• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 245
  • 73
  • 31
  • 9
  • 6
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 452
  • 452
  • 156
  • 139
  • 115
  • 99
  • 91
  • 77
  • 77
  • 52
  • 52
  • 49
  • 46
  • 45
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Abstraction Guided Semi-formal Verification

Parikh, Ankur 28 June 2007 (has links)
Abstraction-guided simulation is a promising semi-formal framework for design validation in which an abstract model of the design is used to guide a logic simulator towards a target property. However, key issues still need to be addressed before this framework can truly deliver on it's promise. Concretizing, or finding a real trace from an abstract trace, remains a hard problem. Abstract traces are often spurious, for which no corresponding real trace exits. This is a direct consequence of the abstraction being an over-approximation of the real design. Further, the way in which the abstract model is constructed is an open-ended problem which has a great impact on the performance of the simulator. In this work, we propose a novel approaches to address these issues. First, we present a genetic algorithm to select sets of state variables directly from the gate-level net-list of the design, which are highly correlated to the target property. The sets of selected variables are used to build the Partition Navigation Tracks (PNTs). PNTs capture the behavior of expanded portions of the state space as they related to the target property. Moreover, the computation and storage costs of the PNTs is small, making them scale well to large designs. Our experiments show that we are able to reach many more hard-to-reach states using our proposed techniques, compared to state-of-the-art methods. Next, we propose a novel abstraction strengthening technique, where the abstract design is constrained to make it more closely resemble the concrete design. Abstraction strengthening greatly reduces the need to refine the abstract model for hard to reach properties. To achieve this, we efficiently identify sequentially unreachable partial sates in the concrete design via intelligent partitioning, resolution and cube enlargement. Then, these partial states are added as constraints in the abstract model. Our experiments show that the cost to compute these constraints is low and the abstract traces obtained from the strengthened abstract model are far easier to concretize. / Master of Science
252

Enhancing SAT-based Formal Verification Methods using Global Learning

Arora, Rajat 25 May 2004 (has links)
With the advances in VLSI and System-On-Chip (SOC) technology, the complexity of hardware systems has increased manifold. Today, 70% of the design cost is spent in verifying these intricate systems. The two most widely used formal methods for design verification are Equivalence Checking and Model Checking. Equivalence Checking requires that the implementation circuit should be exactly equivalent to the specification circuit (golden model). In other words, for each possible input pattern, the implementation circuit should yield the same outputs as the specification circuit. Model checking, on the other hand, checks to see if the design holds certain properties, which in turn are indispensable for the proper functionality of the design. Complexities in both Equivalence Checking and Model Checking are exponential to the circuit size. In this thesis, we firstly propose a novel technique to improve SAT-based Combinational Equivalence Checking (CEC) and Bounded Model Checking (BMC). The idea is to perform a low-cost preprocessing that will statically induce global signal relationships into the original CNF formula of the circuit under verification and hence reduce the complexity of the SAT instance. This efficient and effective preprocessing quickly builds up the implication graph for the circuit under verification, yielding a large set of logic implications composed of direct, indirect and extended backward implications. These two-node implications (spanning time-frame boundaries) are converted into two-literal clauses, and added to the original CNF database. The added clauses constrain the search space of the SAT-solver engine, and provide correlation among the different variables, which enhances the Boolean Constraint Propagation (BCP). Experimental results on large and difficult ISCAS'85, ISCAS'89 (full scan) and ITC'99 (full scan) CEC instances and ISCAS'89 BMC instances show that our approach is independent of the state-of-the-art SAT-solver used, and that the added clauses help to achieve more than an order of magnitude speedup over the conventional approach. Also, comparison with Hyper-Resolution [Bacchus 03] suggests that our technique is much more powerful, yielding non-trivial clauses that significantly simplify the SAT instance complexity. Secondly, we propose a novel global learning technique that helps to identify highly non-trivial relationships among signals in the circuit netlist, thereby boosting the power of the existing implication engine. We call this new class of implications as 'extended forward implications', and show its effectiveness through additional untestable faults they help to identify. Thirdly, we propose a suite of lemmas and theorems to formalize global learning. We show through implementation that these theorems help to significantly simplify a generic CNF formula (from Formal Verification, Artificial Intelligence etc.) by identifying the necessary assignments, equivalent signals, complementary signals and other non-trivial implication relationships among its variables. We further illustrate through experimental results that the CNF formula simplification obtained using our tool outshines the simplification obtained using other preprocessors. / Master of Science
253

