Spelling suggestions: "subject:"[een] ECONOMIC ACTIVITY"" "subject:"[enn] ECONOMIC ACTIVITY""
11 |
Ensaios em econometria aplicada a finanças e macroeconomia utilizando a abordagem de regressão MIDASSantos, Douglas Gomes dos January 2014 (has links)
A abordagem de regressão MIDAS (Mixed Data Sampling), proposta por Ghysels et al. (2004), permite relacionar diretamente variáveis em freqüências distintas. Esta característica é particularmente atraente quando se deseja utilizar os dados nas freqüências em que são disponibilizados, bem como quando o objetivo é calcular previsões multi-períodos à frente. Nesta tese, utiliza-se a abordagem de regressão MIDAS em três ensaios em que são realizadas aplicações empíricas nas áreas de finanças e macroeconomia. Os três ensaios são de caráter comparativo. Com aplicações em diferentes contextos de previsão, objetiva-se contribuir fornecendo evidências empíricas comparativas. No primeiro ensaio, são explorados resultados comparativos no contexto de previsão de volatilidade multi-períodos. Compara-se a abordagem MIDAS com dois métodos amplamente utilizados no cálculo de previsões multi-períodos à frente: as abordagens direta e iterada. Seus desempenhos relativos são investigados em um estudo de Monte Carlo e em um estudo empírico em que são computadas previsões de volatilidade para horizontes de até 60 dias à frente. Os resultados do estudo de Monte Carlo indicam que a abordagem MIDAS fornece as melhores previsões para os horizontes iguais ou superiores a 15 dias. Em contraste, as previsões geradas a partir da abordagem iterada são superiores nos horizontes de 5 e 10 dias à frente. No estudo empírico, utilizando-se retornos diários dos índices S&P 500 e NASDAQ, os resultados não são tão conclusivos, mas sugerem um melhor desempenho para a abordagem iterada. Todas as análises são fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. Combinações das previsões dos referidos modelos também são consideradas. São utilizados retornos intradiários do IBOVESPA no cálculo de medidas de volatilidade, tais como variância realizada, variação potente realizada e variação bipotente realizada, sendo estas medidas usadas como regressores em ambos os modelos. Adicionalmente, utiliza-se um procedimento não paramétrico na estimação das medidas de variabilidade dos componentes contínuo e de saltos do processo de variação quadrática. Estas medidas são utilizadas como regressores separados em especificações MIDAS e HAR. Quanto às evidências empíricas, os resultados em termos de erro quadrático médio sugerem que regressores baseados em medidas de volatilidade robustas a saltos (i.e., variação bipotente realizada e variação potente realizada) são melhores em prever volatilidade futura. Entretanto, observa-se que, em geral, as previsões baseadas nestes regressores não são estatisticamente diferentes daquelas baseadas na variância realizada (o regressor benchmark). Além disso, observa-se que, de modo geral, o desempenho relativo das três abordagens de previsão (i.e., MIDAS, HAR e combinação de previsões) é estatisticamente equivalente. No terceiro ensaio, busca-se comparar os modelos MS-MIDAS (Markov-Switching MIDAS) e STMIDAS (Smooth Transition MIDAS) em termos de acurácia preditiva. Para tanto, realiza-se um exercício de previsão em tempo real em que são geradas previsões fora da amostra para o crescimento do PIB trimestral dos Estados Unidos com o uso de indicadores financeiros mensais. Neste exercício, também são considerados modelos lineares MIDAS e outros modelos de previsão (lineares e não-lineares) que incluem informação dos indicadores (via agregação temporal das observações mensais) para fins comparativos de desempenho preditivo. A partir dos resultados do estudo empírico, observa-se que, de modo geral, os modelos MS-MIDAS fornecem previsões mais acuradas que os modelos STMIDAS. / The Mixed Data Sampling (MIDAS) regression approach, proposed by Ghysels et al. (2004), allows us to directly relate variables at different frequencies. This characteristic is particularly attractive when one wishes to use the data at their original sampling frequencies, as well as when the objective is to calculate multi-period-ahead forecasts. In this thesis, we use the MIDAS regression approach in three papers in which we perform empirical applications in the areas of finance and macroeconomics. All papers are comparative studies. With applications in different forecasting contexts, we aim at contributing with empirical comparative evidence. In the first paper, we explore comparative results in the context of multi-period volatility forecasting. We compare the MIDAS approach with two widely used methods of producing multi-period forecasts: the direct and the iterated approaches. Their