• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 71
  • 67
  • 14
  • 11
  • 9
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 358
  • 358
  • 89
  • 86
  • 58
  • 52
  • 51
  • 40
  • 38
  • 37
  • 37
  • 34
  • 32
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Copper and iron complexes of linear and crosslinked polymers as catalysts for phosphoester hydrolysis and oxidative transformation of phenolic and catecholic substrates

Lykourinou, Vasiliki 01 June 2006 (has links)
The goal of this study is to utilize polymers as macromolecular ligands for the construction of catalysts by formation of coordination complexes with transition metals with the main focus on complexes of Cu(II) and Fe(III) and further determine (a) their catalytic efficiency (b) mechanism of action (c) similarities to enzymatic systems and synthetic metal complexes. The reactions of interest are (1) hydrolytic cleavage of a series of phosphoesters(2) oxidation of catechol type of substrates (3) hydroxylation of phenolic substrates and chlorinated phenols (4) activation of molecular oxygen and/ or hydrogen peroxide (5)oxidative cleavage of DNA plasmid. The major premise of the study is that by mimicking the macromolecular nature and some structural features of enzymes, polymers can in principle, catalyze chemical transformations with similar efficiencies and specificities and can offer alternatives to peptide based catalysts or simple metal complexes with the advantage of a wider range of building blocks, increased stability and the potential of reusability. The crosslinked resins used contained the functional groups iminodiacetate (chelex resin), diethylenetriamine and tris(2-aminomethylamine) and were based on styrene-divinylbenzene backbone. The catalytic proficiencies of the Fe(III) and the Cu(II) complexes of chelex resin and diethylenetriamine approached 100 and 1000 respectively towards the model phosphodiester BNPP at pH 8.0 and 25°C. Moreover, the Fe(III) complexes of linear copolymers with repeating unit of three vinylpyridines to one acrylamide (P1) showed selectivity towards phosphodiester hydrolysis over monoesters and phosphonate esters and exhibited catalytic proficiencies approaching 50,000 towards BNPP hydrolysis. Further exploration of the catalytic capabilities of copolymer P1 revealed that Cu(II) complexes of this macromolecular ligand are potentially capable of assembling to active dicopper intermediates found in the catalytic pathways of copper oxygenases like tyrosinase and catechol oxidase and thus were able to accelerate catechol oxidation to ortho-quinones with rate accelerations approaching 10,000 and hydroxylate phenols with rate accelerations close to one million. The results suggest that these Cu(II)-polymer systems can potentially be used as model systems to further understand metal centered reactive oxygen species (ROS) generated in vivo and can be very promising remediation agents for the dechlorination of persistant chlorine containing pollutants.
92