Explicit-State Model Checking of Concurrent x86-64 Assembly

Bharadwaj, Abhijith Ananth 10 July 2020 (has links)
The thesis presents xavier, a novel tool-set for model checking of concurrent x86-64 assembly programs, via Partial Order Reduction (POR). xavier{} presents a realistic platform for systematically exploring and analyzing the state-space of concurrent x86 assembly programs, with the aim of detecting bugs via assertion failures in mainstream programs. Recently, a number of state-of-the-art model checking solutions have been introduced to efficiently explore the state-space of concurrent programs, using POR algorithms. However, such solutions are inefficient while analyzing stateful programming languages, such as the x86 assembly language, due to their low level of abstraction. To this end, xavier{} makes two contributions: i) a novel order-sensitivity based POR algorithm, that is applicable to concurrent x86 assembly, ii) an x86 machine-model that can accurately perform relaxed-consistency emulation of concurrent x86 assembly, without the need for any translations. We demonstrate the applicability of xavier{} through an evaluation on several classical mutual-exclusion benchmarks and mainstream benchmarks from the Userspace Read-Copy-Update (URCU) concurrency library, where the benchmarks range from $250-3700$ lines of x86 assembly. The framework is the first that supports systematic model checking of concurrent x86 assembly programs, and the effectiveness of xavier{} is demonstrated by reproducing a concurrency issue of threads accessing intermediate states in the URCU library, which stems from an assumption violation. / Master of Science / Sound verification of multi-threaded programs necessitate a systematic analysis of program state-spaces that result from thread interactions. Consequently, model-checking cite{godefroid1997model, Clarke2018} has been one of the prominent methods used to tackle the verification of multi-threaded programs. However, existing model-checking solutions are inefficient while analyzing stateful programming languages, such as the x86 assembly language, due to the solutions' higher level of abstraction. Therefore, the thesis presents xavier, a novel tool-set and a realistic platform for systematically exploring and analyzing the state-space of mainstream concurrent x86 assembly programs, with the aim of detecting bugs via assertion failures. To this end, xavier{} makes two contributions: i) a novel order-sensitivity based Partial Order Reduction algorithm, which efficiently explores the state space of concurrent x86 assembly, ii) an x86 machine-model that can accurately emulate the execution of concurrent x86 assembly, without the need for any translations. We demonstrate the applicability of xavier{} through an evaluation on several classical mutual-exclusion and mainstream benchmarks from the Userspace Read-Copy-Update (URCU) concurrency library, where the benchmarks range from $250-3700$ lines of x86 assembly. Moreover, we demonstrate the effectiveness of xavier{} by reproducing a concurrency issue in the URCU library, which manifests as a result of an assumption violation.
254

An SMT-based framework for the formal analysis of Switched Multi-Domain Kirchhoff Networks

Sessa, Mirko 28 October 2019 (has links)
Many critical systems are based on the combination of components from different physical domains (e.g. mechanical, electrical, hydraulic), and are mathematically modeled as Switched Multi-Domain Kirchhoff Networks (SMDKN). In this thesis, we tackle a major obstacle to formal verification of SMDKN, namely devising a global model amenable to verification in the form of a Hybrid Automaton. This requires the combination of the local dynamics of the components, expressed as Differential Algebraic Equations, according to Kirchhoff's laws, depending on the (exponentially many) operation modes of the network. We propose an automated SMT-based method to analyze networks from multiple physical domains, detecting which modes induce invalid (i.e. inconsistent) constraints, and to produce a Hybrid Automaton model that accurately describes, in terms of Ordinary Differential Equations, the system evolution in the valid modes, catching also the possible non-deterministic behaviors. The experimental evaluation demonstrates that the proposed approach allows several complex multi-domain systems to be formally analyzed and model checked against various system requirements.
255

The control system in formal language theory and the model monitoring approach for reliability and safety / Systèmes de contrôle dans la théorie des langages et approche par monitoring des modèles pour la sécurité

