• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 59
  • 25
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Model-based Design of an Electronic Stability Control System for Passenger Cars Using CarSim and Matlab-Simulink

Kinjawadekar, Tejas January 2009 (has links)
No description available.
22

Engine Selection, Modeling, and Control Development for an Extended Range Electric Vehicle

Cooley, Robert Bradley 22 October 2010 (has links)
No description available.
23

A Tabular Expression Toolbox for Matlab/Simulink

Eles, Colin J. 10 1900 (has links)
<p>Model based design has had a large impact on the process of software development in many different industries. A lack of formality in these environments can lead to incorrect software and does not facilitate the formal analysis of created models. A formal tool known as tabular expressions have been successfully used in developing safety critical systems, however insufficient tool support has hampered their wider adoption. To address this shortfall we have developed the Tabular Expression Toolbox for Matlab/Simulink.</p> <p>We have developed an intuitive user interface that allows users to easily create, modify and check the completeness and disjointness of tabular expressions using the theorem prover PVS or SMT solver CVC3. The tabular expressions are translated to m-functions allowing their seamless use with Matlab's simulation and code generation. We present a method of generating counter examples for incorrect tables and a means of effectively displaying this information to the user. We provide support for modelling inputs as floating point numbers, through subtyping a user can show the properness of a table using a more concrete representation of data. The developed tools and processes have been used in the modelling of a nuclear shutdown system as a case study of the practicality and usefulness of the tools.</p> / Master of Applied Science (MASc)
24

Model-Based Design of a Fork Control System in Very Narrow Aisle Forklifts

Bodin, Erik, Davidsson, Henric January 2017 (has links)
This thesis explains the model-based design of a fork control system in a turret head operated Very Narrow Aisle forklift in order to evaluate and push the limits of the current hardware architecture. The turret head movement consists of two separate motions, traversing and rotation, which both are hydraulically actuated. The plant is thoroughly modeled in the Mathworks softwares Simulink/Simscape to assist in the design of the control system. The control system is designed in Simulink/Stateflow and code-generated to be evaluated in the actual forklift. Optimal control theory is used to generate a minimum-jerk trajectory for auto-rotation, that is simultaneous traversing and rotation with the load kept in centre. The new control system is able to control the system within the positioning requirements of +/- 10 mm and +/- 9 mrad for traversing and rotation, respectively. It also shows good overall performance in terms of robustness since it has been tested and validated with different loads and on different versions of the forklift. However, the study also shows that the non-linearities of the system, especially in the hydraulic proportional valves, causes problems in a closed-loop control system. The work serves as a proof of concept for model-based development at the company since the development time of the new control system was significantly lower than for the original control system.
25

A Formalized Approach to Multi-View Components for Embedded Systems : Applied to Tool Integration, Run-Time Adaptivity and Architecture Exploration

Persson, Magnus January 2013 (has links)
Development of embedded systems poses an increasing challenge fordevelopers largely due to increasing complexity. Several factors contribute tothe complexity challenge: • the number of extra-functional properties applying to embedded systems,such as resource usage, timing effects, safety. • the functionality of embedded systems, to a larger extent than for othersoftware, involves engineers from multiple different disciplines, such asmechanical, control, software, safety, systems and electrical engineers.Themulti-disciplinarity causes the development environments to consistof separate data, models and tools. Several engineering paradigms to handle this complexity increase havebeen suggested, including methodologies focused on architecture, models andcomponents. In systems engineering, a long-standing approach has been todescribe the system in several views, each according to a certain viewpoint.By doing so, a divide-and-conquer strategy is applied to system concerns.Unfortunately, it is hard to always find completely independent concerns:there is always some semantic overlap between the different views. Modelbaseddesign (MBD) deals with building sound abstractions that can representa system under design and be used for analysis. Component-based design(CBD) focuses on how to build reusable component models with well-definedcomposition models. In this thesis, a concept of formalized multi-viewed component models (MVCM) is proposed, which integrates the three above mentioned paradigms.Principles and guidelines for MV CMs are developed. One of the main challengesfor the proposition is to provide MV CMs that produce composabilityboth along component boundaries and viewpoint boundaries. To accomplishthis, the relations between viewpoints need to be explicitly taken into account.Further, the semantic relations between these viewpoints need to be explicitlymodeled in order to efficiently ensure that the views are kept consistent. Asa main contribution, this thesis presents the formalization of the conceptsneeded to build such component models. A proper formalization of multiviewedconcerns provides several opportunities. Given suitable tool support, itwill be feasible to automate architecture analysis and architecture exploration. The thesis includes a number of case studies that provide insight andfeedback to the problem formulation and validating the results. The casestudies include a resource-aware reconfigurable middleware, a design of anarchitecture exploration methodology, and a windshield wiper system. / <p>QC 20130527</p>
26

