• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 33
  • 31
  • Tagged with
  • 100
  • 100
  • 100
  • 95
  • 93
  • 57
  • 56
  • 52
  • 23
  • 23
  • 22
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Estimation récursive pour les modèles semi-paramétriques

Nguyen, Thi Mong Ngoc 26 November 2010 (has links) (PDF)
Dans cette th ese, nous nous int eressons au mod ele semi-param etrique de r egression de la forme y = f( \theta'x; \epsilon), lorsque x \in R^p et y\in R. Notre objectif est d' etudier des probl emes d'estimation des param etres \theta et f de ce mod ele avec des m ethodes r ecursives. Dans la premi ere partie, l'approche que nous d eveloppons est fond ee sur une m ethode introduite par Li (1991), appel ee Sliced Inverse Regression (SIR). Nous proposons des m ethodes SIR r ecursives pour estimer le param etre . Dans le cas particulier o u l'on consid ere le nombre de tranches egal a 2, il est possible d'obtenir une expression analytique de l'estimateur de la direction de . Nous proposons une forme r ecursive pour cet estimateur, ainsi qu'une forme r ecursive de l'estimateur de la matrice d'int er^et. Ensuite, nous proposons une nouvelle approche appell ee \SIRoneslice" (r ecursive ou non r ecursive) de la m ethode SIR bas ee sur l'utilisation de l'information contenue dans une seule tranche optimale (qu'il faudra choisir parmi un nombre quelconque de tranches). Nous proposons egalement un crit ere \bootstrap na f" pour le choix du nombre de tranches. Des r esultats asymptotiques sont donn es et une etude sur des simulations d emontre le bon comportement num erique des approches r ecursives propos ees et l'avantage principal de l'utilisation la version r ecursive de SIR et de SIRoneslice du point de vue des temps de calcul. Dans la second partie, nous travaillons sur des donn ees de valvom etrie mesur ees sur des bivalves. Sur ces donn ees, nous comparons le comportement num erique de trois estimateurs non param etrique de la fonction de r egression : celui de Nadaraya-Watson, celui de Nadaraya-Watson r ecursif et celui de R ev esz qui est lui aussi r ecursif. Dans la derni ere partie de cette th ese, nous proposons une m ethode permettant de combiner l'estimation r ecursive de la fonction de lien f par l'estimateur de Nadaraya- Watson r ecursif et l'estimation du param etre via l'estimateur SIR r ecursif. Nous etablissons une loi des grands nombres ainsi qu'un th eor eme de limite centrale. Nous illustrons ces r esultats th eoriques par des simulations montrant le bon comportement num erique de la m ethode d'estimation propos ee.
62

