• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 23
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 19
  • 16
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Duality theory for p-th power factorable operators and kernel operators

Galdames Bravo, Orlando Eduardo 29 July 2013 (has links)
El presente trabajo está dedicado al análisis de una clase particular de operadores (lineales y continuos) entre espacios de Banach de funciones. El objetivo es avanzar en la teoría de los llamados operadores factorizables a la p-potencia analizando todos los aspectos de la dualidad. Esta clase de operadores ha demostrado ser de utilidad tanto en la teoría de factorización de operadores sobre espacios de Banach de funciones (teoría de Maurey-Rosenthal) como en el Análisis Armónico (dominios óptimos de la transformada de Fourier y operadores de convolución). A ¿n de desarrollar esta teoría de dualidad y sus aplicaciones, se de¿ne y estudia una nueva clase de operadores con propiedades de extensión que involucran al operador y a su adjunto. Ésta es la familia de operadores factorizables a la (p,q)- potencia, 1 · p,q Ç 1, y pueden caracterizarse mediante un esquema de factorización a través del espacio de p-potencias del dominio y el dual del espacio de q-potencias del dual del codominio. También se obtiene una equivalencia mediante un diagrama de factorización a través de espacios L p (m) y L q (n) 0 , donde m y n son medidas vectoriales adecuadas y ésta será nuestra principal herramienta. Para esta construcción resultan necesarios algunos resultados preliminares relativos a las p-potencias de los espacios de Banach de funciones que intervienen y que también se estudian. Con estos útiles se dan algunos resultados para caracterizar el rango óptimo ¿el menor espacio de Banach de funciones en el que puede tomar valores el operador¿ para operadores que van de un espacio de Banach a un espacio de Banach de funciones. Además, se desarrolla y presenta formalmente la idea de factorización óptima de un operador que optimiza una factorización previa, en términos del diagrama que debe satisfacer un operador factorizable a su (p,q)-potencia. Todos estos resultados extienden los actuales cálculos del dominio óptimo mediante medidas vectoriales para operadores sobre espacios de Banach de funciones. Dichos cálculos han dado resultados relevantes en diversas áreas del análisis matemático mediante una descripción del mayor espacio de Banach de funciones al cual, operadores relevantes ¿como la transformada de Fourier o el operador de Hardy¿ se pueden extender. La teoría se aplica para encontrar nuevos resultados en determinados campos: como la teoría de interpolación de operadores entre espacios de Banach de funciones, los operadores de núcleo y en particular, la transformada de Laplace. / Galdames Bravo, OE. (2013). Duality theory for p-th power factorable operators and kernel operators [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31523
32

[en] EFFICIENCY ASSESSMENT OF ADVANCED MODAL ANALYSIS AS COMPARED TO TECHNIQUES BASED ON NUMERICAL INVERSE TRANSFORMS / [pt] COMPARAÇÃO DO DESEMPENHO COMPUTACIONAL DA TÉCNICA DE SUPERPOSIÇÃO MODAL AVANÇADA COM TÉCNICAS DA TRANSFORMADA DE LAPLACE

