• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 47
  • 33
  • 20
  • 12
  • 10
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 430
  • 72
  • 64
  • 63
  • 59
  • 50
  • 44
  • 43
  • 39
  • 39
  • 39
  • 37
  • 36
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Characterization of Electrostatic Potential and Trapped Charge in Semiconductor Nanostructures using Off-Axis Electron Holography

January 2015 (has links)
abstract: Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/LixGe core/shell NW. The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V±0.2V and 55±3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7±0.6V and 46±2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations. The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0±0.3V and 0.5±0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n--p junction transition region and possible surface charge, were also systematically studied using simulations. Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4±0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations. The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li content. A model was proposed to explain the lower measured Ge potential, and the trapped electron density in Ge core was calculated to be 3×1018 electrons/cm3. The Li amount during lithiation was also calculated using MIP and volume ratio, indicating that it was lower than the fully lithiated phase. / Dissertation/Thesis / Doctoral Dissertation Physics 2015
52

Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires

Herchig, Ryan Christopher 07 April 2017 (has links)
Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first-principles-based modeling of electric-field-induced phenomena in ferroelectric/antiferroelectric nanowires in order to address the aforementioned questions. The effective Hamiltonian approach is a well validated model which reliably reproduces many static and dynamic properties of perovskite ferroelectric and antiferroelectrics. We begin by developing an effective Hamiltonian for the prototypical ferroelectric potassium niobate, a lead-free material which undergoes multiple structural phase transitions. Density functional theory calculations within the LDA and GGA are used to determine the effective Hamiltonian parameters for KNbO3 . By simulating an annealing within an NPT ensemble, we find that the KNbO3 parameters found from first principles underestimate the experimental transition temperatures. We apply a universal scaling technique to all of the first-principles derived parameters and are thus able to more accurately reproduce the transition temperatures predicted by experiment as well as a number of other static and dynamic properties of potassium niobate. Having determined the parameters of the effective Hamiltonian for KNbO3 , we use this as well as previously determined effective Hamiltonian parameters for PbTiO3 and BaTiO3 to study the electrocaloric effect in nanowires made of these materials. We determined that, in general, the electrocaloric effect in ferroelectric nanowires is diminished due to the reduced correlation length resulting from the finite lateral dimensions. However, certain temperature ranges were identified near ambient temperature where the electrocaloric response is enhanced with respect to bulk. The effective Hamiltonian model was also employed to study the response of the spontaneous polarization and temperature to tailored electric fields. We identified a novel means of reversing the polarization in ferroelectric nanowires which could potentially be used in the design of nanoscale THz sensors of ultra high density ferroelectric memory devices. While the soft mode frequency dynamics of bulk ferroelectrics under various mechanical boundary conditions have been studied extensively, the effects of different mechanical boundary conditions on the soft mode dynamics in ferroelectric nanowires remains relatively under-explored. We conduct a comprehensive study on PbTiO3 nanowires which explores the effects of hydrostatic pressure, applied uniaxial stress, and biaxial strain on the structural properties, transition temperatures, and soft mode dynamics. We found that depending on the particular type of mechanical boundary condition, the nanowire can exhibit either monodomain or polydomain vortex phases, drastically different from what is found for PbTiO3 bulk and originates from the critical role of the depolarizing field. We found a rich variety of dipole patterns, particularly for the polydomain states with the dipoles arranged in single and double polarization vortices depending on the type and strength of the mechanical boundary conditions. The soft mode frequency dynamics are also strongly affected by the mechanical boundary conditions. In particular we find that the frequency of the E mode in the P4mm phase is significantly larger than the A 1 mode which is in contrast with bulk PbTiO3 . This striking finding is attributed to the presence of the depolarizing field along the truncated directions which leads to mode hardening. In the last chapter, we identify the emergence of a ferroelectric state in antiferroelectric PbZrO3 nanowires and describe possible ways to stabilize the ferroelectric phase. Finally, we explore how our findings could potentially be used to improve existing technologies such as energy storage devices and electromechanical actuators as well as future technologies like solid state cooling devices.
53