Simulation d'événements rares par Monte Carlo dans les réseaux hautement fiables

Saggadi, Samira 08 July 2013 (has links) (PDF)
Le calcul de la fiabilité des réseaux est en général un problème NP-difficile. On peut par exemple, s'intéresser à la fiabilité des systèmes de télécommunications où l'on veut évaluer la probabilité qu'un groupe sélectionné de noeuds (qui peut être juste une paire) puissent communiquer, ou s'intéresser aux systèmes d'alimentation électriques où l'on veut estimer le risque que l'électricité n'est pas fournie à certains noeuds, ou encore, étudier la fiabilité des systèmes de transport, où les liens représentent les routes et sont soumis à des dommages. Dans tous ces cas, un ensemble de noeuds déconnectés peut avoir des conséquences critiques, que ce soit financières ou au niveau de la sécurité. Une estimation précise de la fiabilité est ainsi nécessaire. Les réseaux de communication moderne se caractérisent par leur grande taille, donc l'estimation via la simulation de Monte Carlo devient souvent un choix favorable. Un algorithme de Monte Carlo sous sa forme standard, échantillonne N réalisations du graphe (représentant le réseau) indépendantes, et la défiabilité est estimée à partir de la proportion des N réalisations pour lesquelles les noeuds sélectionnés ne sont pas connectés. Dans ces réseaux, les probabilités de défaillance des liens (arcs) sont généralement petites et donc les pannes d'un réseau deviennent des événements rares. Cela pose un défi majeur pour estimer la fiabilité d'un réseau. Dans cette thèse, nous présentons différentes techniques basées sur l'échantillonnage préférentiel (Importance Sampling en anglais IS), pour l'estimation de la fiabilité d'un réseau. Grace à cette technique les probabilités originales d'échantillonnage des arcs sont remplacées par de nouvelles probabilités, puis multiplier l'ancien estimateur par le quotient de vraisemblance (likelihood ratio) pour rester sans biais. On s'intéresse tout particulièrement à l'étude et au calcul de la fiabilité des réseaux hautement fiables et représentés par des graphes statiques. Dans ce cas la défiabilité est très petite, parfois de l'ordre de 10−10, ce qui rend l'approche standard de Monte Carlo inutile, car pour pouvoir estimer cette probabilité il nous faut un échantillon de taille supérieure à dix milliards. Pour une bonne estimation de la fiabilité des réseaux au moindre coût, nous avons étudié, analysé et développé les points suivants : - En premier lieu nous avons développé une méthode basée sur l'échantillonnage préférentiel. Le processus d'échantillonnage de tous les arcs du graphe sous la nouvelle probabilité est représenté par une chaîne de Markov, telle qu'à chaque étape on détermine l'état d'un arc avec une nouvelle probabilité déterminée en fonction de l'état de tous les arcs précédemment échantillonnés. Les fonctions valeurs de la nouvelle probabilité sont approchées par les coupes minimales possédant la plus grande probabilité de défiabilité, elle est le produit des défiabilités des arcs de la coupe. Des preuves de bonnes propriétés de l'estimateur basé sur l'échantillonnage préférentiel sont faites. - Un deuxième point a été abordé et développé, consiste à appliquer des techniques de réduction série-parallèle à chaque étape de l'échantillonnage IS précédemment décrit, afin de réduire substantiellement et la variance et le temps de simulation. - Le dernier point consiste à combiner pour approximation de l'estimateur à variance nulle, l'approximation de la défiabilité par une coupe minimale qui sous-estime la défiabilité avec une autre approximation basée sur les chemins minimaux qui la sur-estime. Des algorithmes d'optimisation sont utilisés pour rechercher le facteur optimal d'ajustement des deux approximations pour minimiser la variance.
63

Contributions à l'apprentissage statistique dans les modèles parcimonieux

Alquier, Pierre 06 December 2013 (has links) (PDF)
Ce mémoire d'habilitation a pour objet diverses contributions à l'estimation et à l'apprentissage statistique dans les modeles en grande dimension, sous différentes hypothèses de parcimonie. Dans une première partie, on introduit la problématique de la statistique en grande dimension dans un modèle générique de régression linéaire. Après avoir passé en revue les différentes méthodes d'estimation populaires dans ce modèle, on présente de nouveaux résultats tirés de (Alquier & Lounici 2011) pour des estimateurs agrégés. La seconde partie a essentiellement pour objet d'étendre les résultats de la première partie à l'estimation de divers modèles de séries temporelles (Alquier & Doukhan 2011, Alquier & Wintenberger 2013, Alquier & Li 2012, Alquier, Wintenberger & Li 2012). Enfin, la troisième partie présente plusieurs extensions à des modèles non param\étriques ou à des applications plus spécifiques comme la statistique quantique (Alquier & Biau 2013, Guedj & Alquier 2013, Alquier, Meziani & Peyré 2013, Alquier, Butucea, Hebiri, Meziani & Morimae 2013, Alquier 2013, Alquier 2008). Dans chaque section, des estimateurs sont proposés, et, aussi souvent que possible, des inégalités oracles optimales sont établies.
64

Méthodes de méta-analyse pour l'estimation des émissions de N2O par les sols agricoles