CARLOS ANDRES AGUILAR MARON 13 February 2009 (has links)
[pt] Uma técnica bem conhecida para resolver problemas dependentes do tempo é a formulação, desses problemas, no domínio da frequência por meio da transformada de Laplace ou Fourier, com as consequêntes expressões apropriadas desses resultados utilizando inversões numéricas. Embora de fácil implementação, tais inversões numéricas, são computacionalmente dispendiosas quando resultados mais exatos são desejados e suscetíveis a instabilidades num´ericas. Para problemas de tipo difusão, o algoritmo de Gaver-Stehfest parece ser satisfatório. Problemas gerais de dinâmica demandam algoritmos mais robustos, usualmente baseados em expansões em séries de Fourier tal como foi proposto inicialmente por Dubner e Abate. Algoritmos de outros tipos já são implementados em softwares matemáticos tais como Matlab e Mathematica. A livraria de Fortran possui um algoritmo proposto por Crump e aperfei¸coado por de Hoog e colegas. Mais recentemente, foi proposto resolver problemas transientes de potencial e elasticidade pelo uso de uma técnica avançada de superposição modal que é aplicado a modelos de elementos finitos e elementos de contorno baseados em equilíbrio. O método começa com a formulação no domínio da frequência a qual leva a uma matriz de rigidez efetiva, simétrica-complexa (quando amortecimento viscoso é considerado), expressa como uma série de potências de frequência com matrizes generalizadas de rigidez, amortecimento e massa. Após a solução do problema de autovalor não linear associado, obtém-se uma solução modal avançada do problema, a qual permite uma rápida solução no domínio do tempo obtendo as expressões imediatamente de qualquer resultado de interesse. O objetivo deste trabalho é comparar o desempenho computacional da técnica de superposição modal avançada com as técnicas baseadas em transformadas inversas numéricas de Laplace como aplicações a problemas generais de grande porte. A bibliografia relevante é revista e as principais diferenças conceituais desses métodos são brevemente tratados. Todos os algoritmos são implementados em Fortran com o intuito de garantir uma base comum de comparação. Alguns resultados iniciais são mostrados, conclusões mais definitivas so poderão ser obtidas após uma grande série de simulações numéricas. / [en] An established technique to solve time-dependent problems is the formulation of a complete frequency-domain analysis via Laplace or Fourier transforms, with subsequent ad hoc expression of results by numerical inversion. Although usually easy to implement, such a transform inversion is computationally intensive, if accurate results are desired, and liable to numerical instabilities. For diffusion-type problems, the Gaver-Stehfest algorithm seems well suited. General dynamics problems demand more robust algorithms usually based on Fourier series expansions, as firstly proposed by Dubner and Abate. Algorithms of either kind are already implemented in mathematical languages such as Matlab and Mathematica. The Fortran library has a Fourier-series algorithm proposed by Crump and improved by de Hoog et al. More recently, it has been proposed to solve transient problems of potential and elasticity by using an advanced mode superposition technique that applies to equilibrium-based finite element and boundary element models. One starts with a frequency-domain formulation that leads to a complex-symmetric (if viscous damping is included), effective stiffness matrix expressed as a frequency power series with generalized stiffness, dumping and mass matrices. After solution of the associated complex-symmetric, non-linear eigenvalue problem, one arrives at an advanced modal solution of the problem, which leads to the straightforward solution in the time domain and the immediate expression of any results of interest. Aim of the present research work is to compare the computational efficiency of the proposed advanced modal analysis with the techniques based on numerical inverse transforms, as applied to general, large scale problems. The relevant literature is reviewed and the main conceptual differences of the investigated methods are briefly outlined. All algorithms are implemented in Fortran so as to assure a common basis of comparison. Some initial results are displayed, as more definitive conclusions can only be expected after a large series of numerical simulations.
33

A equação de transferência radiativa condutiva em geometria cilíndrica para o problema do escape do lançamento de foguetes

Ladeia, Cibele Aparecida January 2016 (has links)
Nesta contribuição apresentamos uma solução para a equação de transferência radiativa condutiva em geometria cilíndrica. Esta solução é aplicada para simular a radiação e campo de temperatura juntamente com o transporte de energia radiativa e condutiva proveniente do escape liberado em lançamentos de foguetes. Para este fim, discutimos uma abordagem semianalítica reduzindo a equação original, que é contínua nas variáveis angulares, numa equação semelhante ao problema SN da transferência radiativa condutiva. A solução é construída usando um método de composição por transformada de Laplace e o método da decomposição de Adomian. O esquema recursivo ´e apresentado para o sistema de equações de ordenadas duplamente discretas juntamente com as dependências dos parâmetros e suas influências sobre a convergência heurística da solução. A solução obtida, em seguida, permite construir o campo próximo relevante para caracterizar o termo fonte para problemas de dispersão ao ajustar os parâmetros do modelo, tais como, emissividade, refletividade, albedo e outros, em comparação com a observação, que são relevantes para os processos de dispersão de campo distante e podem ser manipulados de forma independente do presente problema. Além do método de solução, também relatamos sobre algumas soluções e simulações numéricas. / In this contribution we present a solution for the radiative conductive transfer equation in cylinder geometry. This solution is applied to simulate the radiation and temperature field together with conductive and radiative energy transport originated from the exhaust released in rocket launches. To this end we discuss a semi-analytical approach reducing the original equation, which is continuous in the angular variables, into an equation similar to the SN radiative conductive transfer problem. The solution is constructed using a composite method by Laplace transform and Adomian decomposition method. The recursive scheme is presented for the doubly discrete ordinate equations system together with parameter dependencies and their influence on heuristic convergence of the solution. The obtained solution allows then to construct the relevant near field to characterize the source term for dispersion problems when adjusting the model parameters such as emissivity, reflectivity, albedo and others in comparison to the observation, that are relevant for far field dispersion processes and may be handled independently from the present problem. In addition to the solution method we also report some solutions and numerical simulations.
34

Processus gamma étendus en vue des applications à la fiabilité / Extended gamma processes in view of application to reliability