Modellbasierte Modulprüfung für die Entwicklung technischer, softwareintensiver Systeme mit Real-Time Object-Oriented Modeling / Model-based unit-testing for software-intensive, technical systems using <i>real-time object-oriented modeling</i>

Robinson-Mallett, Christopher January 2005 (has links)
Mit zunehmender Komplexität technischer Softwaresysteme ist die Nachfrage an produktiveren Methoden und Werkzeugen auch im sicherheitskritischen Umfeld gewachsen. Da insbesondere objektorientierte und modellbasierte Ansätze und Methoden ausgezeichnete Eigenschaften zur Entwicklung großer und komplexer Systeme besitzen, ist zu erwarten, dass diese in naher Zukunft selbst bis in sicherheitskritische Bereiche der Softwareentwicklung vordringen. Mit der Unified Modeling Language Real-Time (UML-RT) wird eine Softwareentwicklungsmethode für technische Systeme durch die Object Management Group (OMG) propagiert. Für den praktischen Einsatz im technischen und sicherheitskritischen Umfeld muss diese Methode nicht nur bestimmte technische Eigenschaften, beispielsweise temporale Analysierbarkeit, besitzen, sondern auch in einen bestehenden Qualitätssicherungsprozess integrierbar sein. Ein wichtiger Aspekt der Integration der UML-RT in ein qualitätsorientiertes Prozessmodell, beispielsweise in das V-Modell, ist die Verfügbarkeit von ausgereiften Konzepten und Methoden für einen systematischen Modultest. <br><br> Der Modultest dient als erste Qualititätssicherungsphase nach der Implementierung der Fehlerfindung und dem Qualitätsnachweis für jede separat prüfbare Softwarekomponente eines Systems. Während dieser Phase stellt die Durchführung von systematischen Tests die wichtigste Qualitätssicherungsmaßnahme dar. Während zum jetzigen Zeitpunkt zwar ausgereifte Methoden und Werkzeuge für die modellbasierte Softwareentwicklung zur Verfügung stehen, existieren nur wenig überzeugende Lösungen für eine systematische modellbasierte Modulprüfung. <br><br> Die durchgängige Verwendung ausführbarer Modelle und Codegenerierung stellen wesentliche Konzepte der modellbasierten Softwareentwicklung dar. Sie dienen der konstruktiven Fehlerreduktion durch Automatisierung ansonsten fehlerträchtiger, manueller Vorgänge. Im Rahmen einer modellbasierten Qualitätssicherung sollten diese Konzepte konsequenterweise in die späteren Qualitätssicherungsphasen transportiert werden. Daher ist eine wesentliche Forderung an ein Verfahren zur modellbasierten Modulprüfung ein möglichst hoher Grad an Automatisierung. <br><br> In aktuellen Entwicklungen hat sich für die Generierung von Testfällen auf Basis von Zustandsautomaten die Verwendung von Model Checking als effiziente und an die vielfältigsten Testprobleme anpassbare Methode bewährt. Der Ansatz des Model Checking stammt ursprünglich aus dem Entwurf von Kommunikationsprotokollen und wurde bereits erfolgreich auf verschiedene Probleme der Modellierung technischer Software angewendet. Insbesondere in der Gegenwart ausführbarer, automatenbasierter Modelle erscheint die Verwendung von Model Checking sinnvoll, das die Existenz einer formalen, zustandsbasierten Spezifikation voraussetzt. Ein ausführbares, zustandsbasiertes Modell erfüllt diese Anforderungen in der Regel. Aus diesen Gründen ist die Wahl eines Model Checking Ansatzes für die Generierung von Testfällen im Rahmen eines modellbasierten Modultestverfahrens eine logische Konsequenz.<br><br> Obwohl in der aktuellen Spezifikation der UML-RT keine eindeutigen Aussagen über den zur Verhaltensbeschreibung zu verwendenden Formalismus gemacht werden, ist es wahrscheinlich, dass es sich bei der UML-RT um eine zu Real-Time Object-Oriented Modeling (ROOM) kompatible Methode handelt. Alle in dieser Arbeit präsentierten Methoden und Ergebnisse sind somit auf die kommende UML-RT übertragbar und von sehr aktueller Bedeutung.