Chen, Zhe 09 July 2010 (has links)
Cette thèse contribue à l’étude de la fiabilité et de la sécurité-innocuité des systèmes informatisés, modélisés par des systèmes à événements discrets. Les principales contributions concernent la théorie des Systèmes de Contrôle (notés C Systems) et l’approche par Monitoring des modèles.Dans la première partie de la thèse, nous étudions la théorie des Systèmes de Contrôle qui combine et étend de façon significative, les systèmes de réécriture de la théorie des langages et le contrôle supervisé. Un système de contrôle est une structure générique qui contient deux composants : le composant contrôlé et le composant contrôlant qui restreint le comportement du composant contrôlé. Les deux composants sont exprimés en utilisant le même formalisme comme des automates ou des grammaires. Nous considérons différentes classes de systèmes de contrôle basés sur différents formalismes comme, par exemple, les automates, les grammaires, ainsi que leurs versions infinies et concurrentes. Ensuite, une application de cette théorie est présentée. Les systèmes de contrôle basés sur les automates de Büchi sont utilisés pour vérifier par model-checking, des propriétés définissant la correction sur des traces d’exécution spécifiées par une assertion de type nevertrace.Dans la seconde partie de la thèse, nous investiguons l’approche de monitoring des modèles dont la théorie des systèmes de contrôle constitue les fondations formelles. Le principe pivot de cette approche est la «spécification de propriétés comme contrôleur». En d’autres termes, pour un système, les exigences fonctionnelles, d’une part, et des propriétés, d’autre part, sont modélisées et implantées séparément, les propriétés spécifiées contrôlant le comportement issu des exigences fonctionnelles. De cette approche découle ainsi deux techniques alternatives, respectivement nommées monitoring de modèle et génération de modèle. Cette approche peut être utilisée de diverses manières pour améliorer la fiabilité et la sécurité-innocuité de divers types de systèmes. Nous présentons quelques applications qui montrent l’intérêt pratique de cette contribution théorique. Tout d’abord, cette approche aide à prendre en compte les évolutions des spécifications des propriétés. En second lieu, elle fournit une base théorique à la sécurité fonctionnelle, popularisée par la norme IEC 61508. En troisième lieu, l’approche peut être utilisée pour formaliser et vérifier l’application de guides de bonnes pratiques ou des règles de modélisation appliquées par exemple pour des modèles UML.Ces résultats constituent les bases pour des études futures de dispositifs plus perfectionnés, et fournissent une nouvelle voie pour s’assurer de la fiabilité et de la sécurité-innocuité des systèmes / This thesis contributes to the study of reliability and safety of computer and software systems which are modeled as discrete event systems. The major contributions include the theory of Control Systems (C Systems) and the model monitoring approach.In the first part of the thesis, we study the theory of control systems which combines and significantly extends regulated rewriting in formal languages theory and supervisory control. The control system is a generic framework, and contains two components: the controlled component and the controlling component that restricts the behavior of the controlled component. The two components are expressed using the same formalism, e.g., automata or grammars. We consider various classes of control systems based on different formalisms, for example, automaton control systems, grammar control systems, and their infinite versions and concurrent variants. After that, an application of the theory is presented. The Büchi automata based control system is used to model and check correctness properties on execution traces specified by nevertrace claims.In the second part of the thesis, we investigate the model monitoring approach whose theoretical foundation is the theory of control systems. The key principle of the approach is “property specifications as controllers”. In other words, the functional requirements and property specification of a system are separately modeled and implemented, and the latter one controls the behavior of the former one. The model monitoring approach contains two alternative techniques, namely model monitoring and model generating. The approach can be applied in several ways to improve reliability and safety of various classes of systems. We present some typical applications to show its strong power. First, the approach provides better support for the change and evolution of property specifications. Second, it provides the theoretical foundation of safety-related systems in the standard IEC 61508 for ensuring the functional validity. Third, it is used to formalize and check guidelines and consistency rules of UML.These results lay out the foundations for further study of more advanced control mechanisms, and provide a new way for ensuring reliability and safety
256

Régularité et contraintes de descendance : équations algébriques. / Regularity and descendant constraints : algebraic equations.

