Spelling suggestions: "subject:" embryonic stemcells"" "subject:" embryonic stemcell""
401 |
PTBP1 Is Required for Embryonic Development before GastrulationSolimena, Michele, Suckale, Jakob, Wendling, Olivia, Masjkur, Jimmy, Jäger, Melanie, Münster, Carla, Anastassiadis, Konstantinos, Stewart, A. Francis 07 January 2016 (has links)
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
|
402 |
Modelová studie účinků ultrazvuku na vývoj plodu / Model Study of Ultrasound Effects on Fetal DevelopmentJaroš, Josef January 2009 (has links)
The progress in ultrasound techniques goes hand in hand with increasing of diagnostic machine acoustic outputs. Ultrasound biological effects can adversely influence the development of human fetus. Recent studies of thermal effect on biological tissues are usually based on simulation of simple ultrasound transducers. The aim of this work is to build a flexible model of diagnostic system to simulate temperature increase during fetal development. Different types of ultrasound probes were used for generation of acoustic field with simulated piezoelectric element properties. Optimized linear and phased arrays were modeled with dynamic beam steering and focus. Computer simulations were concentrated on extreme conditions in obstetric ultrasonography and 3D tissue model was compared with real ultrasound probes measurements. To detect temperature increase, the bone tissue phantom was used. Results point out potential risks for fetus with diagnostic ultrasound probes. Based on the results of this work, practical recommendations increasing safety of obstetric examinations were drawn.
|
403 |
Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem CellsSchroeder, Insa S., Sulzbacher, Sabine, Nolden, Tobias, Fuchs, Jörg, Czarnota, Judith, Meisterfeld, Ronny, Himmelbauer, Heinz, Wobus, Anna M. January 2012 (has links)
Embryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage. Sox17-expressing cells were selected by fluorescence-assisted cell sorting (FACS) and characterized at the transcript and protein level. Treatment of ES cells with high concentrations of activin A for 10 days resulted in up to 19% Sox17-positive cells selected by FACS. Isolated Sox17-positive cells were characterized by defini- tive endoderm-specific Sox17/Cxcr4/Foxa2 transcripts, but lacked pluripotency-associated Oct4 mRNA and protein. The Sox17-expressing cells showed downregulation of extraembryonic endoderm (Sox7, Afp, Sdf1)-, mesoderm (Foxf1, Meox1)- and ectoderm (Pax6, NeuroD6)-specific transcripts. The presence of Hnf4α, Hes1 and Pdx1 mRNA demonstrated the expression of primitive gut/foregut cell-specific markers. Ngn3, Nkx6.1 and Nkx2.2 transcripts in Sox17-positive cells were determined as properties of pancreatic endocrine progenitors. Immunocytochemistry of activin A-induced Sox17-positive embryoid bodies revealed coexpression of Cxcr4 and Foxa2. Moreover, the histochemical demonstration of E-cadherin-, Cxcr4-, Sox9-, Hnf1β- and Ngn3-positive epithelial-like structures underlined the potential of Sox17-positive cells to further differentiate into the pancreatic lineage. By reducing the heterogeneity of the ES cell progeny, Sox17-expressing cells are a suitable model to evaluate the effects of growth and differentiation factors and of culture conditions to delineate the differentiation process for the generation of pancreatic cells in vitro. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
404 |
Molecular Landscape of Induced Reprogramming: A DissertationYang, Chao-Shun 26 February 2014 (has links)
Recent breakthroughs in creating induced pluripotent stem cells (iPS cells) provide alternative means to obtain embryonic stem (ES) cell-like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c-Myc or Nanog/Lin28) into somatic cells. However, the molecular basis of reprogramming is largely unknown. To address this question, we employed microRNAs, small molecules, and conducted genome-wide RNAi screen, to investigate the regulatory mechanisms of reprogramming.
First we showed that depleting miR-21 and miR-29a enhances reprogramming in mouse embryonic fibroblasts (MEFs). We also showed that p53 and ERK1/2 pathways are regulated by miR-21 and miR-29a and function in reprogramming.
Second, we showed that computational chemical biology combined with genomic analysis can be used to identify small molecules regulating reprogramming. We discovered that the NSAID Nabumetone and the anti-cancer drug OHTM could replace Sox2 during reprogramming. Nabumetone could also replace c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPS cells.