relative performances are investigated in a Monte Carlo study and in an empirical study in which we forecast volatility at horizons up to 60 days ahead. The results of the Monte Carlo study indicate that the MIDAS forecasts are the best ones at horizons of 15 days ahead and longer. In contrast, the iterated forecasts are superior for shorter horizons of 5 and 10 days ahead. In the empirical study, using daily returns of the S&P 500 and NASDAQ indexes, the results are not so conclusive, but suggest a better performance for the iterated forecasts. All analyses are out-of-sample. In the second paper, we compare several multi-period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out-of-sample volatility forecasting accuracy. We also consider combinations of the models forecasts. Using intra-daily returns of the IBOVESPA, we calculate volatility measures such as realized variance, realized power variation, and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus, MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e., realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e., MIDAS, HAR and forecast combinations) are statistically equivalent. In the third paper, we compare the Markov-Switching MIDAS (MS-MIDAS) and the Smooth Transition MIDAS (STMIDAS) models in terms of forecast accuracy. We perform a real time forecasting exercise in which out-of-sample forecasts for the quarterly U.S. output growth are generated using monthly financial indicators. In this exercise, we also consider linear MIDAS models, and other forecasting models (linear and nonlinear) that include information on the indicators (via temporal aggregation of the monthly observations) for comparative purposes. From the results of the empirical study, we observe that, in general, the MS-MIDAS models provide more accurate forecasts than do the STMIDAS models.
|
12 |
Um índice coincidente para a atividade econômica do comércio varejista no Rio Grande do SulTorres, Gabriel Picavêa January 2014 (has links)
O objetivo deste trabalho é a construção de um indicador coincidente (IC) para a atividade econômica do segmento de Comércio Varejista dentro da economia do estado do Rio Grande do Sul. A utilização de variáveis que apresentem comportamento comum entre si e altamente correlacionado com as Vendas do Varejo é o ponto de partida para a investigação a seguir. A metodologia adotada é a dos modelos de Fator Dinâmico de Stock e Watson (1988, 1989, 1991, 1993). Os resultados encontrados apontam um indicador final satisfatório, em termos de MAPE (erro absoluto percentual médio, em inglês) com relação às séries de Vendas do Varejo, especificamente a série da FEE/Fecomércio-RS – que tratava-se de uma pesquisa censitária. Em termos de fundamentos econômicos o IC é composto por variáveis que sabidamente afetam o consumo de bens: renda, crédito e confiança do consumidor. Um destaque está para o alto peso das variáveis de Crédito e Sentimento sobre a Situação Presente, o que sugere que o fluxo de renda futuro e a confiança para assumir endividamentos longos são determinantes para o segmento. Considerando um horizonte maior para a ampliação dessa pesquisa, postula-se que a construção de novos dados regionalizados para crédito, renda pela PNAD Contínua, séries mais longas para índices de confiança, e indicadores sobre estoques no Comércio podem melhorar os resultados encontrados. / The following research intends to build a coincident indicator to the Retail sector’s economic activity within the regional economy of Rio Grande do Sul. The starting point to reach this objective is to use variables which present common cyclical behavior with each other, as well as with Retail Trade indices. The investigation will be carried on using Stock and Watson’s (1988, 1989, 1991, 1993) Dynamic Factor models methodology. The research returned a result a final index which can be classified as satisfactory, when evaluated by the mean absolute percentage error with Retail Trade indices, specially the FEE/Fecomércio-RS’ index – which was a censitary research. The built Coincident Indicator is composed by variables correlated with consumption, according to the economic theory: income, credit and consumer’s confidence. Variables such as Consumer Credit and Consumer’s Sentiment towards Present Economic Situation presented high weight in the indicator, which suggests that future income flows and confidence to take long term debt are crucial for the sector’s economic activity. Considering an expanded horizon for this research, one believes that new regional data for Household Credit, income through PNAD Contínua, a longer sample for Consumer’s Confidence indices, and indicators measuring stock levels in Retail might improve the coincident indicator.
