• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 222
  • 81
  • 59
  • 45
  • 22
  • 13
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 567
  • 96
  • 78
  • 68
  • 65
  • 42
  • 41
  • 38
  • 36
  • 36
  • 34
  • 33
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Phase and conformational behavior of LCST-driven stimuli responsive polymers

Simmons, David Samuel 04 October 2012 (has links)
Several analytical mean field models are presented for the class of stimuli responsive polymers that are driven by the lower critical solution temperature (LCST) transition. For solutions above the polymer crossover concentration, a hybrid model combines lattice-fluid excluded volume and van-der-Waals interactions with a combinatorial approach for the statistics of hydrogen bonding, hydration, and ionic bonding. This approach yields models for the LCST of both neutral polymers and lightly charged polyelectrolytes in aqueous salt solution. The results are shown to be in semi-quantitative agreement with experimental data for the cloud point of polyethylene oxide (PEO) in aqueous solution with various salts, and some aspects of the lyotropic series are reproduced. Results for lightly charged polyelectrolytes are compared to and shown to be in qualitative agreement with aspects of experimentally observed behavior. Finally, a framework is established for extension of these models to further aspects of the lyotropic series and polyelectrolyte behavior. At the nanoscale, lattice fluid (LF) and scaled particle theory (SPT) approaches are employed to model the LCST-related coil-globule-transition (CGT) of isolated polymer chains in highly dilute solution. The predicted CGT behavior semi-quantitatively correlates with experimental results for several polymer-solvent systems and over a range of pressures. Both the LF and SPT models exhibit a heating induced coil-to-globule transition (HCGT) temperature that increases with pressure until it merges with a cooling induced coil-to-globule transition (CCGT). The point at which the CCGT and HCGT meet is a hypercritical point that also corresponds to a merging of the lower critical and upper critical solution temperatures. Theoretical results are discussed in terms of a generalized polymer/solvent phase diagram that possesses three hypercritical points. Within the lattice model, a dimensionless transition temperature [author gives mathematical symbol] is given for a long chain simply by the equation [author gives mathematical equation], where [part of the equation] is the bulk solvent occupied volume fraction at the transition temperature. Furthermore, there is a critical value of the ratio of polymer to solvent S-L characteristic temperature below which no HCGT transition is predicted for an infinite chain. / text
332

Exploring the Advance Care Planning Experiences among Persons with Mild Cognitive Impairment: Individual and Spousal Perspectives

Emmett, Catherine Parsons 01 January 2012 (has links)
Advance Care Planning has been advocated for over 20 years as a way in which individuals who are no longer able to speak for themselves, may still convey their preferences regarding a wide of array of decisions, including medical care. Advance care planning may not be initiated by individuals for many reasons, and even when initiated, may not be specific enough to help guide decision making. Recent advance care planning models have utilized disease specific information to help guide end of life health care decision-making. Persons diagnosed with mild cognitive impairment face an increased possibility of developing dementia at some point in the future, but may retain decision making capability for a window of time, and thus the opportunity to participate in advance care planning. The advance care planning experiences of individuals with mild cognitive impairment have not been extensively studied. This study explored the advance care planning experiences of persons with mild cognitive impairment and their care partners' understanding and views of advance care planning, and if the diagnosis of mild cognitive impairment affects the advance care planning practices of these two groups. A convenience sample of 10 individuals with mild cognitive impairment and their 10 care partners (n=20) were recruited and interviewed. Using a grounded theory qualitative analysis approach, four themes were identified (1) decreased awareness regarding advance care planning from individuals with mild cognitive impairment versus a heightened awareness for the care partners; 2) the preference for comfort care measures only; 3) preferences for future end of life healthcare decisions largely influenced by previous end of life experiences with family and friends; and 4) lack of discussion of end of life healthcare decisions related to dementia and/or artificial nutrition and hydration by physicians or other healthcare providers. In addition two latent themes emerged including from the care partners, the importance of the mild cognitive impairment support group and lawyers for advance care planning and from both care partners and the mild cognitive impairment participants, trying to maintain autonomy, to `hang on' to self were identified. Study implications include the need for structured advance care planning interventions with individuals diagnosed with mild cognitive impairment to focus on common end of life scenarios, such as whether to use artificial nutrition and hydration, which will require future surrogate decision making.
333