To identify the cell-fate determinants during reprogramming, we integrated a genome-wide RNAi screen with transcriptome analysis to dissect the molecular requirements in reprogramming. We found that extensive interactions of embryonic stem cell core circuitry regulators are established in mature iPS cells, including Utf1, Nr6a1, Tdgf1, Gsc, Fgf10, T, Chrd, Dppa3, Fgf17, Eomes, Foxa2. Remarkably, genes with non-differential change play the most critical roles in the transitions of reprogramming. Functional validation showed that some genes act as essential or barrier roles to reprogramming. We also identified several genes required for maintaining ES cell properties. Altogether, our results demonstrate the significance of miRNA function in regulating multiple signaling networks involved in reprogramming. And our work further advanced the reprogramming field by identifying several new key modulators.
|
405 |
Micro-engineering of embryonic stem cells niche to regulate neural cell differentiationJoshi, Ramila, Joshi January 2018 (has links)
No description available.
|
406 |
Functionalized Nanofiber Substrates for Nerve RegenerationSilantyeva, Elena A. 26 June 2019 (has links)
No description available.
|
407 |
Transcriptional Regulation of Retinal Progenitor Cells Derived from Human Induced Pluripotent Stem Cells.Sridhar, Akshayalakshmi 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In order to develop effective cures for diseases and decipher disease pathology, the need exists to cultivate a better understanding of human development. Existing studies employ the use of animal models to study and model human development and disease phenotypes but the evolutionary differences between humans and other species slightly limit the applicability of such animal models to effectively recapitulate human development. With the development of human pluripotent stem cells (hPSCs),
including Human induced Pluripotent stem cells (hiPSCs) and Human Embryonic
Stem cells (hESCs), human development can now be mirrored and recapitulated in
vitro. These stem cells are pluripotent, that is, they possess the potential to generate any cell type of the body including muscle cells, nerve cells or blood cells. One of the major focuses of this study is to use hiPSCs to better understand and model human retinogenesis. The retina develops within the first three months of human development, hence rendering it inaccessible to investigation via traditional methods.
However, with the advent of hiPSCs, retinal cells can be generated in a culture dish and the mechanisms underlying the specification of a retinal fate can be determined. Additionally, in order to use hiPSCs for successful cell replacement therapy, non-xenogeneic conditions need to be employed to allow for fruitful transplantation tests.
Hence, another emphasis of this study has been to direct hiPSCs to generate retinal
cells under non-xenogeneic conditions to facilitate their use for future translation purposes.
|
408 |
Deciphering the signaling and transcriptional mechanisms of the totipotent state in embryonic stem cellsMeharwade, Thulaj D. 12 1900 (has links)
De l’organisme unicellulaire aux organismes multicellulaires complexes, la spécification cellulaires est un aspect fondamental de la biologie de l'adaptation et du développement. Les cellules souches pluripotentes (CSP) telles que les embryonnaires (CSE) fournissent un modèle approprié pour étudier les mécanismes de régulation et la spécification du sort des cellules chez les mammifères. Les ESC de souris sont connus pour être de nature hétérogènes et sont rapportées comme étant composées de multiples états de cellules souches ressemblant à des stades distincts du développement embryonnaire précoce, tels que totipotentes, pluripotentes, préparées et endoderme primitif. Malgré des études approfondies sur les CSE, les mécanismes moléculaires régulant leur hétérogénéité et l'état totipotent, en particulier, ne sont pas bien compris.
Le travail présenté dans cette thèse utilise les CSE de souris comme modèle intéressant pour déterminer les mécanismes de signalisation et de régulation génique qui conduisent à l'hétérogénéité cellulaire et l'état cellulaire totipotent des CSE.
Dans une première étude, nous avons utilisé la cytométrie en flux de masse pour analyser simultanément de multiples protéines régulatrices des cellules souches, en mettant l'accent sur les facteurs de transcription clés, les protéines de signalisation et les modificateurs de la chromatine qui régissent les CSE de souris. Les données de cytométrie en flux de masse ont révélé des variations dans les niveaux protéiques cellulaires individuels des régulateurs des cellules souches et ont souligné la vaste coactivation des voies de signalisation cellulaire dans des conditions de culture définies des CSE. De plus, l'application de la cytométrie en flux de masse a facilité l'identification d'états cellulaires distincts et de leurs caractéristiques moléculaires au sein des CSE, offrant des aperçus de leurs variations selon différentes conditions de culture, validant ainsi la présence d'hétérogénéité cellulaire dans les CSE de souris.