|
13 |
Região de influência da atividade industrial do Rio Grande do Sul por meio da análise da distribuição das unidades locais e assalariadas externosMuradás, Wilson January 2004 (has links)
O presente trabalho tem por finalidade investigar os Centros de influência a partir dos assalariados externos, que são os empregados fora da sede da empresa. Eles indicam o poder de atuação da empresa associado a atividade econômica e as unidades locais, sendo controlados na estrutura econômica industrial no Rio Grande do Sul. Através deste conceito e com base nos dados da Pesquisa Industrial Anual de 1998, do IBGE, obtivemos resultados da atuação da Região Metropolitana de Posto Alegre, avaliada pelo número dos assalariados externos das diferentes atividades econômicas, dentro e foca do Estado; e a atuação das industrias nas diferentes regiões sócio-econômicas do Rio Grande do Sul também demonstrado por meio dos assalariados externos nos diferentes gêneros da indústria e no seu relacionamento com aspectos da integração econômica, bem como as diferentes categorias de bens de consumo. Contudo, esía abordagem apresenta uma diferente discussão à diversificação e a especialização dos centros de influência. A identificação dos centros de Influência reflete a questão da divisão territoriaJ do trabalho, as atividades econômicas por meio da atuação da indústria no Rio Grande do Sul, onde consideramos a hipótese de que esta dinâmica se consubstancia em forte relação de poder dos agentes econômicos sobre o espaço. / This paper aims to study Influence Centers through "branch employees" (employees who do not work in the finn's headquarters). They show the firm´s influence in Rio Grande do Sul State economic activity. Based on this concept and using IBGFs 1998 "Pesquisa Industrial Anual" data,, the results highlight the Greater Porto Alegre Region in terms of the number of its branch employees inside and outside Rio Grande do Sul State, in many industries. Also, the role of manufacturing activities (like consumer goods production) in promoting economic integration among regions. This approach points to a different view of diversification and specialization trends in Influence Centers. These centers have an impact in the geographical distribution of employment, in the influence of manufacturing on other economic activities and are evidence of the strong influence of economic agents in geographical space.
|
14 |
Ensaios em econometria aplicada a finanças e macroeconomia utilizando a abordagem de regressão MIDASSantos, Douglas Gomes dos January 2014 (has links)
A abordagem de regressão MIDAS (Mixed Data Sampling), proposta por Ghysels et al. (2004), permite relacionar diretamente variáveis em freqüências distintas. Esta característica é particularmente atraente quando se deseja utilizar os dados nas freqüências em que são disponibilizados, bem como quando o objetivo é calcular previsões multi-períodos à frente. Nesta tese, utiliza-se a abordagem de regressão MIDAS em três ensaios em que são realizadas aplicações empíricas nas áreas de finanças e macroeconomia. Os três ensaios são de caráter comparativo. Com aplicações em diferentes contextos de previsão, objetiva-se contribuir fornecendo evidências empíricas comparativas. No primeiro ensaio, são explorados resultados comparativos no contexto de previsão de volatilidade multi-períodos. Compara-se a abordagem MIDAS com dois métodos amplamente utilizados no cálculo de previsões multi-períodos à frente: as abordagens direta e iterada. Seus desempenhos relativos são investigados em um estudo de Monte Carlo e em um estudo empírico em que são computadas previsões de volatilidade para horizontes de até 60 dias à frente. Os resultados do estudo de Monte Carlo indicam que a abordagem MIDAS fornece as melhores previsões para os horizontes iguais ou superiores a 15 dias. Em contraste, as previsões geradas a partir da abordagem iterada são superiores nos horizontes de 5 e 10 dias à frente. No estudo empírico, utilizando-se retornos diários dos índices S&P 500 e NASDAQ, os resultados não são tão conclusivos, mas sugerem um melhor desempenho para a abordagem iterada. Todas as análises são fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. Combinações das previsões dos referidos modelos também são consideradas. São utilizados retornos intradiários do IBOVESPA no cálculo de medidas de volatilidade, tais como variância realizada, variação potente realizada e variação bipotente realizada, sendo estas medidas usadas como regressores em ambos os modelos. Adicionalmente, utiliza-se um procedimento não paramétrico na estimação das medidas de variabilidade dos componentes contínuo e de saltos do processo de variação quadrática. Estas medidas são utilizadas como regressores separados em especificações MIDAS e HAR. Quanto às evidências empíricas, os resultados em termos de erro quadrático médio sugerem que regressores baseados em medidas de volatilidade robustas a saltos (i.e., variação bipotente realizada e variação potente realizada) são melhores em prever volatilidade futura. Entretanto, observa-se que, em geral, as previsões baseadas nestes regressores não são estatisticamente diferentes daquelas baseadas na variância realizada (o regressor benchmark). Além disso, observa-se que, de modo geral, o desempenho relativo das três abordagens de previsão (i.e., MIDAS, HAR e combinação de previsões) é estatisticamente equivalente. No terceiro ensaio, busca-se comparar os modelos MS-MIDAS (Markov-Switching MIDAS) e STMIDAS (Smooth Transition MIDAS) em termos de acurácia preditiva. Para tanto, realiza-se um exercício de previsão em tempo real em que são geradas previsões fora da amostra para o crescimento do PIB trimestral dos Estados Unidos com o uso de indicadores financeiros mensais. Neste exercício, também são considerados modelos lineares MIDAS e outros modelos de previsão (lineares e não-lineares) que incluem informação