Ferte, Julien 18 April 2014 (has links)
Ce mémoire est constitué de 3 parties.La NP-complétude de la satisfaction de combinaisons booléennes de contraintes de sous-arbres est démontrée dans l'article [Ven87] ; la partie I de ce mémoire étudie dans quelle mesure l'ajout de contraintes régulières laisse espérer conserver la complexité NP. Ce modèle étendu définit une nouvelle classe de langages dont l'expressivité est comparée à celle des Rigid Tree Automata [JKV11]. Puis un début de formalisation des t-dags est donné.Les patterns ont été étudiés, principalement du point de vue des contraintes sur les données qu'ils demandent. La partie II de ce mémoire les étudie plus finement, en mettant de côté les données. Les squelettes sont définis en tant qu'intermédiaire de calcul et le fait que leur syntaxe caractérise leur sémantique est démontré. Puis un lemme de pompage est donné dans un cas restreint, un autre dans le cas général est étudié et conjecturé. Ensuite des fragments de combinaisons booléennes de patterns sont comparés en expressivité pour terminer avec l'étude de la complexité des problèmes de model-checking, satisfaisabilité et DTD-satisfaisabilité sur les dits fragments.Le contenu de la partie III constitue l'article [FMS11], c'est la démonstration de la caractérisation des langages des automates fortement déterministes de niveau 2 par des systèmes d'équations récurrentes caténatives. Celle-ci utilise, entre autres, des techniques de réécriture, la notion d'inconnues non-réécrivables et les ordres noethériens. Cette caractérisation constitue le cas de base de la récurrence démontrée dans [Sén07]. / This thesis is in 3 parts.The NP-completeness of satisfiability of boolean combinations of subtree constraints is shown in the article [Ven87] ; in the part I of this thesis, we study whether adding regular contraints lets hope for keeping the same complexity. This extended model defines a new class of languages which is compared in expressivity to the Rigid Tree Automata [JKV11]. Then a begining of formalisation of the t-dags is developped.The patterns have been studied mainly from the point of view of the constraints they demand on the data. The part II of this thesis study them more finely, by putting aside the data. The skeletons are defined as calculus intermediate and the characterisation holding between their syntax and their semantics is shown. Then a pumping lemma is prooved in a restreict case, another one is conjectured in the most general case. Then fragments of boolean combinations of patterns are compared in expressivity, this parts ends with the study of complexity of model-checking, satisfiability and DTD-satisfiability on these fragments.The content of part III constitutes the article [FMS11], it is the demonstration of the characterisation of strongly-deterministic 2-level pushdown automata by recurrent catenative equation systems. This proof uses in particular, some rewriting techniques, unrewritable unknowns and noetherian orders. This characterisation provides the base case of the recurrence shown in [Sén07].
257

Validation temporelle et déploiement d'une application de contrôle industrielle à base de composants / Temporal validation and deployment of component based industrial control applications