<br><br> Aus den genannten Gründen verfolgt diese Arbeit das Ziel, die analytische Qualitätssicherung in der modellbasierten Softwareentwicklung mittels einer modellbasierten Methode für den Modultest zu verbessern. Zu diesem Zweck wird eine neuartige Testmethode präsentiert, die auf automatenbasierten Verhaltensmodellen und CTL Model Checking basiert. Die Testfallgenerierung kann weitgehend automatisch erfolgen, um Fehler durch menschlichen Einfluss auszuschließen. Das entwickelte Modultestverfahren ist in die technischen Konzepte Model Driven Architecture und ROOM, beziehungsweise UML-RT, sowie in die organisatorischen Konzepte eines qualitätsorientierten Prozessmodells, beispielsweise das V-Modell, integrierbar. / In consequence to the increasing complexity of technical software-systems the demand on highly productive methods and tools is increasing even in the field of safety-critical systems. In particular, object-oriented and model-based approaches to software-development provide excellent abilities to develop large and highly complex systems. Therefore, it can be expected that in the near future these methods will find application even in the safety-critical area. The Unified Modeling Language Real-Time (UML-RT) is a software-development methods for technical systems, which is propagated by the Object Management Group (OMG). For the practical application of this method in the field of technical and safety-critical systems it has to provide certain technical qualities, e.g. applicability of temporal analyses. Furthermore, it needs to be integrated into the existing quality assurance process. An important aspect of the integration of UML-RT in an quality-oriented process model, e.g. the V-Model, represents the availability of sophisticated concepts and methods for systematic unit-testing. <br><br> Unit-testing is the first quality assurance phase after implementation to reveal faults and to approve the quality of each independently testable software component. During this phase the systematic execution of test-cases is the most important quality assurance task. Despite the fact, that today many sophisticated, commercial methods and tools for model-based software-development are available, no convincing solutions exist for systematic model-based unit-testing. <br><br> The use of executable models and automatic code generation are important concepts of model-based software development, which enable the constructive reduction of faults through automation of error-prone tasks. Consequently, these concepts should be transferred into the testing phases by a model-based quality assurance approach. Therefore, a major requirement of a model-based unit-testing method is a high degree of automation. In the best case, this should result in fully automatic test-case generation. <br><br> Model checking already has been approved an efficient and flexible method for the automated generation of test-cases from specifications in the form of finite state-machines. The model checking approach has been developed for the verification of communication protocols and it was applied successfully to a wide range of problems in the field of technical software modelling. The application of model checking demands a formal, state-based representation of the system. Therefore, the use of model checking for the generation of test-cases is a beneficial approach to improve the quality in a model-based software development with executable, state-based models. <br><br> Although, in its current state the specification of UML-RT provides only little information on the semantics of the formalism that has to be used to specify a component’s behaviour, it can be assumed that it will be compatible to Real-Time Object-Oriented Modeling. Therefore, all presented methods and results in this dissertation are transferable to UML-RT.<br><br> For these reasons, this dissertations aims at the improvement of the analytical quality assurance in a model-based software development process. To achieve this goal, a new model-based approach to automated unit-testing on the basis of state-based behavioural models and CTL Model Checking is presented. The presented method for test-case generation can be automated to avoid faults due to error-prone human activities. Furthermore it can be integrated into the technical concepts of the Model Driven Architecture and ROOM, respectively UML-RT, and into a quality-oriented process model, like the V-Model.
27

