Spelling suggestions: "subject:"[een] ERGODIC THEORY"" "subject:"[enn] ERGODIC THEORY""
61 |
Propriedades dinâmicas e ergódicas de shifts multidimensionais / Dynamic and ergodic properties of multidimensional shiftsColle, Cleber Fernando, 1985- 19 August 2018 (has links)
Orientador: Eduardo Garibaldi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T00:20:51Z (GMT). No. of bitstreams: 1
Colle_CleberFernando_M.pdf: 1068657 bytes, checksum: 78c9700800b05194ffcf66838581b081 (MD5)
Previous issue date: 2011 / Resumo: Focaremos sobre aspectos dinâmicos e ergódicos de shifts multidimensionais, atentando especialmente para suas relações com estados fundamentais e quase-cristais em reticulados. Por exemplo, em mecânica estatística, dado um potencial invariante por translação, seus estados fundamentais são medidas de probabilidade invariantes por translação suportadas no conjunto de suas configurações fundamentais, isto é, das configurações com energia específica mínima. Estados fundamentais são naturalmente associados com o bordo de certos polítopos convexos dimensionalmente finitos. Esse bordo se torna drasticamente diferente se a dimensão do modelo em questão passa de d = 1 para d > 1, pois no caso multidimensional existe shift de tipo finito unicamente ergódico sem configurações periódicas / Abstract: We will focus on dynamic and ergodic aspects of multidimensional shifts, with particular care to their relations with ground states and quasicrystals in lattices. For example, in statistical mechanics, given a translation-invariant potential, its ground states are translation-invariant probability measures supported on the set of its ground configurations, i.e., of configurations with minimal specific energy. Ground states are naturally associated with the boundary of certain finite-dimensional convex polytopes. This boundary becomes drastically different if the dimension of the model in question changes from d = 1 to d > 1, because in the multidimensional case there exists uniquely ergodic shift of finite type with no periodic configurations / Mestrado / Matematica / Mestre em Matemática
|
62 |
Formalismos Gibbsianos para sistemas de spins unidimensionais / Gibbsian formalisms for one dimensional spin systemsGomes, João Tiago Assunção, 1986- 20 August 2018 (has links)
Orientador: Eduardo Garibaldi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T22:00:53Z (GMT). No. of bitstreams: 1
Gomes_JoaoTiagoAssuncao_M.pdf: 1424859 bytes, checksum: 6679c0458ae1350513c30bdc7ea2e699 (MD5)
Previous issue date: 2012 / Resumo: Exibir os estados de Gibbs e os estados de equilíbrios para certos sistemas de spins sobre reticulados é um problema de grande interesse para mecânica estatística. Com este intuito, apresentamos para o caso unidimensional dois formalismos existentes para tais sistemas: o formalismo DLR (enfoque mecânico-estatístico) e o formalismo SRB (enfoque dinamicista). Apesar das particularidades próprias aos contextos nos quais cada um dos formalismos se aplica, investigam-se aqui as relações existentes entre estes através da energia livre de Gibbs e da pressão topológica. Discute-se também o comportamento assintótico dos estados de Gibbs/equilíbrio quando levados ao congelamento do sistema. Tal fenômeno nos conduz ao estudo dos estados maximizantes via teoria de otimização ergódica. Ao fim, comparam-se algumas ideias da álgebra max/min-plus e o conceito de subação, as quais serão fundamentais para análise do comportamento assintótico da pressão topológica / Abstract: To exhibit Gibbs states and equilibrium states for certain kind of lattice spin systems is a problem with great interest for statistical mechanics. To that end, we introduce two existing formalisms for one-dimensional systems: DLR formalism (statistical-mechanical approach) and SRB formalism (dynamical-systems approach). In spite of their distinct applications, we analyse the relation between them through the notions of Gibbs free energy and topological pressure. We discuss also the asymptotic behaviour of Gibbs/equilibrium states when the system is frozen. This phenomenon leads us to the study of maximizing states in the context of ergodic optimization. Finally, we compare some ideas of max/min-plus algebra and the notion of sub-action, which will be essential to investigate the asymptotic behaviour of the topological pressure / Mestrado / Matematica / Mestre em Matemática
|
63 |
