened cement paste. The experimental results showed that temperature and pressure accelerate the kinetics of hydration. Temperature affects significantly the elastic properties of the material whereas the pressure does not modify them for a range of pressure limited to 20MPa. A hydration kinetics modelling associated to a homogenization method is used to interpret the tests. It is shown that for hydration under stress, the irreversible strains can evolve in the cement paste and conduct to the formation of a micro-annular between the cement sheath, the casing and geological formation. The time-dependent behaviour of hardened cement paste is studied using creep tests under uniaxial loading and also from the results of isotropic compression tests. The results show that the uniaxial creep is more important for cements hydrated at higher temperatures, which is attributed to a more heterogeneous microstructure. A visco-damaged model allowing to reproduce the primary creep and tertiary creep is developed and calibrated. Isothermal isotropic drained and undrained compression tests show a time-dependent behaviour with hysteresis during unloading-reloading cycles. These tests are analyzed on the basis of a poro-visco-plastic model. The elastoplastic behaviour in short terms is studied from triaxial tests under drained deviatoric loading. These tests bring to light that the test temperature affects highly the initial yield surface and the strains but it does not significantly modify the failure surface. A model of plasticity with a closed yield surface and hardening, depending on the accumulated plastic strains is developed to describe these tests. Finally, a preliminary study on the effect of mechanical and thermal loading cycles is performed. The thermal loading cycles with temperatures lower than the hydration temperature seem to do not affect the mechanical properties of the material. The mechanical loading cycles show a rapid degradation with the number of loading cycles when the axial stress exceeds 60% of the uniaxial strength
|
2 |
Modelos viscosos em mecânica dos solos: análise de uma equação visco-hipoplástica. / Visco models in soil mechanics: a visco-hypoplastic equation analysis.Cogliati, Belén 03 October 2011 (has links)
Cogliati, Belén. (2011). Modelos viscosos em mecânica dos solos: análise de uma equação visco-hipoplástica. Dissertação de Mestrado, Escola Politécnica da Universidade de São Paulo, São Paulo. Esta dissertação estuda o comportamento de um modelo visco-hipoplástico proposto por Niemunis (2002), com as funções constitutivas da equação hipoplástica de Nader (2003). Para entender o papel da viscosidade no comportamento do solo são discutidos o adensamento secundário, a influência da velocidade de deformação na resistência não-drenada e a variação do coeficiente de empuxo com o tempo. Como etapa preliminar, são apresentados os modelos reológicos simples em uma dimensão, formados por um só elemento (modelos de Hooke, Newton e Saint-Venant) e modelos compostos pela combinação desses elementos (modelos de Maxwell, Bingham, Kelvin- Voigt, sólido linear padrão e visco-plástico com endurecimento). São deduzidas as equações de fluência e relaxação para todos esses modelos. Em três dimensões, são apresentadas as formulações do modelo visco-hipoplástico de Niemunis (2002) com as funções constitutivas de Nader (2003). São deduzidas as expressões simplificadas desse modelo para ensaios triaxiais. Em seguida, as equações são aplicadas à simulação de ensaios de compressão isotrópica e compressão não-drenada, com o objetivo de investigar a relaxação e a fluência bem como para analisar a influência dos parâmetros na resposta do modelo. / This thesis studies the behavior of the visco-hypoplastic model proposed by Niemunis, using Nader\'s hypoplastic constitutive equations. To understand the importance of viscosity in soil behavior the following topics are first examined: secondary consolidation, strain rate effects on undrained strength and the time variation of the coefficient of lateral pressure at rest. As a preliminary step, the present work discusses one-dimensional rheological models formed by a single element (Hooke\'s, Newton\'s and Saint-Venant\'s models) or by the combination of these elements (Maxwell\'s, Bingham\'s, Kelvin-Voigt\'s models; the standard linear solid model and the visco-plastic hardening model). For all the rheological models creep and relaxation are investigated. Niemunis\' visco-hypoplastic model with Nader\'s constitutive equations is presented next. First, simplified expressions of this model for triaxial test are deduced. Then the equations are applied to the simulation of isotropic compression and undrainded compression tests, with the aim of investigating relaxation and creep as well as of analyzing the influence of each parameter on the model response.