Khalgui, Mohamed 02 February 2007 (has links)
Dans cette thèse, nous nous intéressons à la validation temporelle ainsi qu'au déploiement d'applications de contrôle industriel à base de composants. La technologie des composants retenue est celle des Blocs Fonctionnels définie dans la norme industrielle IEC 61499. Un Bloc Fonctionnel est défini comme un composant réactif supportant des fonctionnalités d'une application. L'avantage de cette norme, connue dans l'industrie, est la description statique de l'application ainsi que de son support d'exécution. Une première contribution de la thèse est l'interprétation des différents concepts définis dans la norme. Nous précisons, en particulier, la dynamique du composant en vue de décrire un comportement déterministe de l'application. Pour appliquer une validation temporelle exhaustive, nous proposons un modèle de comportement d'un Bloc Fonctionnel à l'aide du formalisme des automates temporisés. D'autre part, nous fournissons une sémantique au concept de réseau de Blocs Fonctionnels pour décrire une application comme une composition de Blocs. Une deuxième contribution de la thèse est le déploiement de tels réseaux sur une architecture distribuée multi-tâches tout en respectant des propriétés sur les temps de réponse de bout en bout. Nous transformons un réseau de Blocs Fonctionnels vers un ensemble de tâches élémentaires dépendantes, appelées actions. Cette transformation permet l'exploitation de résultats d'ordonnancement pour valider la correction temporelle de l'application. Pour déployer les blocs d'une application, nous proposons une approche hybride alliant un ordonnancement statique non-préemptif et un autre ordonnancement en ligne préemptif. L'ordonnancement statique permet la construction des tâches s'exécutant sur chaque calculateur. Ces tâches sont vues comme des séquencements statiques d'actions. Elles sont alors à ordonnancer dynamiquement selon une politique préemptive reposant sur EDF (Earliest Deadline First). Grâce à cette approche, nous réduisons le nombre de commutation de contexte en regroupant les actions au sein des tâches. De plus l'ordonnancement dynamique préemptif augmente la faisabilité du système. Enfin, une dernière contribution est une extension de la deuxième. Nous proposons une approche d'allocation de réseaux de blocs fonctionnels sur un support d'exécution distribué. Cette allocation, basée sur une heuristique de Liste, se repose sur la méthode hybride pour assurer un déploiement faisable de l'application. Le problème d'allocation est de trouver pour chaque bloc fonctionnel le calculateur capable de l'exécuter tout en respectant des contraintes fonctionnelles, temporelles et de support d'exécution. Notons enfin que l'heuristique proposée se base sur une technique de retour-arrière pour augmenter l'espace de solutions. / This thesis deals with the temporal validation and the deployment of component-based industrial control applications. We are interested in the Function Blocks approach, defined in the IEC 61499 standard, as a well known component based technology in the industry. A Function Block is an event triggered component owning data to support the application functionalities. The advantage of this technology is the taking into account of the application and also its execution support. The first thesis contribution deals with the interpretation of the different concepts defined in the standard. In particular, we propose a policy defining a deterministic behavior of a FB. To apply an exhaustive temporal validation of the application, we propose a behavioral model of a Block as Timed Automata. On the other hand, we propose a semantic for the concept of FBs networks to develop industrial control applications. The second thesis contribution deals with the deployment of FBs networks in a distributed multi-tasking architecture. Such deployment has to respect classical End to End Response Time Bounds as temporal constraints. To validate the temporal behavior of an application, we propose an approach transforming its blocks into an actions system with precedence constraints. The purpose is to exploit previous theories on the scheduling of real-time systems. To deploy FBs networks in feasible OS tasks, we propose a Hybrid scheduling approach combining an off-line non-preemptive scheduling and an on-line preemptive one. The off-line scheduling allows to construct OS tasks from FBs, whereas the on-line one allows to schedule these tasks according to the classical EDF policy. A constructed OS task is an actions sequence defining an execution scenario of the application. Thanks to this approach, we reduce the context switching at run-time by merging application actions in OS tasks. In addition, the system feasibility is increased by applying an on-line preemptive policy. Finally, the last thesis contribution is an extension of the previous one. We propose an approach allocating FBs networks in a distributed architecture. Based on a heuristic, such approach uses the hybrid method to construct feasible OS tasks in calculators. The allocation problem of a particular application FB is to look for a corresponding calculator while respecting functional, temporal and execution support constraints. We note that the proposed heuristic is based on a back-tracking technic to increase the solutions space.
258

Développement et réalisation d'un simulateur de machines à états abstraits temps-réel et model-checking de formules d'une logique des prédicats temporisée du premier ordre / Development and implementation of a simulator for abstract state machines with real time and model-checking of properties in a language of first order predicate logic with time