dos indicadores (via agregação temporal das observações mensais) para fins comparativos de desempenho preditivo. A partir dos resultados do estudo empírico, observa-se que, de modo geral, os modelos MS-MIDAS fornecem previsões mais acuradas que os modelos STMIDAS. / The Mixed Data Sampling (MIDAS) regression approach, proposed by Ghysels et al. (2004), allows us to directly relate variables at different frequencies. This characteristic is particularly attractive when one wishes to use the data at their original sampling frequencies, as well as when the objective is to calculate multi-period-ahead forecasts. In this thesis, we use the MIDAS regression approach in three papers in which we perform empirical applications in the areas of finance and macroeconomics. All papers are comparative studies. With applications in different forecasting contexts, we aim at contributing with empirical comparative evidence. In the first paper, we explore comparative results in the context of multi-period volatility forecasting. We compare the MIDAS approach with two widely used methods of producing multi-period forecasts: the direct and the iterated approaches. Their relative performances are investigated in a Monte Carlo study and in an empirical study in which we forecast volatility at horizons up to 60 days ahead. The results of the Monte Carlo study indicate that the MIDAS forecasts are the best ones at horizons of 15 days ahead and longer. In contrast, the iterated forecasts are superior for shorter horizons of 5 and 10 days ahead. In the empirical study, using daily returns of the S&P 500 and NASDAQ indexes, the results are not so conclusive, but suggest a better performance for the iterated forecasts. All analyses are out-of-sample. In the second paper, we compare several multi-period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out-of-sample volatility forecasting accuracy. We also consider combinations of the models forecasts. Using intra-daily returns of the IBOVESPA, we calculate volatility measures such as realized variance, realized power variation, and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus, MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e., realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e., MIDAS, HAR and forecast combinations) are statistically equivalent. In the third paper, we compare the Markov-Switching MIDAS (MS-MIDAS) and the Smooth Transition MIDAS (STMIDAS) models in terms of forecast accuracy. We perform a real time forecasting exercise in which out-of-sample forecasts for the quarterly U.S. output growth are generated using monthly financial indicators. In this exercise, we also consider linear MIDAS models, and other forecasting models (linear and nonlinear) that include information on the indicators (via temporal aggregation of the monthly observations) for comparative purposes. From the results of the empirical study, we observe that, in general, the MS-MIDAS models provide more accurate forecasts than do the STMIDAS models.
|
15 |
Um índice coincidente para a atividade econômica do comércio varejista no Rio Grande do SulTorres, Gabriel Picavêa January 2014 (has links)
O objetivo deste trabalho é a construção de um indicador coincidente (IC) para a atividade econômica do segmento de Comércio Varejista dentro da economia do estado do Rio Grande do Sul. A utilização de variáveis que apresentem comportamento comum entre si e altamente correlacionado com as Vendas do Varejo é o ponto de partida para a investigação a seguir. A metodologia adotada é a dos modelos de Fator Dinâmico de Stock e Watson (1988, 1989, 1991, 1993). Os resultados encontrados apontam um indicador final satisfatório, em termos de MAPE (erro absoluto percentual médio, em inglês) com relação às séries de Vendas do Varejo, especificamente a série da FEE/Fecomércio-RS – que tratava-se de uma pesquisa censitária. Em termos de fundamentos econômicos o IC é composto por variáveis que sabidamente afetam o consumo de bens: renda, crédito e confiança do consumidor. Um destaque está para o alto peso das variáveis de Crédito e Sentimento sobre a Situação Presente, o que sugere que o fluxo de renda futuro e a confiança para assumir endividamentos longos são determinantes para o segmento. Considerando um horizonte maior para a ampliação dessa pesquisa, postula-se que a construção de novos dados regionalizados para crédito, renda pela PNAD Contínua, séries mais longas para índices de confiança, e indicadores sobre estoques no Comércio podem melhorar os resultados encontrados. / The following research intends to build a coincident indicator to the Retail sector’s economic activity within the regional economy of Rio Grande do Sul. The starting point to reach this objective is to use variables which present common cyclical behavior with each other, as well as with Retail Trade indices. The investigation will be carried on using Stock and Watson’s (1988, 1989, 1991, 1993) Dynamic Factor models methodology. The research returned a result a final index which can be classified as satisfactory, when evaluated by the mean absolute percentage error with Retail Trade indices, specially the FEE/Fecomércio-RS’ index – which was a censitary research. The built Coincident Indicator is composed by variables correlated with consumption, according to the economic theory: income, credit and consumer’s confidence. Variables such as Consumer Credit and Consumer’s Sentiment towards Present Economic Situation presented high weight in the indicator, which suggests that future income flows and confidence to take long term debt are crucial for the sector’s economic activity. Considering an expanded horizon for this research, one believes that new regional data for Household Credit, income through PNAD Contínua, a longer sample for Consumer’s Confidence indices, and indicators measuring stock levels in Retail might improve the coincident indicator.