|
3 |
Matematické modelování viskoplastických materiálů / Matematické modelování viskoplastických materiálůTouška, Kryštof January 2012 (has links)
In the first chapter of the thesis we present an introduction to the visco- plasticity and overview of the presented problems. The constitutive relation for Bingham fluid is derived and in the second chapter. Further there is demon- strated a procedure of proving existence and uniqueness with classical varia- tional method. This method is compared with the same process using modern implicit theory. The last chapter starts with summary of used problem formu- lations and used software. It is then followed by the main part with results of numerical simulations, both for the purpose of used formulations comparison and then verification of the preferred one in more complicated simulations. We expect a possible application of tested approaches on different materials. 1
|
4 |
Modelos viscosos em mecânica dos solos: análise de uma equação visco-hipoplástica. / Visco models in soil mechanics: a visco-hypoplastic equation analysis.Belén Cogliati 03 October 2011 (has links)
Cogliati, Belén. (2011). Modelos viscosos em mecânica dos solos: análise de uma equação visco-hipoplástica. Dissertação de Mestrado, Escola Politécnica da Universidade de São Paulo, São Paulo. Esta dissertação estuda o comportamento de um modelo visco-hipoplástico proposto por Niemunis (2002), com as funções constitutivas da equação hipoplástica de Nader (2003). Para entender o papel da viscosidade no comportamento do solo são discutidos o adensamento secundário, a influência da velocidade de deformação na resistência não-drenada e a variação do coeficiente de empuxo com o tempo. Como etapa preliminar, são apresentados os modelos reológicos simples em uma dimensão, formados por um só elemento (modelos de Hooke, Newton e Saint-Venant) e modelos compostos pela combinação desses elementos (modelos de Maxwell, Bingham, Kelvin- Voigt, sólido linear padrão e visco-plástico com endurecimento). São deduzidas as equações de fluência e relaxação para todos esses modelos. Em três dimensões, são apresentadas as formulações do modelo visco-hipoplástico de Niemunis (2002) com as funções constitutivas de Nader (2003). São deduzidas as expressões simplificadas desse modelo para ensaios triaxiais. Em seguida, as equações são aplicadas à simulação de ensaios de compressão isotrópica e compressão não-drenada, com o objetivo de investigar a relaxação e a fluência bem como para analisar a influência dos parâmetros na resposta do modelo. / This thesis studies the behavior of the visco-hypoplastic model proposed by Niemunis, using Nader\'s hypoplastic constitutive equations. To understand the importance of viscosity in soil behavior the following topics are first examined: secondary consolidation, strain rate effects on undrained strength and the time variation of the coefficient of lateral pressure at rest. As a preliminary step, the present work discusses one-dimensional rheological models formed by a single element (Hooke\'s, Newton\'s and Saint-Venant\'s models) or by the combination of these elements (Maxwell\'s, Bingham\'s, Kelvin-Voigt\'s models; the standard linear solid model and the visco-plastic hardening model). For all the rheological models creep and relaxation are investigated. Niemunis\' visco-hypoplastic model with Nader\'s constitutive equations is presented next. First, simplified expressions of this model for triaxial test are deduced. Then the equations are applied to the simulation of isotropic compression and undrainded compression tests, with the aim of investigating relaxation and creep as well as of analyzing the influence of each parameter on the model response.