Vassiliev, Pavel 27 November 2008 (has links)
Dans cette thèse nous proposons un modèle temporel dans le cadre des machines à états abstraits (ASM). Une extension du langage de spécification ASM est développé qui correspond à ce modéle temporel pour le temps continu. L'extension du langage avec des constructions de temps permet de diminuer la taille de la spécification et donc de réduire la probabilité d'erreurs. La sémantique de l'extension du langage ASM est fournie et prend en compte les définitions des fonctions externes, les valeurs des délais et les choix de résolution des non-déterminismes. Un sous-système de vérification des propriétés exprimées en logique FOTL (FirstOrder Timed Logic) est développé. Un simulateur d'ASMs temporisées est développé et implémenté, il comprend un analyseur syntaxique, un interprète du langage, un sous-système de vérification des propriétés ainsi qu'une interface graphique / In this thesis a temporal model for abstract state machines (ASM) method is pro- posed. An extension of ASM specification language on the base of the proposed temporal model with continuous time is developed. The language extension helps to reduce the size of the specification hence to diminish the probability of an error. The semantics of the extended ASM language is developed which takes into account the definitions of external functions, the values of time delays and the method of non-determinism resolving. A subsystem for verification of user properties in the FOTL language is developed. A simulator prototype for ASMs with time is developed and implemented. It includes the parser of the timed ASM language, the interpreter, the verification subsystem and the graphical user interface
259

Modélisation et analyse de systèmes stochastiques et temps réel / Modeling and Analysis of Stochastic Real-Time Systems

Mediouni, Braham Lotfi 28 June 2019 (has links)
Dans cette thèse, nous abordons le problème de la modélisation et de la vérification de systèmes complexes présentant des comportements à la fois probabilistes et temporisés. La conception de tels systèmes est devenue de plus en plus complexe en raison de l’hétérogénéité des composants impliqués, l’incertitude découlant d’un environnement ouvert et les contraintes temps réelinhérentes à leurs domaines d’application. La gestion à la fois du logiciel et du matériel dans une vue unifiée tout en incluant des informations sur les performances (par exemple, temps de calcul et de communication, consommation d’énergie, etc.) devient indispensable. Construire et analyser des modèles de performance est d’une importance primordiale pour donner des garanties sur les exigences fonctionnelles et extra-fonctionnelles des systèmes, et permettre uneprise de décision fondée sur des mesures quantitatives dès les premières étapes de la conception.Cette thèse apporte plusieurs nouvelles contributions. Tout d’abord, nous introduisons un nouveau formalisme de modélisation appelé BIP stochastique et temps réel (SRT-BIP) pour la modélisation, la simulation et la génération de code de systèmes à base de composants. Ce formalisme hérite du framework BIP ses capacités de modélisation basées sur les composants et le temps réel et, en outre, il fournit des primitives pour exprimer des comportements stochastiquescomplexes.Deuxièmement, nous étudions des techniques d’apprentissage automatique pour faciliter la construction de modèles de performance. Nous proposons d’améliorer et d’adapter une procédure d’apprentissage présentée dans la littérature pour déduire des modèles stochastiques et temporisés à partir d’exécutions concrètes du système, et de les exprimer dans le formalisme SRT-BIP.Troisièmement, étant donné les modèles de performance dans SRT-BIP, nous explorons l’utilisation du model checking statistique (SMC) pour l’analyse d’exigences concernant la fonctionnalité et les performances du système. Pour ce faire, nous fournissons un framework complet, appelé SBIP, en tant qu’outil de support pour la modélisation, la simulation et l’analyse des systèmes SRT-BIP. SBIP est un environnement de développement intégré (IDE) qui implémente des algorithmes SMC pour des analyses quantitatives, qualitatives et d’événementsrares, en plus d’une procédure d’automatisation pour l’exploration des paramètres d’une propriété. Nous validons nos propositions sur des études de cas réels touchant à des domaines variés tels que les protocoles de communication, les systèmes concurrents et les systèmesembarqués.Enfin, nous étudions plus en détail l’intérêt du SMC lorsqu’il est inclus dans des méthodes d’analyse de système élaborées. Nous illustrons cela en proposant deux approches d’évaluation des risques. Dans la première approche, nous introduisons une méthodologie en spirale pour modéliser des systèmes résilients avec des composants FDIR que nous validons à travers l’évaluation de la sécurité du système de locomotion d’un rover d’exploration planétaire. La deuxième approche concerne l’évaluation des politiques de sécurité des organisations selon une approche de sécurité offensive. L’objectif est de synthétiser des configurations de défense efficaces contre des stratégies d’attaque optimisées (qui minimisent le coût d’attaque et maximisent la probabilité de succès). Ces stratégies d’attaque sont obtenues en combinant l’apprentissage de modèles et les méthodes méta-heuristiques, dans lesquels le SMC a le rôle principal d’évaluer et de prioriser les potentielles stratégies candidates. / In this thesis, we address the problem of modeling and verification of complex systems exhibiting both probabilistic and timed behaviors. Designing such systems has become increasingly complex due to the heterogeneity of the involved components, the uncertainty resulting from open environment and the real-time constraints inherent to their application domains. Handling both software and (abstraction of) hardware in a unified view while also including performanceinformation (e.g. computation and communication times, energy consumption, etc.) becomes a must. Building and analyzing performance models is of paramount importance in order to give guarantees on the functional and extra-functional system requirements and to make well-founded design decisions based on quantitative measures at early design stages.This thesis brings several new contributions. First, we introduce a new modeling formalism called Stochastic Real-Time BIP (SRT-BIP) for the modeling, the simulation and the code generation of component-based systems. This formalism inherits from the BIP framework its component-based and real-time modeling capabilities and, extends it by providing comprehensive primitives to express complex stochastic behaviors.Second, we investigate machine learning techniques to ease the construction of performance models. We propose to enhance and adapt a state-of-the-art learning procedure to infer stochastic real-time models from concrete system execution and to represent them in the SRT-BIP formalism.Third, given performance models in SRT-BIP, we explore the use of statistical Model Checking (SMC) for the anaysis of system’s functional and performance requirements. To do so, we provide a full framework, called SBIP, as a support tool for the modeling, simulation and analysis of SRT-BIP systems. SBIP is an Integrated Development Environment (IDE) that implements SMC algorithms for quantitative, qualitative and rare events analyses together with an automated exploring procedure for parameterized requirements. We validate our proposalson real-life case studies ranging from communication protocols and concurrent systems to embedded systems.Finally, we further investigate the interest of SMC when included in elaborated system analysis workflows. We illustrate this by proposing two risk assessment approaches. In the first approach, we introduce a spiral methodology to build resilient systems with FDIR components that we validate on the safety assessment of a planetary rover locomotion system. The second approach is concerned with the security assessment of organization’s defenses following an offensive security approach. The goal is to synthesize impactful defense configurations against optimized attack strategies (that minimize attack cost and maximize success probability). These attack strategies are obtained by combining model learning with meta heuristics, and where SMC is used to score and prioritize potential candidate strategies.
260

