• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 80
  • 8
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 231
  • 52
  • 52
  • 51
  • 47
  • 46
  • 30
  • 30
  • 30
  • 27
  • 26
  • 22
  • 22
  • 21
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Aktivita antioxidačních enzymů za různých patofyziologických stavů. / Aktivita antioxidačních enzymů za různých patofyziologických stavů.

Vávrová, Lucie January 2013 (has links)
Background: Oxidative stress is supposed to be implicated in the pathogenesis of several diseases which are connected with increased formation of reactive oxygen and nitrogen species (RONS). Oxidative stress could play an important role in the pathogenesis of inflammation and sepsis, acute and chronic pancreatitis or in the development of cancer. Organisms are protected against RONS from antioxidant system that is composed of antioxidant enzymes and non-enzymatic antioxidants. To the most important antioxidant enzymes belong superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, glutathione reductase and paraoxonase (PON). The aim of this Doctoral Thesis was to investigate the behaviour of three of these antioxidant enzymes - CuZnSOD, CAT and PON1 in different pathophysiological states. Materials and methods: The activities of CuZnSOD, CAT and PON1 were measured in six different pathophysiological states. Forty patients with metabolic syndrome (MetS), 35 women with depressive disorder (DD), 30 septic patients (SP), 50 patients with pancreatic cancer (PC), 50 patients with chronic pancreatitis (CP) and 13 patients with acute pancreatitis (AP) were included in different studies together with sex- and age-matched healthy controls (CON). Patients with AP and SP were observed in the course...
202

Efeitos do chumbo sobre a atividade da tioredoxina redutase citosólica (TrxR1) e parâmetros de estresse oxidativo em rins de ratos. / Effects of lead acetate exposure on renal cytosolic thioredoxin reductase (TrxR1) activity and on indicators of lead exposure.