Dans une deuxième étude, nous avons identifié la signalisation du facteur de croissance des os (BMP) comme inducteur de l'état totipotent. Nous avons également constaté que le rôle du BMP dans la totipotence est réprimé par la coactivation des voies FGF, NODAL et WNT. En inhibant ces voies coactivées, nous démontrons l'amélioration de l'induction de cellules totipotentes et la suppression des états préparés et d'endoderme primitif. Nous avons validé les changements d'état cellulaire au niveau cellulaire unique grâce à un séquençage d'ARNm à cellule unique. De plus, nous avons également démontré que les cellules totipotentes reprogrammées in vitro imitent les cellules totipotentes de l'embryon préimplantatoire avec la capacité de générer des blastocystes in vitro (Blastoïdes) et de s'intégrer dans les lignées embryonnaires et extra-embryonnaires chez la souris. Ensemble, ces résultats ont révélé les mécanismes de signalisation du BMP pour réguler à la fois l'état totipotent et l'hétérogénéité des CSE.
Pour la troisième étude, nous avons utilisé les observations clés de nos données de cytométrie en flux de masse (première étude) pour évaluer le rôle des protéines régulatrices clés pour promouvoir l'état cellulaire totipotent. Ici, nous démontrons que NACC1, un régulateur transcriptionnel des CSE, agit également comme un régulateur important des cellules totipotentes. Après avoir identifié NACC1 comme un régulateur potentiel à partir de données de protéines cellulaires à cellule unique et de transcriptome en vrac, nous avons validé sa fonction en utilisant une suppression médiée par CRISPR en combinaison avec des conditions de reprogrammation cellulaire pluripotente à totipotente. Ensuite, nous avons intégré une combinaison d'approches génomiques pour étudier les changements au niveau du système dépendants de NACC1 dans le transcriptome, l'accessibilité à la chromatine et la liaison à l'ADN génomique. Ensemble, ces données ont révélé que NACC1 induit à la fois les programmes d'expression génique codant et de gènes de rétrotransposons pour promouvoir l'état cellulaire totipotent. Enfin, nous avons montré que NACC1 régule les éléments rétrotransposables MERVL-int et MT2_Mm pour moduler l'expression des gènes codants de l'état totipotent.
En conclusion, cette thèse révèle la nature hétérogène des CSE de souris au niveau protéique à cellule unique, élucide le rôle significatif et les mécanismes de la voie de signalisation BMP pour réguler l'état totipotent et l'hétérogénéité des CSE, et dévoile les mécanismes de régulation génique dépendants de NACC1 pour promouvoir l'état totipotent. Ces résultats ouvrent la voie à des études ultérieures visant à comprendre la spécification de l'état des cellules souches et leur transition via la modulation des voies de signalisation / facteurs de transcription. De plus, ces mécanismes peuvent réguler l'état cellulaire totipotent chez l'homme, éclairant l'hétérogénéité cellulaire dans les CSE humaines et dans des contextes pathologiques, tels que le cancer. / From unicellular entities to intricate multicellular organisms, the omnipresent process of cell fate specification is a fundamental aspect of adaptation and developmental biology. Pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs) provide a suitable model to study the regulatory mechanisms and cell fate specification in mammals. Intriguingly, mouse ESCs are known to be heterogenous in nature and are reported to consist of multiple stem cell states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. Despite extensive study of ESCs, the molecular mechanisms regulating their heterogeneity and the totipotent state in particular are not well understood.
The work presented in this thesis utilizes mouse ESCs as an attractive model to delineate the signaling and gene regulatory mechanisms driving the cellular heterogeneity and the totipotent cell state of ESCs.
In the first study, we utilized mass cytometry (cytometry by time of flight) to concurrently analyse multiple stem cell regulatory proteins, focusing on key transcription factors, signaling proteins, and chromatin modifiers that govern mouse ESCs. Mass cytometry data revealed variations in the single-cell protein levels of stem cell regulators and highlighted the extensive cross-activation of cell signaling pathways across defined culture conditions of ESCs. Furthermore, the application of mass cytometry facilitated the identification of distinct cell states and their molecular features within ESCs, offering insights into their variations across different culture conditions, thereby validating the presence of cellular heterogeneity in mouse ESCs.
In the second study, we identified bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. We also found that, BMP’s role for totipotency is repressed by the cross-activation of FGF, NODAL, and WNT pathways. Through rational inhibition of these cross-activated pathways, we demonstrate the enhancement in the induction of totipotent cells and suppression of primed and primitive endoderm states. We validated the cell state changes at the single-cell level through single-cell mRNA sequencing. Furthermore, we also demonstrate that the in-vitro reprogrammed totipotent cells mimic the totipotent cells of preimplantation embryo with the potency to generate in-vitro blastocyst (Blastoids) and to integrate into both embryonic and extra-embryonic lineages in the mice. Together these results revealed BMP signaling mechanisms to regulate both the totipotent state and the heterogeneity of ESCs.