Design of a Test Generation Methodology for ARTIS using Model-Checking with a Generic Modelling Approach

Vernekar, Ganesh Kamalakar 22 January 2016 (has links) (PDF)
In the recent trends, automated systems are increasingly seen to be embedded in human life with the increase of human dependence on software to perform safetycritical tasks like airbag deployment in automobiles to real-time mission planning in UAVs (Unmanned Aircraft Vehicles). The safety-critical nature of the aerospace domain demands for a software without any errors to perform these tasks. Therefore the field of computer science needs to address these challenges by providing necessary formalisms, techniques, and tools that will ensure the correctness of systems despite their complexity. DO-178C/EC-12C is a standard that governs the certification of software for airborne systems in commercial aircraft. The additional supplement DO- 333 enables us to use the formal methods in our technique of verifying the autonomous behaviour of UAV’s. The Mission Manager system is primarily responsible for the execution of behaviour sequence in online and offline mission planning of UAV. This work presents the process of software verification by making use of formal modelling using model checking of the Mission Manager component of ARTIS (Autonomous Rotorcraft Testbed for Intelligent Systems) UAV by gaining advantages from a generic modelling approach. The main idea is to make use of the designed generic models into specific cases like ARTIS in our case. The generic models are designed using the ALFU(R)S (Autonomy Levels For Unmanned Rotorcraft System) framework that delineates the commonalities of several UAVs considered around the world which also includes the ARTIS UAV. Furthermore this work walks through every process involved in model checking like requirements extraction and documentation using a template based method, requirements specification using the temporal logics like LTL and CTL, developing a formal model using NuSMV as a model checking tool to analyze the requirements against the model for the Mission Manager component of MiPlEx (Mission Planning and Execution). Additionally as a validation approach, test sequences are generated by using trap properties or negation properties. This aids for a test generation approach by harnessing counterexample generating capabilities of the NuSMV Model Checker.

Page generated in 0.0567 seconds