Nutrition and hydration status of junior elite female soccer athletes

Gibson, Jennifer 15 October 2010 (has links)
The junior elite female athlete is faced with the unique challenge of fuelling and hydrating for sport performance as well as growth and development. Very little published data have comprehensively described the nutrition and hydration status of adolescent female athletes, therefore, the aim of this study was to report fluid balance and sweat sodium concentration data, anthropometrics, hematological analysis as well as dietary intake of thirty-four junior elite female soccer athletes (15.7 ± 0.7 years). Hydration assessment (pre-training urine specific gravity, USG), fluid balance and sweat sodium concentration) was conducted during two 90 minute, on-field, group training sessions in mild/cool temperatures (9.8 ± 3.3 °C, 63.0 ± 12.4% relative humidity). Athletes completed four-day food records, hematological analysis (iron status markers, prealbumin and 25-hydroxyvitamin D), and anthropometric assessment. Results revealed mean body composition of players was 103.1 ± 35.2mm (sum of seven skinfolds) and 20.2 ± 5.4% body fat. The mean pre-training USG was 1.018 ± 0.009, with 45.4% of players in a hypohydrated state (USG >1.020). Players experienced a mean body mass loss of 0.84% ± 0.07%, sweat rates of 458.8 ± 284.9 ml/hour and sweat sodium concentration of 47.6 ± 11.9mmol/L during training sessions. Mean fluid intake within the 90 minute training sessions was 195 ± 0.24ml. Less than 1 litre of fluid was consumed by 100% of all participants during training sessions. Limited opportunity for fluid consumption was observed during training, with 6 of 7 sessions providing only a single fluid break. Mean energy intake was 2079 ± 460kcal/day. Mean macronutrient intake, carbohydrate (5.0 ± 1.6g/kg), protein (1.38± 0.3g/kg) and fat (29.9± 5.8%), met current Dietary Reference Intakes (DRIs) and sport nutrition recommendations however, 51.5% of athletes reported consuming <5g/kg carbohydrate. When compared to DRIs, mean intake of several micronutrients were below recommendations including pantothenic acid, vitamin D, folate, vitamin E, and calcium. The majority of athletes presented with serum 25-hydroxyvitamin D, prealbumin and iron markers within normal clinical ranges however when compared to recommendations for athletic populations, 89.3% and 50.0% of participants had suboptimal iron and 25-hydroxyvitamin D stores respectively. In summary, junior elite female soccer players experienced similar sodium losses and fluid losses to research reported in female adult players. The hypohydrated state, low consumption of fluids during training, which was typically devoid of sodium, and the limited access to fluids during training provide evidence of less than optimal hydration practices. Players were not in energy balance, and many athletes failed to meet carbohydrate and micronutrient requirements. When compared to recommendations for athletic populations, players may be at risk for iron depletion and suboptimal vitamin D status. More research is needed to confirm and support these findings and further develop an understanding of the unique nutrition and hydration needs of the female adolescent athlete. These findings can be used to inform nutrition and hydration practice guidelines and research for players, coaches and sport nutrition professionals.
334