|
16 |
A evoluÃÃo do crÃdito bancÃrio Ãs pessoas fÃsicas no Brasil: determinantes e caracterÃsticas (2004-2011) / The evolution of bank lending to individuals in Brazil: determinants and characteristics (2004-2011)Thiago GonÃalves de Oliveira 27 June 2012 (has links)
nÃo hà / O volume total das operaÃÃes de crÃdito no Brasil passou de 24,3% do PIB, em janeiro de
2004, para 49% do PIB em dezembro de 2011. A maior disponibilidade de crÃdito para as
pessoas fÃsicas geram efeitos sobre a demanda, no curto prazo, e para as pessoas jurÃdicas
ampliam as condiÃÃes de oferta no longo prazo. O objetivo geral deste trabalho à analisar a
evoluÃÃo recente das operaÃÃes de crÃdito consignado, crÃdito habitacional e crÃdito veicular
no Brasil e o seu impacto na atividade econÃmica no perÃodo: 2004 -2011. A Ãnfase no
segmento pessoa fÃsica justifica-se pela sua inÃdita expansÃo, bem como pela sua importÃncia
para o aquecimento do mercado interno, a despeito da crise financeira internacional. O estudo
utiliza variÃveis logaritimizadas para as seis sÃries temporais em anÃlise: os trÃs crÃditos,
Ãndice de atividade econÃmica, taxa de juros selic e Ãndice de taxa de cÃmbio. O modelo
economÃtrico aplicado para essas variÃveis endÃgenas foi o VAR - VEC, de acordo com o
critÃrio de Schwarz e os testes de estacionariedade, causalidade de Granger e co-integraÃÃo de
Johansen. Os resultados da pesquisa ratificam a expansÃo e sustentabilidade do crÃdito ao
segmento pessoa fÃsica e identifica variaÃÃes na atividade econÃmica em funÃÃo de impulsos
nas linhas de crÃdito em estudo. As interpretaÃÃes desses resultados sÃo aplicÃveis na escolha
de polÃticas econÃmicas, considerando-se os setores produtivos em anÃlise, a expansÃo
esperada e as variÃveis macroeconÃmicas do modelo. / The total volume of loans in Brazil increased from 24.3% of GDP in January 2004 to 49% of
GDP in December 2011. The greater availability of credit to individuals generate effects on
the demand in the short term, and for legal entities expand the supply conditions in the long
run. The aim of this paper is to analyze recent developments in the operations of payroll,
housing loans and car loans in Brazil and its impact on economic activity in the period: 2004 -
2011. The emphasis on individual segment is justified by its unprecedented expansion as well
as its importance for the heating of the internal market, despite the international financial
crisis. The study uses logaritimizadas variables for the six time series under analysis: the
three-credit, index of economic activity, interest rate Selic rate and exchange rate. The
econometric model used for these endogenous variables was the VAR - VEC, according to the
Schwarz criterion and stationarity tests, Granger causality and cointegration Johansen. The
survey results confirm the expansion and sustainability of credit to the individual segment and
identifies variations in economic activity due to impulses in credit lines under study. The
interpretations of these results are applicable in the choice of economic policies, considering
the productive sectors under analysis, the expected expansion and the macroeconomic
variables of the model.
