Spelling suggestions: "subject:"[een] MOISTURE TRANSPORT"" "subject:"[enn] MOISTURE TRANSPORT""
1 |
Soil water dynamics under field cropsNwabuzor, Stephen Sunday January 1984 (has links)
No description available.
|
2 |
Transport de vapeur d’eau vers les hautes latitudes : mécanismes et variabilité d’après réanalyses et radiosondages / Water vapour transport to the high latitudes : mechanisms and variability from reanalyses and radiosoundingsDufour, Ambroise 24 March 2016 (has links)
La vapeur d’eau convergeant vers les régions polaires se condense en nuages quiretiennent la chaleur terrestre. Ces nuages donnent lieu à des précipitations, qui adoucissent les océans polaires et épaississent les calottes de glace. Sans changement des vents, le transport de vapeur d’eau est appelé à augmenter dans un climat plus chaud et donc les chutes de neige sur les calottes aussi. Le surplus d’humidité risque cependant de rétroagir sur le réchauffement de surface.Afin de contraindre les projections futures, cette thèse se propose d’évaluer la variabilité actuelle du cycle de l’eau dans les hautes latitudes. Elle s’appuie sur sept réanalyses globales et des observations par radiosondages allant de 1979 à 2013. Leurs biais intrinsèques et les approximations de calcul n’entament pas les conclusions principales de cette étude.En Arctique, mise à part une légère surestimation, le transport d’humidité dans les réanalyses est remarquablement proche des observations, aussi bien dans le temps que dans l’espace. Dans toutes les réanalyses, les vents dominants n’advectent qu’une fraction de la vapeur d’eau, de 6 à 11%, au profit des perturbations. D’après la plupart des sources, évaporation, précipitation et humidité atmosphérique augmentent en accord avec l’élévation des températures. Toutefois, les flux de vapeur d’eau ne suivent pas la loi de Clausius-Clapeyron car humidité et vents sont moins corrélés, notamment près de la surface.En Antarctique, le manque d’observations se fait sentir : la convergence de vapeur d’eau sur la calotte varie de 117 à 156 mm par an selon les réanalyses. Le transport côtier, très variable dans l’espace, résulte de l’alternance entre vents catabatiques et passage de perturbations. Sur la côte, les radiosondages signalent une augmentation significative des flux d’humidité vers le Sud. À l’échelle du continent en revanche, les réanalyses ne font étatde quasiment aucune tendance.Enfin, le rôle des phénomènes météorologiques d’échelle courte est évalué de nouveau, selon plusieurs méthodes. En particulier, les cyclones extratropicaux laissent dans les flux de vapeur d’eau une empreinte caractéristique qui peut être détectée et quantifiée. / The water vapour converging to the polar regions condenses into heat-trappingclouds and eventually precipitates, freshening the polar oceans and thickening the ice-sheets. Modulo circulation changes, the moisture transport is expected to increase in a warmer climate. While the extra precipitation could dampen the ice sheets’ contribution to sea level rise, the surplus of moisture could also feed back on the surface warming. However, the present variability of the polar moisture budgets must be known precisely before they can be projected with confidence into the future.This study examines the atmospheric water cycle of both the Arctic and the Antarctic in seven global reanalyses and in radiosonde observations covering the 1979-2013 period. The impacts of known model and assimilation flaws and of the various numerical approximations were evaluated and proven to be limited, at least for the moisture flux variable and the more recent reanalyses.In the Arctic, aside from a slight overestimation, the northward fluxes in reanalyses exhibit a remarkable agreement with the radiosoundings in terms of spatial and temporal patterns. In all reanalyses, transient eddies provide the bulk of the mid-latitude moisture imports – 89-94% at 70◦ N. In most datasets, evaporation, precipitation and precipitable water increase in line with what is expected from a warming signal. However fluxes do not scale with the Clausius-Clapeyron relation because the increasing humidity is not correlatedwith the meridional wind, particularly near the surface.The representations of the Antarctic atmospheric water cycle in reanalyses suffer from the scarcity of observations : the moisture convergence estimations vary from 117 to 156 mm per year. On the coast, the mean moisture flux results from the interplay between transient eddies and katabatic winds, which are particularly sensitive to the orography. The coastalradiosonde sites report significant increases of the southward moisture fluxes but otherwise there are practically no trends in reanalyses on a continental scale.Finally, the share of transient eddies in moisture advection is qualified using alternate methods. In particular, extratropical cyclones leave a characteristic imprint on the transport field, which can be detected and quantified.