SELECTIVE TRIPODAL TITANIUM SILSESQUIOXANE CATALYSTS FOR THE EPOXIDATION OF UNACTIVATED OLEFINS

Peak, Sarah M. 01 January 2015 (has links)
Regiomeric mixture of HMe2Si(CH2)3(i-Bu)6Si7O9(OH)3 (6), containing a Si-H group in one of the ligands of the silsesquioxane, was tethered onto a vinyl terminated hyperbranched poly(siloxysilane) polymer via a hydrosilation reaction to generate extremely active catalysts, P1-8 and c-P1-8. The synthesis of 6, in good yield, was accomplished via hydrosilation of CH2=CHCH2(i-Bu)7Si8O12 (1) to generate ClMe2Si(CH2)3(i-Bu)7Si8O12 (3) followed by the reduction of 3 with LiAlH4 to afford HMe2Si(CH2)3(i-Bu)7Si8O12 (4) where the base-catalyzed excision of one framework silicon was employed to generate a regiomeric mixture of 6. [Ti(NMe2){Et3Si(CH2)3(i-Bu)6Si7O12}] (7), [Ti(NMe2){HMe2Si(CH2)3(i-Bu)6Si7O12}] (8), [Ti(NMe2){(i-C4H9)7Si7O12}] (9) and [Ti(NMe2){(c-C6H11)7Si7O12}] (10) were synthesized via protonolysis of Ti(NMe2)4 with one equivalent of the trisilanol precursor in order to determine if the presence of isomers would be intrinsically different as compared to the uniformly substituted catalysts. Isomers 8 and 9, demonstrated lower activity as compared to the uniformly substituted catalysts 9 and 10, however the isomers still exhibited extremely high catalytic activity for the epoxidation of 1-octene using tert-butyl hydroperoxide (TBHP) relative to titanium catalysts used in industry. Additionally, 9, 10, P1-8 and c-P1-8 were very selective catalysts for the epoxidation of various olefins such as terminal (1-octene), cyclic (cyclohexene or 1-methylcyclohexene), and more demanding olefins (limonene or α-pinene) employing TBHP as the oxidant. Furthermore, P1-8 and c-P1-8 were recyclable with minimal loss of titanium however the catalysts could also be repaired if a loss in activity was observed. Preliminary epoxidation reactions employing P1-8 and c-P1-8 along with hydrogen peroxide (H2O2) as the oxidant were also explored using different solvents. P1-8 degraded quickly due to the hydrolysis of the titanium from the large amount of water present in the reaction mixture however c-P1-8 showed activity for the epoxidation of cyclohexene. Finally, regiomeric mixture of Ti(NMe2)(HS(CH2)3)(i-C4H9)6Si7O12) (13), was tethered onto gold nanoparticles for the conversion of propene to propylene oxide using molecular hydrogen and oxygen. While the catalysts showed low activity under our reaction conditions, numerous improvements can be investigated in order to improve upon the catalysts.
93

Imine/azo-linked microporous organic polymers : Design, synthesis and applications

Xu, Chao January 2015 (has links)
Microporous organic polymers (MOPs) are porous materials. Owing to their high surface area, tunable pore sizes and high physicochemical stability, they are studied for applications including gas capture and separation and heterogeneous catalysis. In this thesis, a series of imine/azo-linked MOPs were synthesized. The MOPs were examined as potential CO2 sorbents and as supports for heterogeneous catalysis. The MOPs were synthesized by Schiff base polycondensations and oxidative couplings. The porosities of the imine-linked MOPs were tunable and affected by a range of factors, such as the synthesis conditions, monomer lengths, monomer ratios. All the MOPs had ultramicropores and displayed relatively high CO2 uptakes and CO2-over-N2 selectivities at the CO2 concentrations relevant for post-combustion capture of CO2. Moreover, the ketimine-linked MOPs were moderately hydrophobic, which might increase their efficiency for CO2 capture and separation. The diverse synthesis routes and rich functionalities of MOPs allowed further post-modification to improve their performance in CO2 capture. A micro-/mesoporous polymer PP1-2, rich in aldehyde end groups, was post-synthetically modified by the alkyl amine tris(2-aminoethyl)amine (tren). The tethered amine moieties induced chemisorption of CO2 on the polymer, which was confirmed by the study of in situ infrared (IR) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. As a result, the modified polymer PP1-2-tren had a large CO2 capacity and very high CO2-over-N2 selectivity at low partial pressures of CO2. Pd(II) species were incorporated in the selected MOPs by means of complexation or chemical bonding with the imine or azo groups. The Pd(II)-rich MOPs were tested as heterogeneous catalysts for various organic reactions. The porous Pd(II)-polyimine (Pd2+/PP-1) was an excellent co-catalyst in combination with chiral amine for cooperatively catalyzed and enantioselective cascade reactions. In addition, the cyclopalladated azo-linked MOP (Pd(II)/PP-2) catalyzed Suzuki and Heck coupling reactions highly efficiently. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 7: Manuscript.</p>
94