Study of III-nitride Nanowire Growth and Devices on Unconventional Substrates

Prabaswara, Aditya 10 1900 (has links)
III-Nitride materials, which consist of AlN, GaN, InN, and their alloys have become the cornerstone of the third generation compound semiconductor. Planar IIINitride materials are commonly grown on sapphire substrates which impose several limitations such as challenging scalability, rigid substrate, and thermal and lattice mismatch between substrate and material. Semiconductor nanowires can help circumvent this problem because of their inherent capability to relieve strain and grow threading dislocation-free without strict lattice matching requirements, enabling growth on unconventional substrates. This thesis aims to investigate the microscopic characteristics of the nanowires and expand on the possibility of using transparent amorphous substrate for III-nitride nanowire devices. In this work, we performed material growth, characterization, and device fabrication of III-nitride nanowires grown using molecular beam epitaxy on unconventional substrates. We first studied the structural imperfections within quantum-disks-in-nanowire structure grown on silicon and discovered how growth condition could affect the macroscopic photoluminescence behavior of nanowires ensemble. To expand our work on unconventional substrates, we also used an amorphous silica-based substrate as a more economical substrate for our nanowire growth. One of the limitations of growing nanowires on an insulating substrate is the added fabrication complexity required to fabricate a working device. Therefore, we attempted to overcome this limitation by 5 investigating various possible GaN nanowire nucleation layers, which exhibits both transparency and conductivity. We employed various nucleation layers, including a thin TiN/Ti layer, indium tin oxide (ITO), and Ti3C2 MXene. The structural, electrical, and optical characterizations of nanowires grown on different nucleation layers are discussed. From our work, we have established several key processes for transparent nanowire device applications. A nanowire LED emitting at ∼590 nm utilizing TiN/Ti interlayer is presented. We have also established the growth process for n-doped GaN nanowires grown on ITO and Ti3C2 MXene with transmittance above 40 % in the visible wavelength, which is useful for practical applications. This work paves the way for future devices utilizing low-cost substrates, enabling further cost reduction in III-nitride device fabrication.
54

ELECTRICAL AND OPTICAL CHARACTERIZATION OF GaAs NANOWIRE ARRAYS

Zhang, Junpeng January 2014 (has links)
III-V semiconductor nanowires (NWs) are often referred to as one-dimensional (1-D) materials because of their high aspect ratios and excellent quantum confinement properties. Spacing between NWs in a NW array is on the order of ~102 nm, which is close to the wavelength of visible light. These properties make NWs have excellent light trapping effects and suitability for optoelectronic applications, such as solar cells and photodetectors. Gallium arsenide (GaAs) has high electron mobility and a band gap of 1.424 eV, which makes it an ideal material for solar cells. Since GaAs NWs can be grown on either GaAs substrates or foreign substrates such as silicon (Si) substrates without lattice mismatch issues, they are being widely studied for photovoltaic applications. GaAs NWs could be achieved by the vapor-liquid-solid (VLS) method in molecular beam epitaxy (MBE), or etching a GaAs substrate by inductively coupled plasma reactive ion etching (ICP-RIE). Cyclotene was used as the filling material in gaps between NWs to support a low sheet resistance front contact and prevent shunts. An In/ITO contact was developed to achieve a lower contact resistance to n-GaAs NWs than an ITO contact, while it had a similar transmittance as ITO. A crack test also showed that insertion of a thin indium layer between ITO and GaAs NWs solved the ITO crack issue during heating that resulted from a large difference in coefficients of thermal expansion (CTE) between ITO and cyclotene. Energy dispersive x-ray spectrometry (EDS) was used to determine indium diffusion into NWs, and it showed that indium diffusion was not so significant to damage the features in NWs. A novel method to achieve substrate-free NW arrays by combining ICP-RIE and selective chemical etching together was also introduced. This method made it possible to measure the transmittance of NW arrays and contact layers for the first time. Absorption of GaAs NW arrays with various NW diameters and periods were also determined experimentally. / Thesis / Master of Applied Science (MASc)
55

Simulation and Design of InAs Nanowire Transistors Using Ballistic Transport

Myers Riggs, Rhonda Renee January 2005 (has links)
No description available.
56

Optical Characterization of Mechanical and Electronic Properties of Visible to Infrared Semiconductor Nanowires

Wang, Yuda 27 May 2016 (has links)
No description available.
57

Charge Transport Properties in Semiconductor Nanowires

Ko, Dongkyun January 2011 (has links)
No description available.
58

Fabrication and Characterization of GaAsP Nanowire-on-Silicon Tandem Photovoltaic Cells

Wood, Brendan January 2017 (has links)
One-dimensional vertical nanostructures, nanowire arrays, are investigated for applications in photovoltaics. Specifically, III-V core-shell p-i-n nanowire arrays are grown by molecular beam epitaxy on silicon substrates, using the self-assisted vapour-liquid-solid growth method. GaAs1-xPx nanowires are grown with an optimized composition to maximize the potential efficiency of a GaAsP nanowire-on-silicon tandem solar cell under AM1.5G illumination. Photovoltaic devices are fabricated and assessed by optical and electrical characterization techniques, to identify areas for refinement of device design and processing. Combining the unique properties of nanowire arrays, the quality and tunability of III-V materials, and the economics and infrastructure of silicon-based device fabrication, this work examines a novel approach to affordable renewable energy. Methods of substrate removal via etching are investigated for optical characterization of nanowire arrays, and an improved technique for electrical characterization of ITO contacts is explored. The first nanowire-on-silicon tandem device utilizing a radial p-n junction nanowire structure is reported, achieving an open circuit voltage of 1.2 V, a short circuit current density of 7.6 mA/cm2, a fill factor of 40%, and an efficiency of 3.5%. Finally, projects for future improvements to the work described herein are suggested. / Thesis / Master of Applied Science (MASc)
59