|
17 |
Ensaios em econometria aplicada a finanças e macroeconomia utilizando a abordagem de regressão MIDASSantos, Douglas Gomes dos January 2014 (has links)
A abordagem de regressão MIDAS (Mixed Data Sampling), proposta por Ghysels et al. (2004), permite relacionar diretamente variáveis em freqüências distintas. Esta característica é particularmente atraente quando se deseja utilizar os dados nas freqüências em que são disponibilizados, bem como quando o objetivo é calcular previsões multi-períodos à frente. Nesta tese, utiliza-se a abordagem de regressão MIDAS em três ensaios em que são realizadas aplicações empíricas nas áreas de finanças e macroeconomia. Os três ensaios são de caráter comparativo. Com aplicações em diferentes contextos de previsão, objetiva-se contribuir fornecendo evidências empíricas comparativas. No primeiro ensaio, são explorados resultados comparativos no contexto de previsão de volatilidade multi-períodos. Compara-se a abordagem MIDAS com dois métodos amplamente utilizados no cálculo de previsões multi-períodos à frente: as abordagens direta e iterada. Seus desempenhos relativos são investigados em um estudo de Monte Carlo e em um estudo empírico em que são computadas previsões de volatilidade para horizontes de até 60 dias à frente. Os resultados do estudo de Monte Carlo indicam que a abordagem MIDAS fornece as melhores previsões para os horizontes iguais ou superiores a 15 dias. Em contraste, as previsões geradas a partir da abordagem iterada são superiores nos horizontes de 5 e 10 dias à frente. No estudo empírico, utilizando-se retornos diários dos índices S&P 500 e NASDAQ, os resultados não são tão conclusivos, mas sugerem um melhor desempenho para a abordagem iterada. Todas as análises são fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. Combinações das previsões dos referidos modelos também são consideradas. São utilizados retornos intradiários do IBOVESPA no cálculo de medidas de volatilidade, tais como variância realizada, variação potente realizada e variação bipotente realizada, sendo estas medidas usadas como regressores em ambos os modelos. Adicionalmente, utiliza-se um procedimento não paramétrico na estimação das medidas de variabilidade dos componentes contínuo e de saltos do processo de variação quadrática. Estas medidas são utilizadas como regressores separados em especificações MIDAS e HAR. Quanto às evidências empíricas, os resultados em termos de erro quadrático médio sugerem que regressores baseados em medidas de volatilidade robustas a saltos (i.e., variação bipotente realizada e variação potente realizada) são melhores em prever volatilidade futura. Entretanto, observa-se que, em geral, as previsões baseadas nestes regressores não são estatisticamente diferentes daquelas baseadas na variância realizada (o regressor benchmark). Além disso, observa-se que, de modo geral, o desempenho relativo das três abordagens de previsão (i.e., MIDAS, HAR e combinação de previsões) é estatisticamente equivalente. No terceiro ensaio, busca-se comparar os modelos MS-MIDAS (Markov-Switching MIDAS) e STMIDAS (Smooth Transition MIDAS) em termos de acurácia preditiva. Para tanto, realiza-se um exercício de previsão em tempo real em que são geradas previsões fora da amostra para o crescimento do PIB trimestral dos Estados Unidos com o uso de indicadores financeiros mensais. Neste exercício, também são considerados modelos lineares MIDAS e outros modelos de previsão (lineares e não-lineares) que incluem informação dos indicadores (via agregação temporal das observações mensais) para fins comparativos de desempenho preditivo. A partir dos resultados do estudo empírico, observa-se que, de modo geral, os modelos MS-MIDAS fornecem previsões mais acuradas que os modelos STMIDAS. / The Mixed Data Sampling (MIDAS) regression approach, proposed by Ghysels et al. (2004), allows us to directly relate variables at different frequencies. This characteristic is particularly attractive when one wishes to use the data at their original sampling frequencies, as well as when the objective is to calculate multi-period-ahead forecasts. In this thesis, we use the MIDAS regression approach in three papers in which we perform empirical applications in the areas of finance and macroeconomics. All papers are comparative studies. With applications in different forecasting contexts, we aim at contributing with empirical comparative evidence. In the first paper, we explore comparative results in the context of multi-period volatility forecasting. We compare the MIDAS approach with two widely used methods of producing multi-period forecasts: the direct and the iterated approaches. Their relative performances are investigated in a