Hydrophobic Hydration of a Single Polymer

Li, Isaac Tian Shi 17 December 2012 (has links)
Hydrophobic interactions guide important molecular self-assembly processes such as protein folding. On the macroscale, hydrophobic interactions consist of the aggregation of "oil-like" objects in water by minimizing the interfacial energy. However, the hydration mechanism of small hydrophobic molecules on the nanoscale (~1 nm) differs fundamentally from its macroscopic counterpart. Theoretical studies over the last two decades have pointed to an intricate dependence of molecular hydration mechanisms on the length scale. The microscopic-to-macroscopic cross-over length scale is critically important to hydrophobic interactions in polymers, proteins and other macromolecules. Accurate experimental determination of hydration mechanisms and their interaction strengths are needed to understand protein folding. This thesis reports the development of experimental and analytical techniques that allow for direct measurements of hydrophobic interactions in a single molecule. Using single molecule force spectroscopy, the mechanical unfolding of a single hydrophobic homopolymer was identified and modeled. Two experiments examined how hydrophobicity at the molecular scale differ from the macroscopic scale. The first experiment identifies macroscopic interfacial tension as a critical parameter governing the molecular hydrophobic hydration strength. This experiment shows that the solvent conditions affect the microscopic and macroscopic hydrophobic strengths in similar ways, consistent with theoretical predictions. The second experiment probes the hydrophobic size effect by studying how the size of a non-polar side-chain affects the thermal signatures of hydration. Our experimental results reveal a cross-over length scale of approximately 1 nm that bridges the transition from entropically driven microscopic hydration mechanism to enthalpically driven macroscopic hydration mechanism. These results indicate that hydrophobic interactions at the molecular scale differ from macroscopic scale, pointing to potential ways to improve our understanding and predictions of molecular interactions. The system established in this thesis forms the foundation for further investigation of polymer hydrophobicity.
335

Investigating Brain Structure Using Voxel-Based Methods with Magnetic Resonance Imaging