|
5 |
Análise numérica bidimensional de sólidos com comportamento visco-elasto-plástico em grandes deformações e situações de contato / Two-dimensional numerical analysis of solids with visco-elasto-plastic behavior under large strains and contact situationsCarvalho, Péricles Rafael Pavão 26 March 2019 (has links)
Motivado por diversos processos de manufatura, tais como conformação de metais a frio ou mesmo manufatura aditiva, este trabalho consiste no desenvolvimento de um código computacional para a simulação numérica de problemas bidimensionais que abordam três tipos de não-linearidade: a geométrica, presente em situações de grandes deslocamentos; a física, presente no modelo constitutivo do material; e a de contato. Na primeira etapa, desenvolve-se um programa para análise dinâmica bidimensional de sólidos elásticos, utilizando a abordagem posicional do método dos elementos finitos, que engloba naturalmente a não-linearidade geométrica em sua formulação. Em seguida, implementam-se modelos constitutivos não-elásticos para problemas com grandes deformações. No modelo elastoplástico, adota-se o critério de von Mises com encruamento cinemático baseado na lei de Armstrong-Frederick. Essa formulação é então generalizada para o caso visco-plástico, onde é considerado o modelo de Perzyna em conjunto com a lei de Norton. No caso visco-elástico, utiliza-se uma formulação que parte do modelo reológico de Zener. Por fim, apresenta-se um modelo visco-elasto-plástico que consiste no acoplamento dos modelos visco-elástico e visco-plástico descritos anteriormente. Em todos os casos, utiliza-se a decomposição multiplicativa do gradiente da função mudança de configuração. Com respeito à aplicação 2D, consideram-se as hipóteses de estado plano de deformações e estado plano de tensões, onde a última é resolvida numericamente por um procedimento local de Newton-Raphson. Para o problema de contato, aplica-se a estratégia Nó-a-Segmento, sendo as condições de não-penetração impostas com a introdução de multiplicadores de Lagrange. A formulação é testada em cada uma das etapas por meio de exemplos numéricos de verificação. Além disso, para mostrar as potencialidades do código desenvolvido, são propostos diversos exemplos numéricos, sendo alguns inspirados por processos de manufatura existentes. Nesses exemplos, são estudados os efeitos de diferentes parâmetros dos materiais e diferentes taxas de deformação na resposta numérica, permitindo uma análise do comportamento dissipativo decorrente da plastificação e da viscosidade, incluindo a influência desses sobre o amortecimento dinâmico. / Motivated by several manufacturing processes, such as cold metal forming or even additive manufacturing, in this work we develop a computational code for numerical simulation of two-dimensional problems addressing three types of nonlinearities: geometric nonlinearity, present in large displacements situations; physical non-linearity, present in the material constitutive model; and contact non-linearity. In the first step, we develop a computational program for dynamic analysis of two-dimensional elastic solids using the positional finite element method, which naturally takes into account geometric non-linearity in its formulation. Following, we implement inelastic constitutive models for large strain problems. In the elasto-plastic model, we adopt von Mises yeld criteria and kinematic hardening based on the Armstrong-Frederick law. The formulation is then generalized to the visco-plastic case, where we consider Perzyna model associated with Norton\'s law. In the visco-elastic case, Zener\'s rheological model is employed. Finally, we present a visco-elasto-plastic model by coupling the visco-elastic and visco-plastic models described previously. In every case, the multiplicative decomposition of the deformation gradient is employed. Regarding the 2D application, we consider both plane strain and plane stress hypothesis, where the latter is solved numerically by a local Newton-Raphson procedure. For the contact problem, we employ the Node-to-Segment strategy, imposing non-penetration conditions with the introduction of Lagrange multipliers. The resulting computational code is tested in each step by means of numerical verification examples. In addition, to show the potentialities of the developed code, several numerical examples are proposed, some of which inspired by existing manufacturing processes. On these examples, we study the effects of different material parameters and strain rates on the numerical response, allowing an analysis of the dissipative behavior due to plasticity and viscosity, including the influence of these on the dynamic damping.
|
6 |
Simulation of large deformation response of polycrystals, deforming by slip and twinning, using the viscoplastic Ø-model / Simulation du comportement mécanique en grandes déformations viscoplastiques des matériaux polycristallins en considérant le glissement et le maclage cristallographiques et en utilisant le modèle-phiWen, Wei 05 May 2013 (has links)
Le calcul de la réponse macroscopique des agrégats polycristallins à partir des propriétés de leurs constituants est un problème important en mécanique des matériaux. Lors de la déformation plastique, les grains du matériau sont réorientés. Une texture cristallographique, responsable de l'anisotropie, peut alors se développer. Donc, la modélisation de l'évolution de la texture est importante afin de prévoir les effets d'anisotropie lors des procédés industriels.La formulation de la plasticité des polycristaux métalliques a fait l'objet de nombreuses études et différentes approches d’homogénéisation ont été proposées. En 2008, Ahzi et M'Guil ont développé un modèle viscoplastique, baptisé le modèle-phi. Ce modèle prend en compte les effets d'interaction entre les grains sans passer par la théorie de l'inclusion d’Eshelby. Dans ce travail, le modèle-phi a été appliqué à différentes structures cristallographiques et sous différentes conditions de chargement. Le mécanisme de maclage a été pris en compte. Pour le laminage des métaux CFC, la transition de texture du type cuivre au type laiton a été étudiée. L’essai de cisaillement des métaux CFC a été également étudié. Nous montrons