Al Masry, Zeina 21 September 2016 (has links)
La thèse s’intéresse à l’étude du fonctionnement d’un système industriel. Il s’agit de proposer et de développer un nouveau modèle pour modéliser la dégradation accumulative d’un système. Le processus gamma standard est fréquemment utilisé pour étudier l’évolution de la détérioration d’un système. Toutefois, ce processus peut s’avérer inadapté pour décrire le phénomène de dégradation car le rapport variance sur moyenne est constant dans le temps, ce qui est relativement restrictif en pratique. Afin de surmonter cette restriction, nous proposons d’utiliser un processus gamma étendu introduit par Cinlar (1980), qui ne souffre plus de cette restriction. Mais ce dernier présente quelques difficultés techniques. A titre d’exemple, la loi d’un processus gamma étendu n’est pas connue sous une forme explicite. Ces difficultés techniques ont conduit Guida et al. (2012) à utiliser une version discrète d’un processus gamma étendu. Nous travaillons ici avec la version originale d’un processus gamma étendu en temps continu. Le but de ce mémoire est de développer des méthodes numériques permettant de quantifier les quantités fiabilistes associées et de développer des méthodes statistiques d’estimation des paramètres du modèle. Aussi, une autre partie de ce travail consiste à proposer une politique de maintenance dans le contexte d’un processus gamma étendu. / This thesis is dedicated to study the functioning of an industrial system. It is about proposing and developing a new model for modelling the accumulative degradation of a system. The standard gamma process is widely used to model the evolution of the system degradation. A notable restriction of a standard gamma process is that its variance-to-mean ratio is constant over time. This may be restrictive within an applicative context. To overcome this drawback, we propose to use an extended gamma process, which was introduced by Cinlar (1980). However, there is a cost and the use of an extended gamma process presents some technical difficulties. For example, there is no explicit formula for the probability distribution of an extended gamma process. These technical difficulties have lead Guida et al. (2012) to use a discrete version of an extended gamma process. We here propose to deal with the original continuous time version. The aim of this work is to develop numerical methods in order to compute the related reliability function and to develop statistical methods to estimate the parameters of the model. Also, another part of this work consists of proposing a maintenance policy within the context of an extended gamma process.
35

Modélisation numérique par éléments finis d'un problème aéroacoustique en régime transitoire : application à l'équation de Galbrun / Numerical modeling by finite element of an aeroacoustics problem in transient regime : application of Galbrun's equation

Feng, Xue 20 June 2013 (has links)
Les travaux de cette thèse concernent la modélisation et la simulation numérique de la propagation d’ondes acoustiques en présence d’un écoulement. Le modèle retenu pour ces études est l’équation de Galbrun. Les travaux faits sur l’équation de Galbrun ont essentiellement porté sur le régime harmonique. En revanche, la plupart des études mathématiques et numériques du problème de l’aéroacoustique est en régime transitoire. C’est pourquoi, il est intéressant pour nous d’étudier l’équation de Galbrun en régime transitoire. Pour résoudre cette équation en régime transitoire, notre approche a reposé sur la transformée de Laplace, qui nous permet de faire l’échange entre le domaine harmonique et le domaine réel. Un autre sujet abordé dans cette thèse est celui du traitement des conditions aux limites non réfléchissantes en écoulement uniforme et non-uniforme. Nous proposons la méthode PML pour l’équation de Galbrun. Inspirée par la méthode de Hu, nous proposons un nouveau modèle PML associé à l’équation de Galbrun, qui a toujours conduit à une solution exponentiellement décroissante dans la couche, même en présence d’ondes inverses. Les simulations acoustiques montrent étonnamment d’erreur de convergence pour les deux modèles classiques et nouveaux. Nous validons notre modèle PML à travers plusieurs exemples numériques dans l’écoulement uniforme et non-uniforme. Le dernier objectif est de proposer des modèles de sources aéroacoustiques associées à l’équation de Galbrun. Après une présentation en détail des modèles existants, on adapte une méthode hybride (EIF) à l’équation de Galbrun. Pour assurer la validité de l’approche globale, certains tests classiques sont choisis parmi la littérature et les résultats sont comparés avec les approches existantes et les solutions analytiques. / The work of this thesis is about the numerical modeling and simulation of the propagation of acoustic waves in the presence of a flow. The model used for these studies is the equation of Galbrun. The work done on the Galbrun equation focused on the harmonic regime. In contrast, most of the mathematical and numerical studies of the aeroacoustics problems are in the transient regime. That is why it is interesting for us to study the Galbrun equation in the transient regime. To solve this equation in the transient regime, our approach is based on the Laplace transform, which allows us to exchange between the frequency domain and the real domain. Another topic discussed in this thesis is the treatment of non-reflecting boundary conditions in uniform and non-uniform flow. We propose the Perfectly Matched Layer method for the Galbrun equation. Inspired by the Hu’s method, we propose a new PML model associated with the Galbrun equation, which always leads to an exponentially decreasing solution in the layer, even in the presence of reverse waves. Acoustic simulations show surprisingly error convergence for both classic and new models. We validate our PML model through several numerical examples in uniform and non-uniform flow. The final objective is to propose models for aeroacoustics sources associated with the Galbrun equation. After presenting in detail the existing models, we adapt a hybrid method (Expansion about Incompressible Flow) in Galbrun equation. To ensure the validity of the overall approach, some classical tests are selected from the literature and the results are compared with existing approaches and analytical solutions.
36