Streitbürger, Daniel-Paolo 28 January 2014 (has links) (PDF)
The number of people suffering from neurodegenerative diseases, such as Alzheimer`s disease, increased dramatically over the past centuries and is expected to increase even further within the next years. Based on predictions of the World Health Organization and Alzheimer`s Disease International, 115 million people will suffer from dementia by the year 2050. An additionally increase in other age related neurodegenerative diseases is also forecasted. Quite naturally, neurodegenerative diseases became a focus of attention of governments and health insurances, trying to control the uprising financial burden. Early detection and treatment of neurodegenerative diseases could be an important component in containing this problem. In particular, researchers focused on automatic methods to analyze patients’ imaging data. One way to detect structural changes in magnetic resonance images (MRI) is the voxel-based method approach. It was specifically implemented for various imaging modalities, e.g. T1-weighted images or diffusion tensor imaging (DTI). Voxel-based morphometry (VBM), a method specifically designed to analyze T1-weighted images, has become very popular over the last decade. Investigations using VBM revealed numerous structural brain changes related to, e.g. neurodegeneration, learning induced structural changes or aging. Although voxel-based methods are designed to be robust and reliable structural change detection methods, it is known that they can be influenced by physical and physiological factors. Dehydration, for example, can affect the volume of brain structures and possibly induce a confound in morphometric studies. Therefore, three-dimensional T1-weighted images were acquired of six young and healthy subjects during different states of hydration. Measurements during normal hydration, hyperhydration, and dehydration made it possible to assess consequential volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using VBM, FreeSurfer and SIENA. A significant decrease of GM and WM volume, associated with dehydration, was found in various brain regions. The most prominent effects were found in temporal and parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, an expansion around 6% of the ventricular system affecting both lateral ventricles, i.e. the third and fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of Alzheimer’s disease during disease progression and in its prestage mild cognitive impairment. Based on these findings, a potential confound in GM and WM or CSF studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed. These results underline the sensitivity of VBM and might also concern other voxel-based methods, such as Tract-Based Spatial Statistics (TBSS). TBSS was specifically designed for WM analyses and its sensitivity might be helpful for revealing the spatial relation of structural WM changes and related blood serum biomarkers. Two common brain related biomarkers are the glial protein S100B, a plasticity inducing neuro- and gliotrophin, and neuron-specific enolase (NSE), a marker for neuronal damage. However, the spatial specificity of these biomarkers for brain region has not been investigated in vivo until now. Therefore, we acquired two MRI parameters – T1- weighted and DTI - sensitive to changes in GM and WM, and obtained serum S100B and NSE levels of 41 healthy subjects. Additionally, the gene expression of S100B on the whole brain level in a male cohort of three subjects from the Allen Brain Database was analyzed. Furthermore, a female post mortal brain was investigated using double immunofluorescence labeling with oligodendrocyte markers. It could be shown that S100B is specifically related to white matter structures, namely the corpus callosum, anterior forceps and superior longitudinal fasciculus in female subjects. This effect was observed in fractional anisotropy and radial diffusivity – the latest an indicator of myelin changes. Histological data confirmed a co-localization of S100B with oligodendrocyte markers in the human corpus callosum. S100B was most abundantly expressed in the corpus callosum according to the whole genome Allen Human Brain Atlas. In addition, NSE was related to gray matter structures, namely the amygdala. This effect was detected across sexes. The data demonstrates a very high S100B expression in white matter tracts, in particular in human corpus callosum. This was the first in vivo study validating the specificity of the glial marker S100B for the human brain, and supporting the assumption that radial diffusivity represents a myelin marker. The results open a new perspective for future studies investigating major neuropsychiatric disorders. All above mentioned studies are mainly dependent on the sensitivity and accuracy of soft and hardware parameters. In particular, technical developments have improved acquisition accuracy in the field of MRI. Interestingly, very little is known about the confounding effects of variations due to hardware parameters and their possible impact on reliability and sensitivity of VBM. Recent studies have shown that different acquisition parameters may influence VBM results. Therefore age-related GM changes were investigated with VBM in 36 healthy volunteers grouped into 12 young, 12 middle-aged and 12 elderly subject. Six T1-weighted datasets were acquired per subject with a 12-channel matrix coil, as well as a 32-channel array, MP-RAGE and MP2RAGE, and with isotropic resolutions of 0.8 and 1 mm. DARTEL-VBM was applied on all images and GM, WM and CSF segments were statistically analyzed.. Paired t-tests and statistical interaction tests revealed significant effects of acquisition parameters on the estimated gray-matter-density (GMD) in various cortical and subcortical brain regions. MP2RAGE seemed slightly less prone to false positive results when comparing data acquired with different RF coils and yielded superior segmentation of deep GM structures. With the 12-channel coil, MP-RAGE was superior in detecting age-related changes, especially in cortical structures. Most differences between both sequences became insignificant with the 32-channel coil, indicating that the MP2RAGE images benefited more from the improved signal-to-noise ratio and improved parallel-imaging reconstruction). A possible explanation might be an overestimation of the GM compartment on the MP-RAGE images. In view of substantial effects obtained for all parameters, careful standardization of the acquisition protocol is advocated. While the current investigation focused on aging effects, similar results are expected for other VBM studies, like on plasticity or neurodegenerative diseases. This work has shown that voxel-based methods are sensitive to subtle structural brain changes, independent of imaging modality and scanning parameters. In particular, the studies investigated and discussed the analysis of T1- and diffusion weighted images with VBM and TBSS in the context of dehydration, blood serum sensitive biomarkers and aging were discussed. The major goal of these studies was the investigation of the sensitivity of voxel-based methods. In conclusion, sensitivity and accuracy of voxelbased methods is already high, but it can be increased significantly, using optimal hardand software parameters. It is of note, though, that these optimizations and the concomitant increase of detection sensitivity could also introduce additional confounding factors in the imaging data and interfere with the latter preprocessing and statistical computations. To avoid an interference e.g. originating from physiological parameters, a very careful selection and monitoring of biological parameters of each volunteer throughout the whole study is recommended. A potential impact of scanning parameters can be minimized by strict adherence to the imaging protocol for each study subjectwithin a study. A general increase in detection sensitivity due to optimized parameters selection in hard- and/or can not be concluded by the above mentioned studies. Although the present work addressed some of those issues, the topic of optimal selection of parameters for morphometric studies is still very complex and controversial and has to be individually decided. Further investigations are needed to define more general scanning and preprocessing standards to increase detection sensitivity without the concomitant amplification of confounding factors.
336