Philosophical aspects of chaos : definitions in mathematics, unpredictability, and the observational equivalence of deterministic and indeterministic descriptionsWerndl, Charlotte January 2010 (has links)
This dissertation is about some of the most important philosophical aspects of chaos research, a famous recent mathematical area of research about deterministic yet unpredictable and irregular, or even random behaviour. It consists of three parts. First, as a basis for the dissertation, I examine notions of unpredictability in ergodic theory, and I ask what they tell us about the justification and formulation of mathematical definitions. The main account of the actual practice of justifying mathematical definitions is Lakatos's account on proof-generated definitions. By investigating notions of unpredictability in ergodic theory, I present two previously unidentified but common ways of justifying definitions. Furthermore, I criticise Lakatos's account as being limited: it does not acknowledge the interrelationships between the different kinds of justification, and it ignores the fact that various kinds of justification - not only proof-generation - are important. Second, unpredictability is a central theme in chaos research, and it is widely claimed that chaotic systems exhibit a kind of unpredictability which is specific to chaos. However, I argue that the existing answers to the question "What is the unpredictability specific to chaos?" are wrong. I then go on to propose a novel answer, viz. the unpredictability specific to chaos is that for predicting any event all sufficiently past events are approximately probabilistically irrelevant. Third, given that chaotic systems are strongly unpredictable, one is led to ask: are deterministic and indeterministic descriptions observationally equivalent, i.e., do they give the same predictions? I treat this question for measure-theoretic deterministic systems and stochastic processes, both of which are ubiquitous in science. I discuss and formalise the notion of observational equivalence. By proving results in ergodic theory, I first show that for many measure-preserving deterministic descriptions there is an observationally equivalent indeterministic description, and that for all indeterministic descriptions there is an observationally equivalent deterministic description. I go on to show that strongly chaotic systems are even observationally equivalent to some of the most random stochastic processes encountered in science. For instance, strongly chaotic systems give the same predictions at every observation level as Markov processes or semi-Markov processes. All this illustrates that even kinds of deterministic and indeterministic descriptions which, intuitively, seem to give very different predictions are observationally equivalent. Finally, I criticise the claims in the previous philosophical literature on observational equivalence.
|
64 |
Constantes de Siegel-Veech et volumes de strates d'espaces de modules de différentielles quadratiques / Siegel-Veech constants and volumes of strata of moduli spaces of quadratic differentialsGoujard, Élise 07 October 2014 (has links)
Nous étudions les constantes de Siegel–Veech pour les surfaces plates et leurs liens avec les volumes de strates d'espaces de modules de différentielles quadratiques. Les constantes de Siegel–Veech donnent l'asymptotique du nombre de géodésiques périodiques dans les surfaces plates. Pour certaines surfaces plates, de telles géodésiques correspondent aux trajectoires périodiques dans les billiards rationnels correspondants. Les constantes de Siegel–Veech sont fortement reliées à la dynamique du flot géodésique dans les espaces de modules correspondants, par la formule d'Eskin–Kontsevich–Zorich exprimant la somme des exposants de Lyapunov du fibré de Hodge le long du flot de Teichmüller en fonction de la constante de Siegel–Veech pour la strate considérée et d'un terme combinatoire explicite. Cette dynamique est liée à la dynamique du flot linéaire dans la surface plate de départ par un procédé de renormalisation. En utilisant certaines propriétés de cette dynamique nous montrons un critère qui détermine quand une courbe complexe plongée dans l'espace de module des surfaces de Riemann munie d'un sous-fibré en droites du fibré de Hodge est une courbe de Teichmüller. Nous étudions certains rapports de constantes de Siegel–Veech et en déduisons des informations géométriques sur les régions périodiques dans les surfaces plates. Les liens entre les constantes de Siegel–Veech et les volumes d'espaces de modules ont été étudiés