que le modèle est capable de prédire une transition de texture de cisaillement caractérisant une gamme de métaux CFC ayant une EDE élevée/moyenne à une EDE faible. Dans une étude dédiée aux métaux CC, nous avons comparé nos résultats à ceux prédits par un modèle auto-cohérent. Nous présentons également une comparaison avec des textures expérimentales de laminage à froid issues de la littérature. Le modèle a également été étendu aux métaux HC. Nous avons simulé le comportement de déformation d’un alliage de magnésium pour différentes niveaux d'interaction inter-granulaire. Nous montrons que le modèle prédit des résultats en bon accord avec les résultats expérimentaux. / The computation of the macroscopic response of polycrystalline aggregates from the properties of their single-crystal is a main problem in materials mechanics. During the mechanical deformation processing, all the grains in the polycrystalline material sample are reoriented. A crystallographic texture may thus be developed which is responsible for the material anisotropy. Therefore, the modeling of the texture evolution is important to predict the anisotropy effects present in industrial processes. The formulation of polycrystals plasticity has been the subject of many studies and different approaches have been proposed. Ahzi and M’Guil developed a viscoplastic phi-model. This model takes into account the grains interaction effects without involving the Eshelby inclusion problems.In this thesis, the phi-model was applied to different crystallographic structures and under different loading conditions. The mechanical twinning has been taken into account in the model. The FCC rolling texture transition from copper-type to brass-type texture is studied. The shear tests in FCC metals are also studied. The predicted results are compared with experimental shear textures for a range of metals having a high SFE to low SFE. For BCC metal, we compare our predicted results with those predicted by the VPSC model. We study the slip activities, texture evolutions and the evolution of yield loci. We also present a comparison with experimental textures from literatures for several BCC metals under cold rolling tests. The model has also been extended to HCP metals. We predict the deformation behavior of the magnesium alloy for different interaction strengths. We also compare our predicted results with experimental data from literatures. We show that the results predicted by the phi-model are in good agreement with the experimental ones.
|
7 |
Simulação numérica tridimensional de processos de deformação em bacias sedimentares / Tridimensional numerical simulation of deformation processes in sedimentary basinsBrüch, André Reinert January 2016 (has links)
O desenvolvimento de modelos teóricos e computacionais para simular a história de deformação e reconstruir o estado termoporomecânico de bacias sedimentares é de grande interesse da indústria do petróleo. A compactação dos sedimentos, o escoamento dos fluidos e o fluxo térmico são processos de grande importância que ocorrem ao longo da diagênese. Fenômenos puramente mecânicos prevalecem nas camadas superiores da bacia associados à expulsão do fluido e ao rearranjo das partículas sólidas, enquanto a compactação químico-mecânica resultante dos processos de pressão-solução intergranular é dominante nas camadas mais profundas, onde as tensões e temperaturas são maiores. Estes processos de deformação podem ser significativamente afetados pela sua evolução térmica, já que o calor altera a viscosidade dos fluidos e as propriedades físico-químicas dos minerais. O objetivo deste trabalho é desenvolver um modelo constitutivo para o material poroso saturado no contexto da termoporomecânica finita e uma ferramenta computacional com uma interface de multiprocessamento em memória compartilhada baseada no método dos elementos finitos para representar os processos de formação e compactação gravitacional de uma bacia sedimentar. As deformações mecânicas e químico-mecânicas são representadas pela plasticidade e viscoplasticidade, respectivamente. Uma característica fundamental do modelo está relacionada à mudança das propriedades do material poroso em função da variação de temperatura e da evolução de caráter irreversível da sua microestrutura. Simulações numéricas realizadas em condições oedométricas permitem investigar a evolução do modelo constitutivo e do comportamento global da bacia, onde é possível verificar o caráter interdependente dos diferentes processos termoporomecânicos envolvidos. A capacidade da ferramenta computacional de representar problemas tridimensionais complexos é demonstrada a partir de uma história de deposição sedimentar associada a camadas estratigráficas com espessuras variáveis. / Development of theoretical and numerical models to simulate the deformation history and rebuild the thermoporomechanical state of sedimentary basins is of great interest for the oil industry. Compaction of sediments, fluid and thermal flows are fundamental coupled processes during diagenesis. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemo-mechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies the viscosity of fluids and physicochemical properties of minerals. The aim of the present contribution is to provide a constitutive model for saturated porous media in the context of finite thermoporomechanics and a numerical tool with a shared memory multiprocessing interface based on the finite element method to deal with depositional phase and gravitational compaction modeling of sedimentary basins. Purely mechanical and chemo-mechanical deformations are respectively modeled by means of plasticity and viscoplasticity. A key feature of the model is related to the evolution of the sediment material properties associated with temperature and large irreversible porosity changes. The evolution of the constitutive model and the overall behavior of the basin are provided by numerical simulations performed under oedometric conditions. The coupled nature of the thermoporomechanical processes is investigated. A depositional history with varying stratigraphic layers is proposed to demonstrate the ability of the numerical tool to model complex 3D problems.