Multi-Model Heterogeneous Verification of Cyber-Physical Systems

Rajhans, Akshay H. 01 May 2013 (has links)
Complex systems are designed using the model-based design paradigm in which mathematical models of systems are created and checked against specifications. Cyber-physical systems (CPS) are complex systems in which the physical environment is sensed and controlled by computational or cyber elements possibly distributed over communication networks. Various aspects of CPS design such as physical dynamics, software, control, and communication networking must interoperate correctly for correct functioning of the systems. Modeling formalisms, analysis techniques and tools for designing these different aspects have evolved independently, and remain dissimilar and disparate. There is no unifying formalism in which one can model all these aspects equally well. Therefore, model-based design of CPS must make use of a collection of models in several different formalisms and use respective analysis methods and tools together to ensure correct system design. To enable doing this in a formal manner, this thesis develops a framework for multi-model verification of cyber-physical systems based on behavioral semantics. Heterogeneity arising from the different interacting aspects of CPS design must be addressed in order to enable system-level verification. In current practice, there is no principled approach that deals with this modeling heterogeneity within a formal framework. We develop behavioral semantics to address heterogeneity in a general yet formal manner. Our framework makes no assumptions about the specifics of any particular formalism, therefore it readily supports various formalisms, techniques and tools. Models can be analyzed independently in isolation, supporting separation of concerns. Mappings across heterogeneous semantic domains enable associations between analysis results. Interdependencies across different models and specifications can be formally represented as constraints over parameters and verification can be carried out in a semantically consistent manner. Composition of analysis results is supported both hierarchically across different levels of abstraction and structurally into interacting component models at a given level of abstraction. The theoretical concepts developed in the thesis are illustrated using a case study on the hierarchical heterogeneous verification of an automotive intersection collision avoidance system.
28

Model-based Design, Simulation and Automatic Code Generation For Embedded Systems and Robotic Applications

January 2013 (has links)
abstract: As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite popular nowadays. They provide tools for modeling, simulation, verification and in some cases automatic code generation for desktop applications, embedded systems and robots. For real-world implementation of models on the actual hardware, those models should be converted into compilable machine code either manually or automatically. Due to the complexity of robotic systems, manual code translation from model to code is not a feasible optimal solution so we need to move towards automated code generation for such systems. MathWorks® offers code generation facilities called Coder® products for this purpose. However in order to fully exploit the power of model-based design and code generation tools for robotic applications, we need to enhance those software systems by adding and modifying toolboxes, files and other artifacts as well as developing guidelines and procedures. In this thesis, an effort has been made to propose a guideline as well as a Simulink® library, StateFlow® interface API and a C/C++ interface API to complete this toolchain for NAO humanoid robots. Thus the model of the hierarchical control architecture can be easily and properly converted to code and built for implementation. / Dissertation/Thesis / M.S. Computer Science 2013
29

Technologies and Evaluation Metrics for On-Board Over the Air Control

Datta, Aneysha January 2022 (has links)
This project has been carried out at the Electronic Embedded Systems Architecture Department at Volvo Construction Equipment (VCE), Eskilstuna, Sweden. It forms the baseline for a stepwise systematic research initiative to convert wired technologies used for certain in-vehicle control and communication components to wireless technologies. In-vehicle wireless networks are being increasingly improvised and researched to minimize the manufacturing and maintenance cost of the total amount of wiring harnesses within the vehicles. Fault tracking and maintenance becomes convenient within a wireless network. Wireless intra-vehicular communication provides an open architecture that can accommodate new components and applications. One such usability has been studied in this thesis for the Display Control Unit of Volvo paver machines. A newly designed hardware demands new technologies to ensure operator safety, security, comfort, convenience, and information. The research conducted in this thesis takes into account five probable use-cases in terms of control and communication around the new hardware, and studies suitable wireless technologies that could replace the wired technology that will be used. From a detailed literature study and the specifications provided by VCE, WAVE/IEEE802.11p and DMG/IEEE 802.11ad have been selected as optimal candidates. These two have been modelled at the physical layer of the system. After comparing the results of WAVE for 4 different channel models and 8 different coding and modulation schemes, it has been found that 1/2BPSK(3 Mbps) and 1/2 QPSK(6 Mbps) are optimal for the 3 Rician Fading Channels of Rural LOS, Urban LOS, and Highway LOS. For use-cases that involve larger distances and a large exchange of control signals, WAVE is a good choice. DMG has 19 modulation schemes for Single Carrier Modes and some of them are extremely robust at low SNR. Around SNR 20, it shows lesser packet errors than WAVE. The lower error rate is also evident from the BER values. For use-cases that involve smaller distances and a lot of image data, DMG is preferable. The work, however, does not study the safety and security aspects. Thean alysis and modelling are theoretical being based on literature studies and the necessary parameters provided by VCE. The model needs to be evaluated against field studies and practical measurements with a prototype before implementation inside the paver.
30

Hybrid Electric Vehicle Model Development and Design of Controls Testing Framework

Satra, Mahaveer Kantilal January 2020 (has links)
No description available.

Page generated in 0.0627 seconds