Klasické operátory harmonické analýzy v Orliczových prostorech / Classical operators of harmonic analysis in Orlicz spaces

Musil, Vít January 2018 (has links)
Classical operators of harmonic analysis in Orlicz spaces V'ıt Musil We deal with classical operators of harmonic analysis in Orlicz spaces such as the Hardy-Littlewood maximal operator, the Hardy-type integral operators, the maximal operator of fractional order, the Riesz potential, the Laplace transform, and also with Sobolev-type embeddings on open subsets of Rn or with respect to Frostman measures and, in particular, trace embeddings on the boundary. For each operator (in case of embeddings we consider the identity operator) we investigate the question of its boundedness from an Orlicz space into another. Particular attention is paid to the sharpness of the results. We further study the question of the existence of optimal Orlicz domain and target spaces and their description. The work consists of author's published and unpublished results compiled together with material appearing in the literature.
37

Mathematical Modeling and Analysis of Options with Jump-Diffusion Volatility

Andreevska, Irena 09 April 2008 (has links)
Several existing pricing models of financial derivatives as well as the effects of volatility risk are analyzed. A new option pricing model is proposed which assumes that stock price follows a diffusion process with square-root stochastic volatility. The volatility itself is mean-reverting and driven by both diffusion and compound Poisson process. These assumptions better reflect the randomness and the jumps that are readily apparent when the historical volatility data of any risky asset is graphed. The European option price is modeled by a homogeneous linear second-order partial differential equation with variable coefficients. The case of underlying assets that pay continuous dividends is considered and implemented in the model, which gives the capability of extending the results to American options. An American option price model is derived and given by a non-homogeneous linear second order partial integro-differential equation. Using Fourier and Laplace transforms an exact closed-form solution for the price formula for European call/put options is obtained.
38

Option pricing under the double exponential jump-diffusion model by using the Laplace transform : Application to the Nordic market

Nadratowska, Natalia Beata, Prochna, Damian January 2010 (has links)
<p>In this thesis the double exponential jump-diffusion model is considered and the Laplace transform is used as a method for pricing both plain vanilla and path-dependent options. The evolution of the underlying stock prices are assumed to follow a double exponential jump-diffusion model. To invert the Laplace transform, the Euler algorithm is used. The thesis includes the programme code for European options and the application to the real data. The results show how the Kou model performs on the NASDAQ OMX Stockholm Market in the case of the SEB stock.</p>
39

Capacity Constraints in Multi-Stage Production-Inventory Systems : Applying Material Requirments Planning Theory

Huynh, Thi Thu Thuy January 2006 (has links)
In this thesis, capacity-constrained aspects of multi-level, multi-stage productionplanning are investigated. The aim has been to extend Material Requirements Planning Theory (MRP Theory) to cover more general problems dealing with capacity constraints, in particular when non-zero lead times are present and the processes take place in continuous time. MRP Theory deals with multi-level production systems with multiple items taking place either within a discrete or continuous time framework. External demand is considered either deterministic or stochastic. Lead times are assumed to be given constants, and the Net Present Value Principle has been applied as the objective function. The Bill-of-Materials, capturing component as well as capacity requirements, in volume as well as in advanced timing due to lead times, has been described using a generalised input matrix involving Laplace transforms or z transforms. In order to be able to apply Dynamic Programming as a solution method, the system state has been defined and designed in terms of a matrix, in which historical values of cumulative production and cumulative demand are given state variables. A high power computer has been used to calculate solutions to numerical examples. Moreover, this thesis examines the fundamental equations of MRP Theory in order to analyse the possibility to obtain closed-form expressions for the time development of the system, when standard ordering rules of MRP are applied. In addition, capacity-constrained production planning problems and procedures in a paper mill have been surveyed and are presented in the form of a case study.
40

Option pricing under the double exponential jump-diffusion model by using the Laplace transform : Application to the Nordic market

Nadratowska, Natalia Beata, Prochna, Damian January 2010 (has links)
In this thesis the double exponential jump-diffusion model is considered and the Laplace transform is used as a method for pricing both plain vanilla and path-dependent options. The evolution of the underlying stock prices are assumed to follow a double exponential jump-diffusion model. To invert the Laplace transform, the Euler algorithm is used. The thesis includes the programme code for European options and the application to the real data. The results show how the Kou model performs on the NASDAQ OMX Stockholm Market in the case of the SEB stock.

Page generated in 0.0278 seconds