Monte Carlo study and in an empirical study in which we forecast volatility at horizons up to 60 days ahead. The results of the Monte Carlo study indicate that the MIDAS forecasts are the best ones at horizons of 15 days ahead and longer. In contrast, the iterated forecasts are superior for shorter horizons of 5 and 10 days ahead. In the empirical study, using daily returns of the S&P 500 and NASDAQ indexes, the results are not so conclusive, but suggest a better performance for the iterated forecasts. All analyses are out-of-sample. In the second paper, we compare several multi-period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out-of-sample volatility forecasting accuracy. We also consider combinations of the models forecasts. Using intra-daily returns of the IBOVESPA, we calculate volatility measures such as realized variance, realized power variation, and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus, MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e., realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e., MIDAS, HAR and forecast combinations) are statistically equivalent. In the third paper, we compare the Markov-Switching MIDAS (MS-MIDAS) and the Smooth Transition MIDAS (STMIDAS) models in terms of forecast accuracy. We perform a real time forecasting exercise in which out-of-sample forecasts for the quarterly U.S. output growth are generated using monthly financial indicators. In this exercise, we also consider linear MIDAS models, and other forecasting models (linear and nonlinear) that include information on the indicators (via temporal aggregation of the monthly observations) for comparative purposes. From the results of the empirical study, we observe that, in general, the MS-MIDAS models provide more accurate forecasts than do the STMIDAS models.
|
18 |
Um índice coincidente para a atividade econômica do comércio varejista no Rio Grande do SulTorres, Gabriel Picavêa January 2014 (has links)
O objetivo deste trabalho é a construção de um indicador coincidente (IC) para a atividade econômica do segmento de Comércio Varejista dentro da economia do estado do Rio Grande do Sul. A utilização de variáveis que apresentem comportamento comum entre si e altamente correlacionado com as Vendas do Varejo é o ponto de partida para a investigação a seguir. A metodologia adotada é a dos modelos de Fator Dinâmico de Stock e Watson (1988, 1989, 1991, 1993). Os resultados encontrados apontam um indicador final satisfatório, em termos de MAPE (erro absoluto percentual médio, em inglês) com relação às séries de Vendas do Varejo, especificamente a série da FEE/Fecomércio-RS – que tratava-se de uma pesquisa censitária. Em termos de fundamentos econômicos o IC é composto por variáveis que sabidamente afetam o consumo de bens: renda, crédito e confiança do consumidor. Um destaque está para o alto peso das variáveis de Crédito e Sentimento sobre a Situação Presente, o que sugere que o fluxo de renda futuro e a confiança para assumir endividamentos longos são determinantes para o segmento. Considerando um horizonte maior para a ampliação dessa pesquisa, postula-se que a construção de novos dados regionalizados para crédito, renda pela PNAD Contínua, séries mais longas para índices de confiança, e indicadores sobre estoques no Comércio podem melhorar os resultados encontrados. / The following research intends to build a coincident indicator to the Retail sector’s economic activity within the regional economy of Rio Grande do Sul. The starting point to reach this objective is to use variables which present common cyclical behavior with each other, as well as with Retail Trade indices. The investigation will be carried on using Stock and Watson’s (1988, 1989, 1991, 1993) Dynamic Factor models methodology. The research returned a result a final index which can be classified as satisfactory, when evaluated by the mean absolute percentage error with Retail Trade indices, specially the FEE/Fecomércio-RS’ index – which was a censitary research. The built Coincident Indicator is composed by variables correlated with consumption, according to the economic theory: income, credit and consumer’s confidence. Variables such as Consumer Credit and Consumer’s Sentiment towards Present Economic Situation presented high weight in the indicator, which suggests that future income flows and confidence to take long term debt are crucial for the sector’s economic activity. Considering an expanded horizon for this research, one believes that new regional data for Household Credit, income through PNAD Contínua, a longer sample for Consumer’s Confidence indices, and indicators measuring stock levels in Retail might improve the coincident indicator.