Use Of Preplaced Aggregate Concrete For Mass Concrete Applications

Bayer, Raci Ismail 01 June 2004 (has links) (PDF)
Heat of hydration is a source of problem in mass concrete since it causes the difference between the inner and the outer temperatures increase excessively, which leads thermal cracks. The first step in fighting against this problem is to keep the initial temperature of concrete as low as possible. From this point of view, Preplaced Aggregate Concrete (in short PAC) is quite advantageous, because the friction taking place among the coarse aggregates during the mixing operation causes the initial temperature of concrete increase. However, since coarse aggregates are not subjected to the mixing operation in PAC method, comparatively lower initial temperatures can be achieved. On the other hand, making PAC by the conventional injection method is quite troublesome, since it requires special equipment and experienced workmanship. Because of this, it would be very useful to investigate alternative methods for making PAC. In this research, a new method for making PAC has been investigated. The new method is briefly based on increasing the fluidity of the grout by new generation superplasticizers to such an extent that, it fills all the voids in the preplaced coarse aggregate mass when it is poured over, without requiring any injection. In the scope of the study, twelve concrete cube specimens, each with 1 m volume, have been prepared / one of which as conventional concrete, seven of which as PAC by injection method, and four of which as PAC by the new method mentioned above. In order to examine the specimens that have been prepared by three different methods from thermal properties point of view, the difference between the central and the surface temperatures of the specimens have been followed by the thermocouples located in the specimens during preparation. Also, in order to examine the mechanical properties of the specimens, three core specimens have been taken from each specimen at certain ages, compressive strength and modulus of elasticity tests have been carried out on these core specimens. As a result of the experiments it has been observed that, the PAC specimens prepared by injection method performed better from thermal properties point of view, but worse from mechanical properties point of view than conventional concrete. On the other hand, the PAC specimens prepared by the new method have performed both as well as the other PAC specimens from thermal properties point of view, and as well as conventional concrete from mechanical properties point of view.
337

Exploring the Surface of Aqueous Solutions : X-ray photoelectron spectroscopy studies using a liquid micro-jet

Werner, Josephina January 2015 (has links)
The surface behavior of biologically or atmospherically relevant chemical compounds in aqueous solution has been studied using surface-sensitive X-ray photoelectron spectroscopy (XPS). The aim is to provide information on the molecular-scale composition and distribution of solutes in the surface region of aqueous solutions. In the first part, the distribution of solutes in the surface region is discussed, where in particular single molecular species are studied. Concentration-dependent studies on succinic acid and various alkyl-alcohols, where also parameters such as pH and branching are varied, are analyzed using different approaches that allow the quantification of surface concentrations. Furthermore, due to the sensitivity of XPS to the chemical state, reorientation of linear and branched alkyl-alcohols at the aqueous surface as a function of concentration is observed. The results are further discussed in terms of hydrophilic and hydrophobic interactions in the interfacial region, where the three-dimensional hydrogen bonded water structure terminates. In the second part, mixed solutions of compounds, both ionic and molecular, are inspected. Again concentration, but also co-dissolution of other chemical compounds, are varied and differences in the spatial distribution and composition of the surface region are discussed. It is found that the guanidinium ion has an increased propensity to reside at the surface, which is explained by strong hydration in only two dimensions and only weak interactions between the aromatic π-system and water. Ammonium ions, on the other hand, which require hydration in three dimensions, are depleted from the surface region. The presence of strongly hydrated electrolytes out-competes neutral molecules for hydrating water molecules leading to an enhanced abundance of molecules, such as succinic acid, in the interfacial region. The partitioning is quantified and discussed in the context of atmospheric science, where the impact of the presented results on organic loading of aerosol particles is emphasized.
338

Comportamento de hidratação e resposta cisalhante cíclica de resíduo de mineração cimentado reforçado com fibras