Conterato, Greicy Michelle Marafiga 31 January 2007 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Lead is a heavy metal that accumulates primarily in kidney, where exerts its nephrotoxic effects. Several studies suggest that the oxidative stress is an important molecular mechanism for the toxic effects of lead in kidney and in other organs. Cytosolic thioredoxin reductase (TrxR1) is a selenoflavoprotein involved in many processes modulating intracellular reactive oxygen species levels. The aims of this study were to evaluate the effects of acute and chronic exposure to lead acetate on renal TrxR1 activity and on other oxidative stress parameters (d-aminolevulinic acid dehydratase activity, glutathione Stransferase, non-protein thiol groups, lipid peroxidation, and antioxidant enzymes in kidneys), as well as on plasmatic indicators of renal function (creatinine, uric acid and phosphate) in rats. In acute exposure, rats received a single intraperitoneal injection of 25 or 50 mg/kg lead acetate and were killed 6, 24 or 48 h later. In chronic exposure, rats received a daily intraperitoneal injection of lead acetate (5 or 25 mg/kg) during 30 days and were killed at 31st day. In our study, acute exposure to 25 mg/kg lead acetate increased superoxide dismutase (SOD) and TrxR-1 activity (after 6, 24, and 48 h), while exposure to 50 mg/kg lead acetate increased catalase (CAT) activity (after 48h) and inhibited d-aminolevulinic acid dehydratase (δ-ALA-D) activity (after 6, 24, and 48 hs) in kidneys (P < 0.05). Chronic exposure to 5 mg/kg lead acetate inhibited δ-ALA-D and increased glutathione S-transferase (GST), non protein sulfhydryl groups (NPSH), CAT, TrxR-1, and uric acid plasma levels, while exposure to 25 mg/kg lead acetate reduced body weight and δ -ALA-D, but increased GST, NPSH, and uric acid plasma levels (P < 0.05). No changes were observed in thiobarbituric acid reactive substances, glutathione peroxidase, creatinine or inorganic phosphate levels after either acute or chronic exposure. In conclusion, lead exposure caused a marked increase in the TrxR1 activity in the kidney of rats and this change may be an early indicator of acute exposure to low lead doses. However, further studies are needed to clarify the biological meaning of this induction as well as the mechanism involved in such effect. / O chumbo é um metal pesado que acumula-se preferencialmente nos rins, onde exerce seus efeitos nefrotóxicos. Muitos estudos sugerem que o estresse oxidativo seja um importante mecanismo molecular para os efeitos tóxicos do chumbo no rim e em outros órgãos. A tioredoxina redutase citosólica (TrxR1) é uma selenoflavoproteína envolvida em muitos processos reguladores dos níveis intracelulares de espécies reativas de oxigênio. Os objetivos deste estudo foram avaliar os efeitos da exposição aguda e crônica ao acetato de chumbo sobre a atividade da TrxR1 renal e sobre outros parâmetros de estresse oxidativo (atividade da δ-aminolevulinato desidratase, glutationa S-transferase, grupos tiólicos nãoprotéicos, peroxidação lipídica e enzimas antioxidantes nos rins), bem como sobre os indicadores plasmáticos da função renal (creatinina, ácido úrico e fosfato) em ratos. Na exposição aguda, os ratos receberam uma única injeção intraperitoneal de 25 ou 50 mg/kg de acetato de chumbo e foram mortos 6, 24 ou 48 horas mais tarde. Na exposição crônica, os ratos receberam uma injeção intraperitoneal diária de acetato de chumbo (5 ou 25 mg/kg) durante 30 dias e foram mortos no 31° dia. Em nosso estudo, a exposição aguda a 25 mg/kg de acetato de chumbo aumentou a atividade da superóxido dismutase (SOD) e da TrxR1 (após 6, 24 e 48 h), enquanto que a exposição a 50 mg/kg de acetato de chumbo aumentou a atividade da catalase (CAT) (após 48 h) e inibiu a atividade da δ-aminolevulinato desidratase (δ-ALA-D) (após 6, 24, 48 h) nos rins (p<0,05). A exposição crônica a 5 mg/kg de acetato de chumbo inibiu a δ-ALA-D e aumentou a glutationa S-transferase (GST), níveis de grupos tiólicos não-protéicos (SHNP), CAT, TrxR1 e níveis plasmáticos de ácido úrico (p<0,05), enquanto que a exposição a 25 mg/kg de acetato de chumbo reduziu o peso corporal e a δ-ALA-D, mas aumentou a GST, SHNP e os níveis plasmáticos de ácido de ácido úrico (p<0,05). Não houve alterações nos níveis de substâncias reativas ao ácido tiobarbitúrico (TBARS), na atividade da glutationa peroxidase (GPx) e nos níveis plasmáticos de creatinina e fosfato inorgânico tanto após a exposição aguda como após a exposição crônica. Conclui-se que a exposição ao chumbo causou um aumento significativo na atividade da TrxR1 renal de ratos e esta alteração pode ser um indicador primário da exposição aguda a baixas doses de chumbo. Entretanto, será necessária a realização de mais estudos para elucidar o significado biológico desta indução, bem como o mecanismo envolvido em tal efeito.
203

Změny aktivit enzymů v ovoci v průběhu dlouhodobého uchovávání / Changes of enzyme activities in fruits during long-term storage

Ferdová, Jitka January 2010 (has links)
This study is focused on study of changes of enzyme and low-molecular weight antioxidants in different fruits during long-term storage. In theoretical part individual low-molecular weight antioxidants and enzymes are described. The main causes of fruit decay and some possibilities of fruit preservation and storage are summarized. As biological material some common fruits were chosen - green and red apples, peaches, plums and white grapes. The fruits were stored in laboratory, cellar, in refrigerator and in freezer. In freezing experiments some ways of fruit preparation and processing were tested and their influence on fruit antioxidant status was compared. Shortened storage experiment was applied on blueberries, cranberries, raspberries and strawberries too. In fruits some group parameters – total antioxidant status, dry mass content, ascorbate level, total flavonoids and total phenolics were analyzed spectrophotometrically. Individual flavonoids and phenolics were determined by RP-HPLC/UV-VIS and on-line LC/PDA/ESI-MS. Antioxidant enzyme activities (superoxide dismutase SOD, catalase CAT, polyphenol oxidase PPO and lipoxygenase LOX) were measured by spectrophotometry. The surface microscopy and cultivation of moulds from fruit surface were performed too. Influence of storage conditions on biological activities is dependent on fruit sort. Freezing is the most suitable procedure for long-term storage without significant changes of active substance content. Long-term storage in controlled temperature conditions and/or atmosphere is usable for fruits with longer storage period. In these fruits stabile levels of antioxidant enzymes are stored for relatively long time. Some of enzymes act synergistically. Enzyme activities differed according to storage phase; at the beginning mainly high SOD and LOX activities were observed. CAT and PPO are probably activated as defence systems in rippened and/or damaged fruits. Levels of total as well as individual low molecular weight antioxidants varied during storage in all sorts, generally, increased course with longer storage period can be observed.
204