Surface Engineering of Mesoporous Silica for Ti-Based Epoxidation Catalysts

Fang, Lin, Fang, Lin 13 November 2012 (has links) (PDF)
The active sites for epoxydation of alkenes in silica supported titanium catalysts are isolated Ti(IV) ions. The strategy for site isolation consists here to graft titanium isopropoxyde by reaction with surface silanol groups, the density of which is decreased by chemical capping instead of the energy consuming thermal treatment. The molecular stencil patterning technique (MSP) is applied to enforce site isolation. In mesostructured porous silicas, the partly extracted templating surfactant plays the role of a MSP mask during capping. Then, the elimination of the remaining surfactant liberates silanol islands for the grafting of Ti(IV) ions. Quantitative FT-IR and 29Si MAS-NMR studies reveal that the inverse organic stencil made of grafted organosilyls groups is maintained at each synthesis steps. Diffuse reflectance UV spectroscopy in correlation with the catalytic activity in epoxidation of cyclohexene show that these original surfaces favor the formation of a much larger number of isolated mononuclear sites than the unmodified silica surfaces. The demonstration is obtained using a dipodal organosilyl function, 1-2-ethanebis (dimethylsilyl) (EBDMS) that is much more stable than the classic and monopodal, trimethylsilyl (TMS). Besides, it is shown that the inverse organic stencil (from EBDMS or TMS) is stabilized further by thermal treatment while its dispersive effect on titanium can be preserved. The proof relies on a quantitative 29Si solid State NMR study. Finally, a refined description of the grafting mode of titanium was realized by simulation of the UV spectra of a large series of catalysts assuming only 5 different types of species including isolated species and clusters differentiated by the range of sizes.
95

Development of a heterogeneously catalyzed chemical process to produce biodiesel

Singh, Alok Kumar, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Agricultural and Biological Engineering. / Title from title screen. Includes bibliographical references.
96

Προώθηση αντιδράσεων περιβαλλοντικού ενδιαφέροντος - Ο ρόλος και η δράση των προωθητών στην ετερογενή κατάλυση

Κονσολάκης, Μιχαήλ 15 October 2009 (has links)
- / -
97

Καταλυτική δράσις του οξειδίου του αργιλίου επικεκαλυμμένου δι' αλάτων των αλογόνων μετά των αλκαλιμετάλλων επί αντιδράσεων αφυδραλογονώσεως εις την αέριον φάσιν

Λυκουργιώτης, Αλέξιος 19 October 2009 (has links)
- / -
98

Καύση πτητικών οργανικών ενώσεων (VOCs) σε στηριγμένους καταλύτες μετάλλων της ομάδας VIII

Παπαευθυμίου, Παναγιώτης 21 October 2009 (has links)
- / -
99

Οξειδωτική σύζευξη του μεθανίου προς ανώτερους υδρογονάνθρακες

Παπαγεωργίου, Δημήτριος 19 December 2009 (has links)
- / -
100

Palladium-catalyzed lignin valorization : Towards a lignin-based biorefinery

Galkin, Maxim January 2015 (has links)
The work described in this thesis focuses on the cleavage of the β-O-4′ bond, which is the most abundant interunit linkage in the lignin polymer. In the first part, three methods based on palladium catalysis have been developed and their applicability has been verified using lignin model compounds. A transfer hydrogenolysis of the β-O-4′ bond using formic acid as a mild hydrogen donor together with a base. An aerobic oxidation of the benzylic alcohol motif in the β-O-4′ linkage to generate a key intermediate in the cleavage reaction was performed. A redox neutral cleavage of the β-O-4′ bond was accomplished in which no stoichiometric reducing or oxidizing agents were added. In the second part of the thesis, a mechanistic study is presented. The corresponding ketone from a dehydrogenation reaction of the benzylic alcohol motif was identified to be the key intermediate. This ketone and its enol tautomer was found to be responsible for the β-O-4′ bond cleavage reaction under the employed reaction conditions. In the final part of this thesis, the methodologies have been applied to native lignin. The depolymerization reaction was combined with organosolv pulping. This approach was successful, and together with cellulose and hemicellulose, propenyl aryls were generated in excellent yields directly from wood. In this transformation, the lignin derived molecules have been reduced by an endogenous hydrogen donor from the wood.

Page generated in 0.0549 seconds