|
8 |
Simulation of large deformation response of polycrystals, deforming by slip and twinning, using the viscoplastic Ø-modelWen, Wei 05 May 2013 (has links) (PDF)
The computation of the macroscopic response of polycrystalline aggregates from the properties of their single-crystal is a main problem in materials mechanics. During the mechanical deformation processing, all the grains in the polycrystalline material sample are reoriented. A crystallographic texture may thus be developed which is responsible for the material anisotropy. Therefore, the modeling of the texture evolution is important to predict the anisotropy effects present in industrial processes. The formulation of polycrystals plasticity has been the subject of many studies and different approaches have been proposed. Ahzi and M'Guil developed a viscoplastic phi-model. This model takes into account the grains interaction effects without involving the Eshelby inclusion problems.In this thesis, the phi-model was applied to different crystallographic structures and under different loading conditions. The mechanical twinning has been taken into account in the model. The FCC rolling texture transition from copper-type to brass-type texture is studied. The shear tests in FCC metals are also studied. The predicted results are compared with experimental shear textures for a range of metals having a high SFE to low SFE. For BCC metal, we compare our predicted results with those predicted by the VPSC model. We study the slip activities, texture evolutions and the evolution of yield loci. We also present a comparison with experimental textures from literatures for several BCC metals under cold rolling tests. The model has also been extended to HCP metals. We predict the deformation behavior of the magnesium alloy for different interaction strengths. We also compare our predicted results with experimental data from literatures. We show that the results predicted by the phi-model are in good agreement with the experimental ones.
|
9 |
Simulação numérica tridimensional de processos de deformação em bacias sedimentares / Tridimensional numerical simulation of deformation processes in sedimentary basinsBrüch, André Reinert January 2016 (has links)
O desenvolvimento de modelos teóricos e computacionais para simular a história de deformação e reconstruir o estado termoporomecânico de bacias sedimentares é de grande interesse da indústria do petróleo. A compactação dos sedimentos, o escoamento dos fluidos e o fluxo térmico são processos de grande importância que ocorrem ao longo da diagênese. Fenômenos puramente mecânicos prevalecem nas camadas superiores da bacia associados à expulsão do fluido e ao rearranjo das partículas sólidas, enquanto a compactação químico-mecânica resultante dos processos de pressão-solução intergranular é dominante nas camadas mais profundas, onde as tensões e temperaturas são maiores. Estes processos de deformação podem ser significativamente afetados pela sua evolução térmica, já que o calor altera a viscosidade dos fluidos e as propriedades físico-químicas dos minerais. O objetivo deste trabalho é desenvolver um modelo constitutivo para o material poroso saturado no contexto da termoporomecânica finita e uma ferramenta computacional com uma interface de multiprocessamento em memória compartilhada baseada no método dos elementos finitos para representar os processos de formação e compactação gravitacional de uma bacia sedimentar. As deformações mecânicas e químico-mecânicas são representadas pela plasticidade e viscoplasticidade, respectivamente. Uma característica fundamental do modelo está relacionada à mudança das propriedades do material poroso em função da variação de temperatura e da evolução de caráter irreversível da sua microestrutura. Simulações numéricas realizadas em condições oedométricas permitem investigar a evolução do modelo constitutivo e do comportamento global da bacia, onde é possível verificar o caráter interdependente dos diferentes processos termoporomecânicos envolvidos. A capacidade da ferramenta computacional de representar problemas tridimensionais complexos é demonstrada a partir de uma história de deposição sedimentar associada a camadas estratigráficas com espessuras variáveis. / Development of theoretical and numerical models to simulate the deformation history and rebuild the thermoporomechanical state of sedimentary basins is of great interest for the oil industry. Compaction of sediments, fluid and thermal flows are fundamental coupled processes during diagenesis. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemo-mechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies the viscosity of fluids and physicochemical properties of minerals. The aim of the present contribution is to provide a constitutive model for saturated porous media in the context of finite thermoporomechanics and a numerical tool with a shared memory multiprocessing interface based on the finite element method to deal with depositional phase and gravitational compaction modeling of sedimentary basins. Purely mechanical and chemo-mechanical deformations are respectively modeled by means of plasticity and viscoplasticity. A key feature of the model is related to the evolution of the sediment material properties associated with temperature and large irreversible porosity changes. The evolution of the constitutive model and the overall behavior of the basin are provided by numerical simulations performed under oedometric conditions. The coupled nature of the thermoporomechanical processes is investigated. A depositional history with varying stratigraphic layers is proposed to demonstrate the ability of the numerical tool to model complex 3D problems.