Philibert, Aurore 16 November 2012 (has links) (PDF)
Le terme de méta-analyse désigne l'analyse statique d'un large ensemble de résultats provenant d'études individuelles pour un même sujet donné. Cette approche est de plus en plus étudiée dans différents domaines, notamment en agronomie. Dans cette discipline, une revue bibliographique réalisée dans le cadre de la thèse a cependant montré que les méta-analyses n'étaient pas toujours de bonne qualité. Les méta-analyses effectuées en agronomie étudient ainsi très rarement la robustesse de leurs conclusions aux données utilisées et aux méthodes statistiques. L'objectif de cette thèse est de démontrer et d'illustrer l'importance des analyses de sensibilité dans le cadre de la méta-analyse en s'appuyant sur l'exemple de l'estimation des émissions de N2O provenant des sols agricoles. L'estimation des émissions de protoxyde d'azote (N2O) est réalisée à l'échelle mondaile par le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC). Le N2O est un puissant gaz à effet de serre avec un pouvoir de réchauffement 298 fois plus puissant que le CO2 sur une période de 100 ans. Les émissions de N2O ont la particularité de présenter une forte variabilité spatiale et temporelle. Deux bases de données sont utilisées dans ce travail : la base de données de Rochette et Janzen (2005) et celle de Stehfest et Bouwman (2006). Elles recensent de nombreuses mesures d'émissions de N2O réparties dans le monde provenant d'études publiées et ont joué un rôle important lors des estimations d'émissions de N2O réalisées par le GIEC. Les résultats montrent l'intérêt des modèles à effets aléatoires pour estimer les émissions de NO2 issues de sols agricoles. Ils sont bien adaptés à la structure des données (observations répétées sur un même site pour différentes doses d'engrais, avec plusieurs sites considérés). Ils permettent de distinguer la variabilité inter-sites de la variabilité intra-site et d'estimer l'effet de la dose d'engrais azoté sur les émissions de NO2. Dans ce mémoire, l'analyse de la sensibilité des estimations à la forme de la relation "Emission de N2O / Dose d'engrais azoté" a montré qu'une relation exponentielle était plus adaptée. Il apparait ainsi souhaitable de remplacer le facteur d'émission constant du GIEC (1% d'émission quelque soit la dose d'engrais azoté) par un facteur variable qui augmenterait en fonction de la dose. Nous n'avons par contre pas identifié de différence importante entre les méthodes d'inférence fréquentiste et bayésienne. Deux approches ont été proposées pour inclure des variables de milieu et de pratiques culturales dans les estimations de N2O. La méthode Random Forest permet de gérer les données manquantes et présente les meilleures prédictions d'émission de N2O. Les modèles à effets aléatoires permettent eux de prendre en compte ces variables explicatives par le biais d'une ou plusieurs mesures d'émission de N2O. Cette méthode permet de prédire les émissions de N2O pour des doses non testées comme le cas non fertilisé en parcelles agricoles. Les résultats de cette méthode sont cependant sensibles au plan d'expérience utilisé localement pour mesurer les émissions de N2O.
65

Apprentissage statistique multi-tâches

Solnon, Matthieu 25 November 2013 (has links) (PDF)
Cette thèse a pour objet la construction, la calibration et l'étude d'estimateurs multi-tâches, dans un cadre fréquentiste non paramétrique et non asymptotique. Nous nous plaçons dans le cadre de la régression ridge à noyau et y étendons les méthodes existantes de régression multi-tâches. La question clef est la calibration d'un paramètre de régularisation matriciel, qui encode la similarité entre les tâches. Nous proposons une méthode de calibration de ce paramètre, fondée sur l'estimation de la matrice de covariance du bruit entre les tâches. Nous donnons ensuite pour l'estimateur obtenu des garanties d'optimalité, via une inégalité oracle, puis vérifions son comportement sur des exemples simulés. Nous obtenons par ailleurs un encadrement précis des risques des estimateurs oracles multi-tâches et mono-tâche dans certains cas. Cela nous permet de dégager plusieurs situations intéressantes, où l'oracle multi-tâches est plus efficace que l'oracle mono-tâche, ou vice versa. Cela nous permet aussi de nous assurer que l'inégalité oracle force l'estimateur multi-tâches à avoir un risque inférieur à l'estimateur mono-tâche dans les cas étudiés. Le comportement des oracles multi-tâches et mono-tâche est vérifié sur des exemples simulés.
66

Classification non supervisée et sélection de variables dans les modèles mixtes fonctionnels. Applications à la biologie moléculaire.