|
3 |
Regional Sources of Precipitation in the Ethiopian HighlandsAshkriz, Elnaz January 2015 (has links)
The purpose of this essay is to investigate the origin of the large amount of precipitation that is present in the northern Ethiopian Highlands. With Moisture transport into the Ethiopian Highlands by Ellen Viste and Asgeir Sorteberg as a base, this essays intents to compare the same data but by focusing on a much smaller time scale. This frame was chosen to see if the data would deviate (i.e. a small and specific time scale versus a large and general time scale). Whilst the investigation by Viste and Sorteberg focuses on the two most rain rich months, July and August during 1998-2008, this essay focuses on only July during 2008. To investigate where the precipitation originates from, this essay has analyzed different meteorological parameters such as horizontal and vertical winds at different altitudes and the moisture content of these winds. This essay has like Viste’s and Sorteberg’s paper used ERA-Interim data as a basis. However the course of action has differed. This essay has made conclusions by visually drawing conclusions by studying the data images while Viste and Asgeir have drawn their conclusions by backtracking the wind to its origin. This investigations results showed that great amounts of moisture were transported into the highlands from the south-west, and to some extent also from the north. While the moisture transport from the south-west was large due to the level of moist in the air, these winds where fairly small and at low altitudes. The winds from the north were visible at higher altitudes and were stronger, however they carried much less water vapor. However, exactly how much each of these winds actually contributed to producing rain is more difficult to say. The results from Viste and Asgeir (2011) showed that the amount of moist that was transported into the highlands were about 46 percent more from the north compared to from the south. The contribution to moisture release within the area was however almost equally great from north and south. Both investigations thus showed that the largest amount of moist was transported from the south and north. What this study did however not address was how large amount of the entire moist that had contributed to rain. One anomaly of large amounts of precipitation was registered on the 20th of July 2008. This study looked closer into this which showed that large winds were registered this date as well as an upwind cell. One can presume that these winds carried large amounts of moisture, which previous results has shown, and that this might be an explanation to the large amount of precipitation that was measured on the 20th of July.
|
4 |
Searching for atmospheric signals in states of low Antarctic sea ice concentrationJönsson, Aiden January 2018 (has links)
The Antarctic sea ice region is relatively stable in extent from year to year and sees little long-term variability, the primary driver for its seasonal advance and retreat being the seasonal changes in advection of heat through the atmosphere. However, observations show a slight positive trend in its extent over recent decades. Recent work has built on the hypothesis that anomalous poleward moisture fluxes could be seen in concert with anomalous decreases in sea ice variability by providing evidence of this correlation in the Arctic sea ice region. In order to test this hypothesis and to investigate the atmospheric circulation patterns during states of low sea ice concentration in the Antarctic, records of de-seasonalized sea ice concentration anomalies are made for five regions of the Antarctic polar region, and composite distributions of variables of atmospheric circulation for the lowest 10th percentile of months with low mean sea ice concentration are compiled. Meridional moisture fluxes from these composites are tested against the entire population of meridional moisture fluxes using the Student's t-test with a confidence level of 95%, and the differences from the overall mean fields for atmospheric conditions during these cases are calculated. Of the five regions, the Ross Sea, Weddell Sea, and Pacific Ocean sections exhibit significant local moisture flux anomalies in the direction of the pole during months with low sea ice concentration, supporting the hypothesis that moisture transport into the polar region is important for the variability of sea ice in the Antarctic. The Bellingshausen - Amundsen Seas and Indian Ocean sectors show weak local signals of poleward moisture fluxes, indicating that there are other varying factors affecting the sea ice more heavily in these regions. Mean geopotential height anomalies during months with anomalously low sea ice concentration indicate that the Weddell Sea and Pacific Ocean regions are coupled with the positive phase of the Southern Annular Mode, while low sea ice concentration in the Indian Ocean as well as the Bellingshausen and Amundsen Seas regions show concurrence with the negative phase. With general circulation models predicting a persistence of the positive phase of the Southern Annular Mode in a warming climate, it is important to understand how the Antarctic sea ice region responds to the phase of this oscillation.