For our third study, we utilized the key observations from our mass cytometry data (first study) to evaluate the role of key regulatory proteins to promote the totipotent cell state. Here, we demonstrate that NACC1, a transcriptional regulator of ESCs, also acts as an important regulator of totipotent cells. Following identification of NACC1 as a potential regulator from both single-cell protein and bulk transcriptome data, we validated its function using CRISPR-mediated knock-out in combination with pluripotent-to-totipotent cell reprogramming conditions. Next, we integrated a combination of genomic approaches to study the NACC1 dependent system’s level changes in the transcriptome, chromatin accessibility and genomic DNA binding. Together, these data revealed that NACC1 induces both the coding gene and retrotransposon gene expression programs to promote the totipotent cell state. Finally, we showed that NACC1 regulates MERVL-int and MT2_Mm retrotransposable elements to modulate the expression of coding genes of the totipotent state.
In conclusion, this thesis reveals the heterogeneous nature of mouse ESCs at the single-cell protein level, elucidates the significant role and mechanisms of BMP signaling pathway to regulate the totipotent state and ESC heterogeneity, and unveils NACC1 dependent gene regulatory mechanisms to promote the totipotent state. These findings open the door for subsequent studies aimed at understanding stem cell state specification and their transition occurring via modulation of signaling pathways / transcription factors. Moreover, these mechanisms may regulate the totipotent cell state in humans, shedding light on the cellular heterogeneity in human ESCs and in disease contexts, such as cancer.
|
409 |
Thermo-responsive microcarriers based on poly(N-isopropylacrylamide)Zhang, J.N., Cui, Z.F., Field, R., Moloney, M.G., Rimmer, Stephen, Ye, H. 2015 April 1917 (has links)
No / Microcarrier cell culture systems provide an attractive alternative to the conventional monolayer cell culture for cell amplification, due to their high surface area-to-volume ratio. Unlike enzymatic methods for removing cells from microcarriers after cell culture, which can lead to irreversible damage of the cells, microcarriers which release cells by temperature adjustment have been developed. This was achieved by grafting a temperature-responsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), on the microcarrier surface. This review comprehensively presents various methods to prepare such thermo-responsive microcarriers based on PNIPAAm. These methods include the grafting-to technique, grafting-from technique, grafting-through technique, along with methods leading to PNIPAAm hydrogel beads, seeded polymerization, and non-covalent adsorption. The methods for controlling PNIPAAm grafting density, molecular weight and molecular architecture are also outlined. Further, the efficiency of cell attachment, proliferation and thermally-induced detachment of such thermo-responsive microcarriers is introduced and compared. (C) 2015 Elsevier Ltd. All rights reserved.
|
410 |
A Model-Based Analysis of Culture-Dependent Phenotypes of mESCsHerberg, Maria, Kalkan, Tüzer, Glauche, Ingmar, Smith, Austin, Roeder, Ingo 11 July 2014 (has links) (PDF)
Mouse embryonic stem cells (mESCs) can be maintained in a proliferative and undifferentiated state over many passages (self-renewal) while retaining the potential to give rise to every cell type of the organism (pluripotency). Autocrine FGF4/Erk signalling has been identified as a major stimulus for fate decisions and lineage commitment in these cells. Recent findings on serum-free culture conditions with specific inhibitors (known as 2i) demonstrate that the inhibition of this pathway reduces transcription factor heterogeneity and is vital to maintain ground state pluripotency of mESCs. We suggest a novel mathematical model to explicitly integrate FGF4/Erk signalling into an interaction network of key pluripotency factors (namely Oct4, Sox2, Nanog and Rex1). The envisaged model allows to explore whether and how proposed mechanisms and feedback regulations can account for different expression patterns in mESC cultures. We demonstrate that an FGF4/Erk-mediated negative feedback is sufficient to induce molecular heterogeneity with respect to Nanog and Rex1 expression and thus critically regulates the propensity for differentiation and the loss of pluripotency. Furthermore, we compare simulation results on the transcription factor dynamics in different self-renewing states and during differentiation with experimental data on a Rex1GFPd2 reporter cell line using flow cytometry and qRT-PCR measurements. Concluding from our results we argue that interaction between FGF4/Erk signalling and Nanog expression qualifies as a key mechanism to manipulate mESC pluripotency. In particular, we infer that ground state pluripotency under 2i is achieved by shifting stable expression pattern of Nanog from a bistable into a monostable regulation impeding stochastic state transitions. Furthermore, we derive testable predictions on altering the degree of Nanog heterogeneity and on the frequency of state transitions in LIF/serum conditions to challenge our model assumptions.
|
Page generated in 0.0478 seconds