Studium stresových odpovědí rostlin na přítomnost léčiv v kultivačním médiu / Study of plant stress responces in presence of pharmaceuticals in cultivation medium

Bystroňová, Jana January 2012 (has links)
The aim of this study was to verify the possibility of ibuprofen degradation by selected plant cultures and determination of activities of antioxidant enzymes (peroxidase, catalase, ascorbate peroxidase and glutathione-S-transferase) as markers of oxidative stress caused by ibuprofen. Nicotiana tabaccum (cv. La Burley 21, cv. SR 1 and their GMOs) and Nicotiana glauca were used as experimental plants. The rate of removal of ibuprofen tested by tobacco was decreasing in the following order: N. tabaccum SR1 > N. tabaccum Zm-P60-1-T4 > N. tabaccum TRI 2T2 > N. glauca > N. tabaccum TRI 2T1 > N. tabaccum cv. La Burley > N. tabaccum Zm-P60-1-T5. As the most suitable tobacco for the removal of ibuprofen seemed untransformed N. tabaccum SR1. The long-term experiment showed that plant stress is being manifested even after longtime. N. tabaccum cv. La Burley 21 seemed to be the most tolerant to ibuprofen in compare with the total enzyme activities in cultures with the presence of ibuprofen and controls. N.glauca was the least tolerant cultivar. Keywords: phytoremediation, ibuprofen, Nicotiana tabaccum, Nicotiana glauca, HPLC, peroxidase, catalase, ascorbate peroxidase, glutathion-S-transferase
205

Human Carbonic Anhydrase Ii; Preparation, Metal-Substitution, Activity, and Inhibition

Wilson, David L 14 August 2015 (has links)
This report details the activities and inhibition of metal-substituted human carbonic anhydrase II (M-HCA-II). The traditional activities (hydrolysis of CO2 and para-nitrophenol acetate) in addition to new activities (oxidation of 2-aminophenol, disproportionation of H2O2, and disproportionation of superoxide) were investigated. Values reported for the relative hydrolytic activities of M-HCA-IIs are reported here for the first time, ranging from 47.5 % (plus or minus 0.6) to 86 % (plus or minus 4) for the hydrolysis of CO2 and from 0.299 % (plus or minus 0.012) to 4.72 % (plus or minus 0.015) for the hydrolysis of para-nitrophenol acetate. With respect to new activities, only the oxidation of 2-aminophenol was observed. Turnover was observed for Fe-HCA-II (kcat/KM = 3.6 plus or minus 1.3 mM-1 s-1) and Cu-HCA-II (kcat/KM = 8 plus or minus 2 mM-1 s-1). Inhibition of Zn-, (di-substituted) Cu2-, and Cu/Zn-HCA-II hydrolysis of CO2 and para-nitrophenol acetate by sulfanilamide, coumarin, and ortho-coumaric acid were investigated. Sulfanilamide was shown to inhibit: Zn-HCA-II, Cu2-HCA-II, and Cu/Zn-HCA-II - (with CO2) KM = 8.9 plus or minus 1.1 microM, 11 plus or minus 2 microM, 8.8 plus or minus 1.4 microM and (with p-nitrophenyl acetate) KM = 8.4 plus or minus 1.0 microM, (none), 8.4 plus or minus 1.4 microM, respectively. No inhibition was observed for coumarin or ortho-coumaric acid or its derivatives for any CAs studied.
206

Superoxide Dismutase 2 Overexpression Attenuates Effects of Ischemia Reperfusion-Induced Mitochondrial Dysfunction

Lin, Paul P. 03 October 2017 (has links)
No description available.
207

Reactive Oxygen Species Are Key Mediators of Demyelination in Canine Distemper Leukoencephalitis but not in Theiler’s Murine Encephalomyelitis

Attig, Friederike, Spitzbarth, Ingo, Kalkuhl, Arno, Deschl, Ulrich, Puff, Christina, Baumgärtner, Wolfgang, Ulrich, Reiner 15 January 2024 (has links)
(1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key eector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest dierences in the pathogenesis of demyelination in these two animal models.
208