Festugato, Lucas January 2011 (has links)
As propriedades do solo cotidianamente podem não ser adequadas às características e às necessidades de projeto. É apresentada, como alternativa, a técnica de reforço com inclusão de elementos fibrosos à matriz de solo cimentado e não cimentado. Ainda, embora comuns, o comportamento do solo frente a solicitações cíclicas não é completamente conhecido. Nesse sentido, o estudo do comportamento de hidratação e da resposta cisalhante cíclica de um resíduo de mineração cimentado reforçado com fibras é objetivado. Para tanto, medidas de retração química, medidas de rigidez ao longo da hidratação e ensaios simple shear monotônicos e cíclicos foram realizados com resíduo de mineração cimentado e não cimentado, reforçado com fibras e não reforçado. O resíduo, oriundo da mineração de ouro, um silte arenoso com traços de argila, foi cimentado com diferentes teores de cimento Portland, entre 0% e 10% em relação à massa de solo seco, e reforçado com 0% e 0,5%, em relação à massa de sólidos secos, de fibras de polipropileno de 50mm de comprimento e 0,1mm de espessura, equivalentes a um índice aspecto de 500. Os resultados demonstraram que as fibras não afetaram o processo de hidratação das misturas de resíduo de mineração cimentadas, que apresentam tendência de atenuação logarítmica da retração química com o tempo. Quanto maiores as relações água/cimento, maior o nível de retração química. A inclusão de fibras a misturas de resíduo de mineração cimentadas, da mesma forma, não afetou a evolução dos valores de rigidez inicial, que crescem com tendência logarítmica em função do tempo e aumentam com o acréscimo do nível de cimentação. Sob condições monotônicas de cisalhamento, a adição de fibras conferiu ao material cimentado e não cimentado comportamento de endurecimento. Sob condições cíclicas de deformação cisalhante controlada, as fibras não afetaram a resposta cisalhante das amostras não cimentadas e provocaram aumento dos valores da tensão cisalhante das amostras cimentadas após sucessivos ciclos de esforços. Sob condições cíclicas de tensão cisalhante controlada, a adição de fibras às misturas não cimentadas proporcionou o aumento da resistência aos ciclos de esforços e às misturas cimentadas provocou aumento dos níveis de deformação cisalhante. A concordância das mesmas envoltórias de resistência tanto às trajetórias de tensões dos ensaios monotonônicos quanto às trajetórias dos ensaios cíclicos sob diferentes condições de carregamento possibilitou a obtenção dos mesmos parâmetros de resistência das misturas analisadas sob diferentes condições de carregamento. / The soil properties commonly may not suit the project characteristics and requirements. It is presented, as alternative, the improvement technique of fibrous elements inclusion to the cemented and uncemented soil matrix. Moreover, although common, the behaviour of soil under cyclic loads is not completely known. In this sense, the study of the hydration behaviour and the cyclic shear response of fibre reinforced cemented mine tailings is the main objective of this research. Therefore, chemical shrinkage measurements, stiffness measurements during hydration and monotonic and cyclic simple shear tests were conducted on fibre reinforced and unreinforced cemented and uncemented mine tailings. The tailings, produced from gold mining, are classified as a sandy silt with traces of clay and were cemented with different amounts of Portland cement, ranging from 0% to 10% by dry weigh of soil, and reinforced with 0% and 0.5% by dry weigh of solids of polypropylene fibers 50mm long and 0.1mm thick, equivalent to an aspect ratio of 500. The results showed fibres did not affect the hydration process of cemented mine tailings mixtures, which presents logarithmic attenuation of chemical shrinkage over time. The greater the water / cement ratio, the higher the level of chemical shrinkage. The inclusion of fibers to cemented mine tailings, likewise, did not affect the evolution of initial stiffness values, that raise logarithmic over time and increase with the increase of the cementation level. Under monotonic shear conditions, the addition of fibers confers hardening behaviour to the uncemented and cemented materials. Under shear strain controlled cyclic conditions, fibres did not affect the shear response of uncemented samples and increased shear stress values of cemented samples after successive load cycles. Under shear stress controlled cyclic conditions, the fibres addition to the uncemented mixtures increased the resistance to load cycles and to the cemented mixtures increased levels of shearing strain. The agreement of the same strength envelopes to both monotonic and cyclic stress paths, under different cyclic loading conditions, allows the use of the same strength parameters of mixtures analyzed under different loading conditions.
339

Vers une utilisation rationnelle des métakaolins flash : application aux bétons / A rational use of the flash metakaolin : concrete applications