|
10 |
Simulação numérica tridimensional de processos de deformação em bacias sedimentares / Tridimensional numerical simulation of deformation processes in sedimentary basinsBrüch, André Reinert January 2016 (has links)
O desenvolvimento de modelos teóricos e computacionais para simular a história de deformação e reconstruir o estado termoporomecânico de bacias sedimentares é de grande interesse da indústria do petróleo. A compactação dos sedimentos, o escoamento dos fluidos e o fluxo térmico são processos de grande importância que ocorrem ao longo da diagênese. Fenômenos puramente mecânicos prevalecem nas camadas superiores da bacia associados à expulsão do fluido e ao rearranjo das partículas sólidas, enquanto a compactação químico-mecânica resultante dos processos de pressão-solução intergranular é dominante nas camadas mais profundas, onde as tensões e temperaturas são maiores. Estes processos de deformação podem ser significativamente afetados pela sua evolução térmica, já que o calor altera a viscosidade dos fluidos e as propriedades físico-químicas dos minerais. O objetivo deste trabalho é desenvolver um modelo constitutivo para o material poroso saturado no contexto da termoporomecânica finita e uma ferramenta computacional com uma interface de multiprocessamento em memória compartilhada baseada no método dos elementos finitos para representar os processos de formação e compactação gravitacional de uma bacia sedimentar. As deformações mecânicas e químico-mecânicas são representadas pela plasticidade e viscoplasticidade, respectivamente. Uma característica fundamental do modelo está relacionada à mudança das propriedades do material poroso em função da variação de temperatura e da evolução de caráter irreversível da sua microestrutura. Simulações numéricas realizadas em condições oedométricas permitem investigar a evolução do modelo constitutivo e do comportamento global da bacia, onde é possível verificar o caráter interdependente dos diferentes processos termoporomecânicos envolvidos. A capacidade da ferramenta computacional de representar problemas tridimensionais complexos é demonstrada a partir de uma história de deposição sedimentar associada a camadas estratigráficas com espessuras variáveis. / Development of theoretical and numerical models to simulate the deformation history and rebuild the thermoporomechanical state of sedimentary basins is of great interest for the oil industry. Compaction of sediments, fluid and thermal flows are fundamental coupled processes during diagenesis. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemo-mechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies the viscosity of fluids and physicochemical properties of minerals. The aim of the present contribution is to provide a constitutive model for saturated porous media in the context of finite thermoporomechanics and a numerical tool with a shared memory multiprocessing interface based on the finite element method to deal with depositional phase and gravitational compaction modeling of sedimentary basins. Purely mechanical and chemo-mechanical deformations are respectively modeled by means of plasticity and viscoplasticity. A key feature of the model is related to the evolution of the sediment material properties associated with temperature and large irreversible porosity changes. The evolution of the constitutive model and the overall behavior of the basin are provided by numerical simulations performed under oedometric conditions. The coupled nature of the thermoporomechanical processes is investigated. A depositional history with varying stratigraphic layers is proposed to demonstrate the ability of the numerical tool to model complex 3D problems.
|
Page generated in 0.0534 seconds