Simulation and Optimization of Nanowire-Based Betavoltaic Generators

Wagner, Devan January 2020 (has links)
In order to increase the efficiency of betavoltaic devices, an architecture utilizing nanowires has been developed. In this architecture, a radioisotope is deposited between a nanowire array in order to increase the fraction of beta particles captured by the semiconductor converter and minimize the energy lost to self-shielding. Previous work has prototyped such a design; however, performance was limited to an efficiency of 0.5%. This thesis outlines the design and optimization of the nanowire-based betavoltaic generator. Both the nanowire array geometry and the nanowire p-i-n diode design are optimized for maximum radiation capture and conversion efficiency, respectively. First, a model was developed in the GEANT4 Monte Carlo toolkit in order to investigate the radiation capture of various array geometries. Radioisotope sources of elemental 3H, 63Ni, and 147Pm, as well as compounds of each were examined with gallium phosphide nanowires. Overall, it was found that nanowires should be grown as long as possible to accommodate the most source material while the ratio of the diameter to array pitch can be optimized for maximum power capture. Optimized arrays presented an improvement in energy capture of approximately 6 and 15 times for 63Ni and 3H devices, respectively, while 147Pm devices indicated no improvement. Optimized array geometry was extended to both silicon and gallium arsenide and the radiation capture simulations were coupled to drift-diffusion calculations in COMSOL Multiphysics for axial junction nanowires. Following the junction optimization, devices were predicted to be between 4 and 10% efficient with power outputs ranging from 2 to 6 μW cm^-2. Despite the large improvement compared to experimental results, surface recombination was found to limit the performance of long gallium phosphide nanowires. Therefore, core-shell junctions were then investigated and found to improve upon all axial designs. Overall, it has been determined that the nanowire device design is advantageous over planar betavoltaics due to the mitigation of self-shielding effects. Devices utilizing 10 μm long gallium phosphide core-shell nanowires with a 3H source are predicted to achieve the top performance of 12% effciency and a power density of 7 μW cm^-2. In addition, gallium phosphide and gallium arsenide devices with 63Ni are able to achieve an energy density in excess of 1 Wh cm^-2 due to the long half-life. / Thesis / Master of Applied Science (MASc) / Widely used batteries, such as lithium-polymer cells, are bulky and suffer from short discharge times or temperature sensitivity. Betavoltaics - also known as "nuclear batteries" - offer an opportunity to surpass these issues. Beta particles, or energetic electrons, are the result of certain nuclear decay reactions. Betavoltaic batteries create electricity from these particles, can remain active for hundreds of years, and are insensitive to environmental conditions. In addition, these particles are easy to shield, rendering them safe for users. This work focuses on a new type of betavoltaic which uses nanowires to capture more beta particles and ultimately improve performance. These devices have been designed through a simulation-based approach that has maximized the total power output as well as effciency by fine-tuning different parameters. The designs described in this work exhibit huge improvements over conventional devices and will allow nanowire-based betavoltaics to compete with the top performing devices developed to date.
60

Field-directed nanowire chaining enabling transparent electrodes

Xu, Manyan 08 January 2019 (has links)
Transparent electrodes (TEs) require materials that have both transparency and electrical conductivity, a combination not usually found in nature. They are in increasing demand for use in solar cells, touch screens, displays, transparent heating films and several other devices. Most TEs used today are made of indium tin oxide (ITO). However, it has several disadvantages, such as high fabrication cost, rigidity and brittleness. Many ITO alternatives are being pursued, among which metallic nanowire (NW) networks on transparent substrates such as glass or polymer, have received much attention. This thesis demonstrates ordered silver NW networks on polyimide, fabricated by the field-directed chaining technique. We achieved a sheet resistance of 27 Ω/sq and 95.4% transparency at 550nm, with a Figure of Merit (FOM) 0.023Ω-1, which is higher than the FOM of commercial ITO, 0.005Ω-1. We have demonstrated that ordered NW networks, directed by alternative current (AC) electric fields, are easy to fabricate over a large area and at low cost, on rigid and flexible substrates. The AC electric field changes with different experiment setup. In this work, the effect of polymer thickness, electric field frequency, and gap size between electrodes are explored by COMSOL simulation and validated experimentally. By choosing the appropriate frequency and gap size, ordered NW networks are successfully created on a 23μm polyethylene terephthalate (PET) sheet. Fluid motion is one of the disruptors during NW chaining. We demonstrate control of this disruptor by the use of sandwiched channels for the NW suspension. Post-fabrication treatments are important and necessary for improving the connectivity and conductivity of Ag NW networks. In this work, we explore Joule heating and show its potential to improve the conductivity over other post-treatment approaches. However, Joule heating can also cause failures of NW networks. Ordered NW networks present better optical-electrical properties than random NW networks. Post-fabrication treatment can improve the properties, but there is a limit. In this work, a mathematical model is built for optical-electrical properties of perfectly ordered NW networks, which sets the upper bound of performance for transparent electrodes made of NW networks. A linear relationship is found between the transmittance and inverse sheet resistance. The model is then modified with factors to account for departure from the ideal. / Graduate / 2019-12-12

Page generated in 0.0512 seconds