|
19 |
Região de influência da atividade industrial do Rio Grande do Sul por meio da análise da distribuição das unidades locais e assalariadas externosMuradás, Wilson January 2004 (has links)
O presente trabalho tem por finalidade investigar os Centros de influência a partir dos assalariados externos, que são os empregados fora da sede da empresa. Eles indicam o poder de atuação da empresa associado a atividade econômica e as unidades locais, sendo controlados na estrutura econômica industrial no Rio Grande do Sul. Através deste conceito e com base nos dados da Pesquisa Industrial Anual de 1998, do IBGE, obtivemos resultados da atuação da Região Metropolitana de Posto Alegre, avaliada pelo número dos assalariados externos das diferentes atividades econômicas, dentro e foca do Estado; e a atuação das industrias nas diferentes regiões sócio-econômicas do Rio Grande do Sul também demonstrado por meio dos assalariados externos nos diferentes gêneros da indústria e no seu relacionamento com aspectos da integração econômica, bem como as diferentes categorias de bens de consumo. Contudo, esía abordagem apresenta uma diferente discussão à diversificação e a especialização dos centros de influência. A identificação dos centros de Influência reflete a questão da divisão territoriaJ do trabalho, as atividades econômicas por meio da atuação da indústria no Rio Grande do Sul, onde consideramos a hipótese de que esta dinâmica se consubstancia em forte relação de poder dos agentes econômicos sobre o espaço. / This paper aims to study Influence Centers through "branch employees" (employees who do not work in the finn's headquarters). They show the firm´s influence in Rio Grande do Sul State economic activity. Based on this concept and using IBGFs 1998 "Pesquisa Industrial Anual" data,, the results highlight the Greater Porto Alegre Region in terms of the number of its branch employees inside and outside Rio Grande do Sul State, in many industries. Also, the role of manufacturing activities (like consumer goods production) in promoting economic integration among regions. This approach points to a different view of diversification and specialization trends in Influence Centers. These centers have an impact in the geographical distribution of employment, in the influence of manufacturing on other economic activities and are evidence of the strong influence of economic agents in geographical space.
|
20 |
DiagnÃstico e previsÃo da atividade econÃmica no setor primÃrio brasileiro / Diagnosis and forecast of the economic activity in the Brazilian primary sectorVanessa Gomes Simonassi 29 August 2008 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Recentemente, tem surgido um novo debate sobre o âpossÃvel ponto de estrangulamentoâ que poderia ser alcanÃado pela atividade agropecuÃria e industrial no Brasil. Esse fato à representado pelos altos nÃveis de utilizaÃÃo da capacidade industrial instalada e pela busca por novas Ãreas para a atividade agrÃcola. Esta saturaÃÃo da capacidade instalada e de Ãreas para plantio poderia levar a uma pressÃo sobre o nÃvel de preÃos. Nesse contexto, observa-se que o setor primÃrio, apesar de sua importÃncia na estrutura da economia como um todo, ainda à negligenciado. O recente perÃodo à marcado por uma trajetÃria de crescimento da economia brasileira, mas a nÃveis menores que outros paÃses latino-americanos com idÃntica estrutura produtiva, sinalizando a falta de impulso frente a economias competitivas de paÃses emergentes. Este fato pode ser resultado de uma possÃvel saturaÃÃo dos setores industrial e agrÃcola, reforÃando a necessidade de estudar o comportamento e os determinantes da produÃÃo brasileira do setor primÃrio, elemento fundamental da estrutura produtiva nacional. O estudo utiliza tÃcnicas economÃtricas e modelos de sÃries temporais e variÃveis determinantes da produÃÃo agrÃcola brasileira, como: investimentos, taxa de juros, taxa de cÃmbio, preÃos externos e tendÃncia da atividade do setor primÃrio nacional. O trabalho permitiu constatar uma mudanÃa nos ciclos de produÃÃo agropecuÃria nacional devida, provavelmente, a mudanÃas nas tÃcnicas de produÃÃo. TambÃm, se verifica que a sustentabilidade do crescimento do setor primÃrio, indicada pela cointegraÃÃo entre produto e investimento, os investimentos do setor tÃm acompanhado a produÃÃo, evitando, portanto, uma eventual saturaÃÃo e pressÃo inflacionÃria nos preÃos dos produtos agropecuÃrios / The impact on the Gross National Product of investments, interest rates, exchange rates and prices of agricultural exported products are unknown in time to permit previous evaluation of economic activity of Brazilian primary sector. The present work has the objective to preview Brazilian economic activity trend. Econometric techniques and temporal series will be used besides of variables as investments, interest rates, and trend of national primary sector activity. The present work permits to know changes in production techniques. Also, permits verify a sustainable growth of primary sector as indicated by cointegration between products and investments, showing that investments of primary sector has been accompanied the production, avoiding, then, eventual saturation and inflationary press on prices of agricultural products
|
Page generated in 0.038 seconds