|
5 |
Hygrotermálna odozva stavebných konštrukcií / Hygrothermal response of building componentsSlávik, Richard January 2019 (has links)
This dissertation thesis is focused on the study of simultaneous transport of heat and moisture in building components. First, the introduction briefly summarises current international state of the art in assessment and evaluation of building components focused on moisture. Besides description of methodological approaches and analysis of differences between them, the approaches are modelled using examples which help to identify their properties and explain the application framework of the methods. These examples do not only illustrate the procedures; they also indicate their limits and identify the pitfalls of models’ application in comparison with each other. Next, the thesis includes basic introduction to material parameters necessary in numerical modelling. Moreover, solutions to questions from the assignment are discussed from the point of view of the theory of heat and moisture transport. To fulfil the thesis’ objectives, theoretical analysis and calculations were implemented. Calculations were carried out not only by well-known methods, but also using an own-developed complex algorithm which implements simultaneous heat and moisture transport modelling based on finite element methods and which allows to implement nonlinear behaviour of material properties. Furthermore, the thesis contains description of and results from two experiments. A brief description of an electronic device developed and used for the experiments is included. Experimental results are confronted with both simplified and advanced theoretical models. At last the thesis concludes with discussion of acquired findings, brief summary of potential contribution of this work to the field of building science and engineering practice, and indication of the directions for further development.
|
6 |
Moisture measurements in concrete and characterization using impedance spectroscopy and RC network circuitsTheophanous, Theophanis 08 August 2008 (has links)
The importance of moisture in concrete is unquestionable. However, quantifying the moisture in concrete is very difficult as concrete microstructure water interactions are not well understood. Concrete is a very complex material spanning the range from the atom to the civil infrastructure. It is the medium that controls moisture at the FRP/concrete interface. Concrete is also a composite material at the level of concrete/rebar, aggregate/sand/cement paste and at the hydration product level.
Water is vital in concrete microstructure development, properties and concrete durability. A moisture sensor based on the dielectric and resistive properties of cement paste was developed. Impedance spectroscopy techniques are used to explore the moisture behavior in relation to dielectric and resistive properties of the sensors. The sensor capacitive response is frequency dependent and it has been described with a multi-linear curve. Resistance values are related to capacitance through a power Law. Both the capacitance/moisture and capacitance/resistance behaviors were observed in all four cement/sand/aggregate mixtures considered.
Although the dielectric constants of water and dry cement paste are not frequency dependent with in the 400 kHz and 10 MHz frequencies considered, the effective dielectric constant of the mixture is frequency dependent
Mixing rules cannot predict the effective dielectric constant of the dielectric medium used in the sensors. Impedance analysis indicated also multiple time constants exist within the cement paste. Using the observation from the experimental results in conjunction to the high conductivity of cement pore solution a random R-C network model was developed to explore the impedance behavior of cement paste. / Ph. D.
|
7 |
Impact of moisture on long term performance of insulating products based on stone woolVrána, Tomás January 2007 (has links)
<p>Demands for energy have been increasing in the whole world. According to higher consumption, the price of energy rises yearly too. This evokes usage of insulating products in a wider range. By adding insulation, we lower the amount of energy needed to heat our homes, resulting in fewer associated greenhouse gas emissions and a lower monthly heating bill. Savings depend on insulation thicknesses and on conditions, in which the insulant is kept. Mineral insulation based on stone wool is also a member of building insulants that defends buildings and constructions against temperature changes of the ambient. However, even when we use modern technologies and building techniques to reduce high energy losses, we can never provide unimpeachable protection of stone wool from damage. During a construction process on a building site or at fast climate changes, it often happens that stone wool is exposed to rain precipitaions or other climate effets. This brings water to the insulating structure. Besides the loss of insulating qualities, the stone wool is left permanently wet. Even the fibres of stone wool are inorganic, they still can be attacked by degradation processes due to organic agents fixing fibres together. Analysis of damaged flat-roof constructions using stone wool and verification of material properties is a starting point of this licentiate thesis.</p><p>The attached paper section can be divided into two parts:</p><p>In-situ practice that notes troubles with insulating materials based on stone wool with inbuilt moisture on a building site</p><p>Laboratory measurement that observe material properties of stone wool under varying conditions</p>
|
8 |
On Sahelian-Sudan rainfall and its moisture sourcesSalih, Abubakr A. M. January 2015 (has links)