Giacofci, Madison 22 October 2013 (has links) (PDF)
Un nombre croissant de domaines scientifiques collectent de grandes quantités de données comportant beaucoup de mesures répétées pour chaque individu. Ce type de données peut être vu comme une extension des données longitudinales en grande dimension. Le cadre naturel pour modéliser ce type de données est alors celui des modèles mixtes fonctionnels. Nous traitons, dans une première partie, de la classification non-supervisée dans les modèles mixtes fonctionnels. Nous présentons dans ce cadre une nouvelle procédure utilisant une décomposition en ondelettes des effets fixes et des effets aléatoires. Notre approche se décompose en deux étapes : une étape de réduction de dimension basée sur les techniques de seuillage des ondelettes et une étape de classification où l'algorithme EM est utilisé pour l'estimation des paramètres par maximum de vraisemblance. Nous présentons des résultats de simulations et nous illustrons notre méthode sur des jeux de données issus de la biologie moléculaire (données omiques). Cette procédure est implémentée dans le package R "curvclust" disponible sur le site du CRAN. Dans une deuxième partie, nous nous intéressons aux questions d'estimation et de réduction de dimension au sein des modèles mixtes fonctionnels et nous développons en ce sens deux approches. La première approche se place dans un objectif d'estimation dans un contexte non-paramétrique et nous montrons dans ce cadre, que l'estimateur de l'effet fixe fonctionnel basé sur les techniques de seuillage par ondelettes possède de bonnes propriétés de convergence. Notre deuxième approche s'intéresse à la problématique de sélection des effets fixes et aléatoires et nous proposons une procédure basée sur les techniques de sélection de variables par maximum de vraisemblance pénalisée et utilisant deux pénalités SCAD sur les effets fixes et les variances des effets aléatoires. Nous montrons dans ce cadre que le critère considéré conduit à des estimateurs possédant des propriétés oraculaires dans un cadre où le nombre d'individus et la taille des signaux divergent. Une étude de simulation visant à appréhender les comportements des deux approches développées est réalisée dans ce contexte.
67

Contribution à la statistique des processus : modélisation et applications

Gegout-Petit, Anne 19 November 2012 (has links) (PDF)
Nous présentons d'abord les problématiques liées à l'utilisation des processus pour la modélisation des modèles d'histoire de vie et de survie, écriture de vraisemblance, définition d'indépendance locale entre processus et interprétation causale. De manière indépendante, nous présentons ensuite des modèles de processus de bifurcation, les méthodes d'estimation associées avec application à la division cellulaire. Enfin nous regardons des problèmes liés aux PDMP : modélisation de propagation de fissures, de HUMS et estimation du taux de saut. Quelques exemples de collaborations avec des chercheurs d'autres disciplines sont donnés dans le dernier chapitre.
68

Contributions à la simulation des évènements rares dans les systèmes complexes

Morio, Jérôme 09 December 2013 (has links) (PDF)
Les trois principales parties qui composent ce dossier de synthèse HDR présentent, dans un premier temps, le contexte encadrant ces recherches et précisent les différents thèmes scientifiques abordés au cours de celles-ci, puis détaillent mes activités de publications, de communications, d'enseignement, d'administration de la recherche et enfin d'encadrement. Dans une seconde partie, ce mémoire aborde certains aboutissements de mes recherches, ici certaines contributions scientifiques que j'ai proposées, développant les méthodes d'estimation d'évènements rares dans les systèmes complexes. Enfin, un choix représentatif de cinq publications dont je suis co-auteur est proposé en conclusion de ce mémoire.
69

Détection des ruptures dans les processus causaux: Application aux débits du bassin versant de la Sanaga au Cameroun