Pesticide Mixtures Induce Immunotoxicity: Potentiation of Apoptosis and Oxidative Stress

Rabideau, Christine L. 16 August 2001 (has links)
The three insecticides of interest were lindane (an organochlorine), malathion (an organophosphate) and piperonyl butoxide (PBO; a synergist). Based on minimum cytotoxicity (> LC25), the following concentrations were chosen for the pesticide mixture studies: 70μM lindane (Lind), 50μM malathion (Mal) and 55μM PBO. In the AlamarBlue cytotoxicity assay, individual pesticide and mixtures of malathion/PBO (MP) and malathion/lindane (ML) prompted cytotoxicity with varying intensities (Mal 18.8%, Lind 20.4%, PBO 23.5%, ML 53.6% and MP 64.9%). Cytopathological analysis revealed apoptotic features in treated cells and the DNA Ladder Assay confirmed the presence of DNA fragments. The specific mode of cell death was examined via the 7-aminoactinomycin D (7-AAD) Staining Assay. Apoptosis was detected in each treatment (Mal 6.5%, Lind 12.0%, PBO 13.2%, ML 19.3% and MP 23.4%). Furthermore, 7-AAD staining in combination with fluorescent-labeled monoclonal antibodies, PE-CD45RB/220 and FITC-CD90, was performed. B-cells were more susceptible to Mal and PBO treatments than were T-cells. The pro-oxidant activity of the pesticides was monitored via the Dichlorofluorescin Diacetate assay. Exposure to pesticides for 15 minutes increased H2O2 production above the controls, Mal 21.1%; Lind 10.8%; PBO 25.9%; ML 26.8%; MP 37.8%. The activities of antioxidant enzymes, glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were altered by these treatments. GR was significantly reduced for the pesticide mixtures only (control: 51.7; Mal: 48.2; Lind: 50; PBO: 52.3; ML: 40.5; MP: 42 Units/mg). GSH-Px activity was severely reduced for all the pesticide treatments (control: 44.9; Mal: 30.2; Lind: 30.6; PBO: 32.4; ML: 21.1; MP: 21.1 Units/mg). These results indicate that exposure to these pesticide and pesticide mixtures induces apoptosis and oxidative stress. / Master of Science
209

Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: more evidence for oxidative stress in vitiligo

Wood, John M., Gibbons, Nick C., Abou Elloof, M.M., Schallreuter, Karin U. 14 July 2009 (has links)
No / Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10 -3 M H 2O 2. One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10 -3M H 2O 2 oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H 2O 2 utilising 45calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H 2O 2-mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo.
210

Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair

Wood, John M., Decker, H., Hartmann, H., Chavan, Bhavan, Rokos, Hartmut, Spencer, J.D., Hasse, Sybille, Thornton, M. Julie, Shalbaf, Mohammad, Paus, R., Schallreuter, Karin U. January 2009 (has links)
No / Senile graying of human hair has been the subject of intense research since ancient times. Reactive oxygen species have been implicated in hair follicle melanocyte apoptosis and DNA damage. Here we show for the first time by FT-Raman spectroscopy in vivo that human gray/white scalp hair shafts accumulate hydrogen peroxide (H(2)O(2)) in millimolar concentrations. Moreover, we demonstrate almost absent catalase and methionine sulfoxide reductase A and B protein expression via immunofluorescence and Western blot in association with a functional loss of methionine sulfoxide (Met-S=O) repair in the entire gray hair follicle. Accordingly, Met-S=O formation of Met residues, including Met 374 in the active site of tyrosinase, the key enzyme in melanogenesis, limits enzyme functionality, as evidenced by FT-Raman spectroscopy, computer simulation, and enzyme kinetics, which leads to gradual loss of hair color. Notably, under in vitro conditions, Met oxidation can be prevented by L-methionine. In summary, our data feed the long-voiced, but insufficiently proven, concept of H(2)O(2)-induced oxidative damage in the entire human hair follicle, inclusive of the hair shaft, as a key element in senile hair graying, which does not exclusively affect follicle melanocytes. This new insight could open new strategies for intervention and reversal of the hair graying process.

Page generated in 0.0267 seconds