The African Sahel is one of the most vulnerable regions to climate variability at different time scales. It is an arid to semi-arid region with limited water resources. The summer rainfall is one of these sources, but it exhibits pronounced interannual variability. This thesis presents several aspects of Sahelian Sudan rainfall. Sudan is located at the eastern fringe of the Sahel and its least studied part. We have examined the impact of tropical deforestation on the rainfall, the moisture sources of the region and the temporal characteristics of the observed and modeled rainfall. In a sensitivity study we performed three simulations, one control simulation and then setting the surface condition of South Sudan to either grass or desert conditions. The rainfall was reduced by 0.1 − 0.9 in the grass scenario and by 0.1 − 2.1 mm day−1 (hereafter mm d−1) in the desert scenario. These changes also propagated northward into Sahelian Sudan, indicating a remote impact. The total moisture convergence into Sahelian Sudan was reduced by 11.5% and 21.9% for grass and desert conditions, respectively. The change in moisture convergence into the region motivated a comprehensive analysis of the moisture sources for the region. Two different modeling approaches, Lagrangian and Eulerian, were applied to identify the moisture sources and quantify their contributions to the total annual rainfall budget. The analysis shows that atmospheric flows associated with the Inter-Tropical Convergence Zone (ITCZ), e.g. from Guinea Coast, Central African and Western Sahel, brings about 40% − 50% of the annual moisture supply, while local evaporation adds about 20%. The rest of the moisture comes from the Mediterranean, Arabian Peninsula and the Southern part of the Indian Ocean. While there were differences in the details between the results from the two modeling approaches, they agree on the larger scale results. In an attempt to characterize the temporal character of the rainfall, observed and modeled daily rainfall from different regional climate models was classified into five categories: weak (0.1 −1.0), moderate (>1.0 − 10.0), moderately strong (>10.0 − 20.0), strong (>20.0 − 30.0), and very strong (>30.0) mm d−1. We found that most rain-days were in the weak to moderate rainfall categories, accounting for 60% − 75%. Days that have strong rainfall represent about 6% of the total rain-days, yet they represent about 28% − 48% of the total amount of the annual rainfall. Regional climate models fail to produce the strong rainfall, instead most of the modeled rain-days are in the moderate category and consequently the models overestimated the number of rain-days per year. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
|
9 |
Attefallshus insulated with Vacuum Insulated PanelsEmre Sunal, Egill January 2016 (has links)
Stockholm lies at the top in Europe in terms of population growth. It is growing from 30,000 to 40,000 residents each year and therefor puts high demands on the regions development. One of the governments reactions to this housing problem was to approve a bill that would simplify the regulatory framework in the planning and building act. It will among other permit owners of a one-or two family houses to build a 25 compliment housing without a building permit, so called attefallshus. In this final project, a small 25 house is designed. The house was designed to have thin exterior walls to maximize the indoor living space and also to fulfill all the Boverkets regulations for permanent housing. Vacuum Insulated panels were used as an insulation material in the envelope to achieve the extra thin exterior walls to maximize the living space. Various different simulations were done to simulate: Heat- and moisture transfer through the exterior walls, thermal bridges, energy calculations and the daylight factor inside the house. Additional calculations were done in Excel to compare the mean U-value calculated in simulations. The moisture transfer simulation did show that there should not be any moisture problems in the exterior walls. The mean U-value calculations in Excel and in the simulations showed values less than the limitations of Boverkets building regulations.
|
10 |
Impact of moisture on long term performance of insulating products based on stone woolVrána, Tomás January 2007 (has links)
Demands for energy have been increasing in the whole world. According to higher consumption, the price of energy rises yearly too. This evokes usage of insulating products in a wider range. By adding insulation, we lower the amount of energy needed to heat our homes, resulting in fewer associated greenhouse gas emissions and a lower monthly heating bill. Savings depend on insulation thicknesses and on conditions, in which the insulant is kept. Mineral insulation based on stone wool is also a member of building insulants that defends buildings and constructions against temperature changes of the ambient. However, even when we use modern technologies and building techniques to reduce high energy losses, we can never provide unimpeachable protection of stone wool from damage. During a construction process on a building site or at fast climate changes, it often happens that stone wool is exposed to rain precipitaions or other climate effets. This brings water to the insulating structure. Besides the loss of insulating qualities, the stone wool is left permanently wet. Even the fibres of stone wool are inorganic, they still can be attacked by degradation processes due to organic agents fixing fibres together. Analysis of damaged flat-roof constructions using stone wool and verification of material properties is a starting point of this licentiate thesis. The attached paper section can be divided into two parts: In-situ practice that notes troubles with insulating materials based on stone wool with inbuilt moisture on a building site Laboratory measurement that observe material properties of stone wool under varying conditions / QC 20101122
|
Page generated in 0.0522 seconds