Kengne, William Charky 03 May 2012 (has links) (PDF)
Cette thèse porte sur la détection de rupture dans les processus causaux avec application aux débits du bassin versant de la Sanaga. Nous considérons une classe semi-paramétrique de modèles causaux contenant des processus classique tel que l'AR, ARCH, TARCH. Le chapitre 1 est une synthèse des travaux. Il présente le modèle avec des exemples et donne les principaux résultats obtenus aux chapitres 2, 3,4. Le chapitre 2 porte sur la détection off-line de ruptures multiples en utilisant un critère de vraisemblance pénalisée. Le nombre de rupture, les instants de rupture et les paramètres du modèle sur chaque segment sont inconnus. Ils sont estimés par maximisation d'un contraste construit à partir des quasi-vraisemblances et pénalisées par le nombre de ruptures. Nous donnons les choix possibles du paramètre de pénalité et montrons que les estimateurs des paramètres du modèle sont consistants avec des vitesses optimales. Pour des applications pratiques, un estimateur adaptatif du paramètre de pénalité basé sur l'heuristique de la pente est proposé. La programmation dynamique est utilisée pour réduire le coût numérique des opérations, celui-ci est désormais de l'ordre de $\mathcal{O}(n^2)$. Des comparaisons faites avec des résultats existants montrent que notre procédure est plus stable et plus robuste. Le chapitre 3 porte toujours sur la détection off-line de ruptures multiples, mais cette fois en utilisant une procédure de test. Nous avons construit une nouvelle procédure qui, combinée avec un algorithme de type ICSS (Itereted Cumulative Sums of Squares) permet de détecter des ruptures multiples dans des processus causaux. Le test est consistant en puissance et la comparaison avec des procédures existantes montre qu'il est plus puissant. Le chapitre 4 étudie la détection des ruptures on-line dans la classe de modèle considéré aux chapitres 2 et 3. Une procédure basée sur la quasi-vraisemblance des observations a été développée. La procédure est consistante en puissance et le délai de détection est meilleur que celui des procédures existantes. Le chapitre 5 est consacré aux applications aux débits du bassin versant de la Sanaga, les procédures décrites aux chapitres 2 et 3 ont été utilisées en appliquant un modèle ARMA sur les données désaisonnalisées et standardisées. Ces deux procédures ont détecté des ruptures qui sont "proches".
70

Développement de modèles mécanistiques et évaluation de l'incertitude des paramètres par bootstrap : application aux médicaments anti-angiogéniques

Thai, Hoai-Thu 24 May 2013 (has links) (PDF)
L'angiogenèse, la croissance de nouveaux vaisseaux sanguins à partir de vaisseaux préexistants, joue un rôle crucial dans la croissance des tumeurs malignes et le développement des métastases. Elle est médiée notamment par le facteur de croissance vasculaire endothélial (VEGF), cible thérapeutique de nouveaux médicaments anti-angiogéniques comme l'aflibercept (Zaltrap , développé conjointement par Regeneron et Sanofi). Il s'agit d'une protéine de fusion comportant des domaines des récepteurs VEGFR-1VEGFR-2 et un fragment Fc des IgG1. Il bloque le VEGF A, le VEGF-B ainsi que le facteur de croissance placentaire (PIGF) et donc l'angiogenèse. Du fait de cette liaison, les propriétés pharmacocinétique (PK)/pharmacodynamique (PD) de ce nouveau médicament deviennent plus complexes. Dans cette thèse, nous avons étudié le mécanisme d'action de l'aflibercept en développant des modèles PK/PD de population. Nous avons tout d'abord construit le modèle PK conjoint de l'aflibercept libre etchez les volontaires sains grâce aux données riches. Nous avons ensuite appliqué avec succès ce modèle aux données chez les patients atteints de cancer et étudié également l'influence de facteurs physiopathologiques sur leur PK. Ce modèle a permis de simuler les différents schémas d'administration et de supporter le choix de dose thérapeutique. Afin de mieux évaluer l'efficacité de l'aflibercept, nous avons par la suite construit un modèle PD caractérisant l'inhibition de la croissance tumorale sous l'effet combiné de l'afliberceptdu FOLFIRI (5-fluorouracile, la leucovorine et l'irinotécan) chez les patients atteints du cancer colorectal métastatique. L'incertitude liée à l'estimation des paramètres dans des modèles complexes peut être biaiséeparfois n'est pas obtenue. Nous avons donc étudié par simulation l'incertitude des paramètres obtenue par différentes méthodes de bootstrap permettant de rééchantillonner deux niveaux de variabilité (inter- sujet et résiduelle) dans les modèles non linéaires à effets mixtes (MNLEM). Ainsi, nous avons montré que le bootstrap ne fournit de meilleures estimations de l'incertitude des paramètres que dans les MNLEM avec une forte non linéarité par rapport à l'approche asymptotique. Le bootstrap par paires fonctionne aussi bien que le bootstrap non paramétrique des effets aléatoires et des résidus. Cependant, ils peuvent être confrontés à des problèmes pratiques, par exemple des distributions asymétriques dans les estimations des paramètres et des protocoles déséquilibrés où la stratification pourrait être insuffisante.

Page generated in 0.0858 seconds