complètement dans le cas abélien par Eskin, Masur et Zorich, et dans le cas quadratique en genre zéro par Athreya, Eskin et Zorich. Nous généralisons ces résultats au cas quadratique en genre supérieur, en utilisant la description des configurations de liens selles produite par Masur et Zorich. Nous calculons de façon explicite certains volumes de strates de petite dimension. / We study Siegel–Veech constants for flat surfaces and their links with the volumes of some strata of moduli spaces of quadratic differentials. Siegel–Veech constants give the asymptotics of the number of periodic geodesics in flat surfaces. For certain flat surfaces such geodesics correspond to periodic trajectories in related rational billiards. Siegel–Veech constants are strongly linked to the dynamics of the geodesic flow in related moduli spaces by the formula of Eskin–Kontsevich–Zorich, giving the sum of the Lyapunov exponents for the Hodge bundle along the Teichmüller geodesic flow in terms of the Siegel–Veech constant for the corresponding stratum and an explicit combinatorial expression. This dynamics is related to the dynamics of the linear flow in the original flat surface by a renormalization process. Using some properties of this dynamics we prove a criterion to detect whether a complex curve, embedded in the moduli space of Riemann surfaces and endowed with a line subbundle of the Hodge bundle, is a Teichmüller curve. We study ratios of Siegel–Veech constants and deduce geometric informations about the periodic regions in flat surfaces. The links between Siegel–Veech constants and volumes of moduli spaces were completely studied by Eskin, Masur and Zorich in the Abelian case, and by Athreya, Eskin and Zorich in the quadratic case in genus zero. We generalize their results to the quadratic case in higher genus, using the description of configurations of saddle-connections performed by Masur and Zorich. We provide explicit computations of volumes of some strata of low dimension.
|
65 |
Thermodynamical FormalismChousionis, Vasileios 08 1900 (has links)
Thermodynamical formalism is a relatively recent area of pure mathematics owing a lot to some classical notions of thermodynamics. On this thesis we state and prove some of the main results in the area of thermodynamical formalism. The first chapter is an introduction to ergodic theory. Some of the main theorems are proved and there is also a quite thorough study of the topology that arises in Borel probability measure spaces. In the second chapter we introduce the notions of topological pressure and measure theoretic entropy and we state and prove two very important theorems, Shannon-McMillan-Breiman theorem and the Variational Principle. Distance expanding maps and their connection with the calculation of topological pressure cover the third chapter. The fourth chapter introduces Gibbs states and the very important Perron-Frobenius Operator. The fifth chapter establishes the connection between pressure and geometry. Topological pressure is used in the calculation of Hausdorff dimensions. Finally the sixth chapter introduces the notion of conformal measures.
|
66 |
Lyapunov Exponents, Entropy and DimensionWilliams, Jeremy M. 08 1900 (has links)
We consider diffeomorphisms of a compact Riemann Surface. A development of Oseledec's Multiplicative Ergodic Theorem is given, along with a development of measure theoretic entropy and dimension. The main result, due to L.S. Young, is that for certain diffeomorphisms of a surface, there is a beautiful relationship between these three concepts; namely that the entropy equals dimension times expansion.
|
67 |
Functional limit theorem for occupation time processes of intermittent maps / 間欠写像の滞在時間過程に対する関数型極限定理Sera, Toru 24 November 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22823号 / 理博第4633号 / 新制||理||1666(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 矢野 孝次, 教授 泉 正己, 教授 日野 正訓 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
68 |
Recurrence and Mixing Properties of Measure Preserving Systems and Combinatorial ApplicationsZelada Cifuentes, Jose Rigoberto Enrique January 2021 (has links)
No description available.
|
69 |
Quantitative Non-Divergence, Effective Mixing, and Random Walks on Homogeneous SpacesBuenger, Carl D., Buenger 01 September 2016 (has links)
No description available.
|
70 |
Normal Numbers with Respect to the Cantor Series ExpansionMance, Bill 03 August 2010 (has links)
No description available.
|
Page generated in 0.0339 seconds