Bucher, Raphaël 10 June 2015 (has links)
L'objectif de ce travail est de contribuer à la valorisation du métakaolin en substitution du ciment dans les matrices cimentaires en levant certains verrous scientifiques. En effet l'utilisation d'additions minérales modifie les propriétés des bétons, que cela soit à l'état frais, à l'état durcissant ou à l'état durci. A l'état frais, la rhéologie a été étudiée avec l'adaptation et l'application d'une méthode de formulation pour béton auto-plaçant. Cette application a été développée jusqu'à l'échelle industrielle. A l'état durcissant, la phase d'hydratation a été étudiée en s'attardant particulièrement sur l'effet de la nature du ciment substitué sur la réactivité du métakaolin. Enfin à l'état durci deux caractéristiques de durabilité ont été explorées, à savoir l'effet du métakaolin sur la carbonatation dans une première partie, puis sur la diffusion des chlorures dans une deuxième partie. / The objective of the present thesis was to promote the use of metakaolin as substitute for cement in cementitious matrix by unlocking several scientific challenges. The use of mineral additions modifies the properties of concrete in the fresh state, the hardening state and the durability state. In the fresh state, rheology was studied by adapting a formulation method for self-compacting concretes. This application was then further developed to be used at an industrial scale. In the hardening state, the hydration phases were analysed with a focus on the effect of the cement nature on the metakaolin reactivity. Finally in the durability state, two particular features were studied:1) the metakaolin effect on the carbonation kinetic and 2) the effect of the metakaolin on the chloride diffusion.
340

Desalination of saline waste water containing organic solute by electrodialysis / Traitement d'effluents salins contenant de la matière organique par électrodialyse

Han, Le 14 December 2015 (has links)
L'électrodialyse peut être utilisée pour traiter des effluents salins contenant de la matière organique. La compréhension des mécanismes de transfert (eau, ions, espèces organiques) à travers les membranes échangeuses d'ions et particulièrement l'influence de la composition ionique est un point clé vis-à-vis des performances du procédé. L'objectif de cette thèse est l'étude du transfert et la relation avec les performances de dessalement. Les nombres d'hydratation des ions sont tout d'abord calculés à partir des mesures du transfert des ions et de l'eau. Ils sont indépendants du courant et de la composition saline. La comparaison avec des valeurs de la littérature montre que les membranes ont peu d'effet sur l'hydratation des ions. Le transfert d'espèces organiques est ensuite étudié pour différentes compositions salines. Outre la diffusion, une contribution additionnelle est mise en évidence (convection pour les espèces neutres, migration pour les espèces chargées). Pour les espèces neutres, diffusion et convection sont du même ordre de grandeur et fixées par l'effet stérique. Des tendances inverses sont obtenues concernant l'hydratation des ions, la diffusion étant limitée par les modifications des membranes, la convection étant limitée par l'hydratation des espèces organiques en solution. Pour les espèces chargées, la migration domine la diffusion, les deux contributions étant influencées par la présence de sel. Les performances de dessalement sont enfin discutées sur la base d'un modèle phénoménologique à 4 paramètres liés au transfert de l'eau, des ions et des espèces organiques. La robustesse du modèle est validée pour différentes conditions. Ce travail montre que l'électrodialyse est une technologie très prometteuse pour le dessalement d'effluents contenant de la matière organique. / Electrodialysis can be used to treat saline water containing organic solute, separating organic solutes from salt. The understanding of salt, water and organic solute transfer through ion- exchange membranes and especially the influence of salt composition is a key factor regarding the process performances. The aim of the Thesis is to investigate the mass transfer and the relationship with the desalination performance. Firstly, hydration numbers of individual ion transferring through the membranes are computed based on experimental measurements of ion- water flux. They are independent from the salt compositions and current. Comparison with literatures values shows that the membranes have a weak influence on the ion hydration. Secondly, the transfer of different organic solutes is investigated with different salt compositions. Two contributions are pointed out, diffusion and additional one (convection for neutral solute, migration for charged one). For neutral solutes, diffusion and convection are comparable and both fixed by steric effect. Ion hydration leads to reversed trend for diffusion due to membrane swelling and convection due to solute dehydration. For charged solute, migration is more important than diffusion, both being influenced by the presence of salt. Then, desalination performance is discussed based on a phenomenological model, consisting of 4 parameters, related to ion, water and organic solute transfer respectively. The robustness of the model is demonstrated for different conditions. This work shows that electrodialysis can be a very promising process for the desalination of saline water containing organic solutes.

Page generated in 0.0936 seconds