Spelling suggestions: "subject:"[een] MULTIPLEXING"" "subject:"[enn] MULTIPLEXING""
651 |
DPSK modulation format for optical communication using FBG demodulator / DPSK modulering för optisk kommunikation med demodulering av FBGJacobsson, Fredrik January 2004 (has links)
The task of the project was to evaluate a differential phase shift keying demodulation technique by replacing a Mach-Zehnder interferometer receiver with an optical filter (Fiber Bragg Grating). Computer simulations were made with single optical transmission, multi channel systems and transmission with combined angle/intensity modulated optical signals. The simulations showed good results at both 10 and 40 Gbit/s. Laboratory experiments were made at 10 Gbit/s to verify the simulation results. It was found that the demodulation technique worked, but not with satisfactory experimental results. The work was performed at Eindhoven University of Technology, Holland, within the framework of the STOLAS project at the department of Electro-optical communication.
|
652 |
Power Efficiency Improvements for Wireless TransmissionsQian, Hua 14 July 2005 (has links)
Many communications signal formats are not power efficient because of their large peak-to-average power ratios (PARs). Moreover, in the presence of nonlinear devices such as power amplifiers (PAs) or mixers, the non-constant-modulus signals may generate both in-band distortion and out-of-band interference. Backing off the signal to the linear region of the device further reduces the system power efficiency. To improve the power efficiency of the communication system, one can pursue two approaches: i) linearize the PA; ii) reduce the high PAR of the input signal.
In this dissertation, we first explore the optimal nonlinearity under the peak power constraint. We show that the optimal nonlinearity is a soft limiter with a specific gain calculated based on the peak power limit, noise variance, and the probability density function of the input amplitude. The result is also extended to the fading channel case.
Next, we focus on digital baseband predistortion linearization for power amplifiers with memory effects. We build a high-speed wireless test-bed and carry out digital baseband predistortion linearization experiments. To implement adaptive PA linearization in wireless handsets, we propose an adaptive digital predistortion linearization architecture that utilizes existing components of the wireless transceiver to fulfill the adaptive predistorter training functionality.
We then investigate the topic of PAR reduction for OFDM signals and forward link CDMA signals. To reduce the PAR of the OFDM signal, we propose a dynamic selected mapping (DSLM) algorithm with a two-buffer structure to reduce the computational requirement of the SLM method without sacrificing the PAR reduction capability. To reduce the PAR of the forward link CDMA signal, we propose a new PAR reduction algorithm by introducing a relative offset between the in-phase branch and the quadrature branch of the transmission system.
|
653 |
Low-Complexity PAPR Reduction Schemes for Multi-Carrier SystemsWang, Sen-Hung 23 August 2010 (has links)
Selected mapping (SLM) schemes are commonly employed to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It has been shown that the computational complexity of the traditional SLM scheme can be substantially reduced by adopting conversion vectors obtained by using the inverse fast Fourier transform (IFFT) of the phase rotation vectors in place of the conventional IFFT operations. To ensure that the elements of these phase rotation vectors have an equal magnitude, conversion vectors should have the form of a perfect sequence. This study firstly presents three novel classes of perfect sequence, each of which comprises certain base vectors and their cyclically shifted versions. Three novel low-complexity SLM schemes are then proposed based upon the unique structures of these perfect sequences. It is shown that while the PAPR reduction performances of the proposed schemes are marginally poorer than that of the traditional SLM scheme, the three schemes achieve a substantially lower computational complexity. Since the three proposed PAPR reduction schemes cannot be utilized in the orthogonal frequency division multiple access (OFDMA) system. A low-complexity scheme for PAPR reduction in OFDMA uplink systems using either an interleaved or a sub-band sub-carrier assignment strategy is also proposed in the second part of this study. The proposed scheme requires just one IFFT operation. The PAPR reduction performance of the proposed scheme is only marginally poorer than that of the traditional SLM scheme. However, the proposed schemes have significantly lower computational complexities. Besides, multiple-input multiple-output (MIMO) OFDM systems with space-frequency block coding (SFBC) are well-known for their robust performance in time selective fading channels. However, SFBC MIMO-OFDM systems have a high computational complexity since the number of IFFTs required scales in direct proportion to the number of antennas at the transmitter. Furthermore, SFBC MIMO-OFDM systems have a high PAPR. Accordingly, a low-complexity PAPR reduction scheme for SFBC MIMO OFDM systems with the Alamouti encoding scheme is proposed in this study. Extending this scheme obtains two low-complexity transmitter architectures for SFBC MIMO-OFDM systems with a general encoding matrix and an arbitrary number of transmitter antennas. The proposed schemes achieve a significant reduction in computational complexity by fully exploiting the time-domain signal properties of the transmitted signal. In addition, a PAPR reduction scheme is presented based on the proposed transmitter schemes. It is shown that the PAPR reduction performance of the proposed scheme is almost as good as that of the traditional SLM scheme, but is achieved with a substantially lower computational complexity.
|
654 |
Channel Shortening Equalizer for Cyclic Prefixed Systems Based on Shortening Signal-to-Interference Ratio MaximizationChen, I-Wei 11 August 2008 (has links)
Considering the communication systems with cyclic prefix (CP), such as orthogonal frequency-division multiplexing (OFDM) modulation and single-carrier cyclic prefixed (SCCP) modulation, when the length of CP is longer than the channel length, the use of cyclic prefix (CP) does not only eliminate the inter-block interference, but also convert linear convolution of the transmitted signal with the channel into circular convolution. Unfortunately, the use of CP significantly decreases the bandwidth utilization. Therefore, to reduce the length of CP is a critical issue. The thesis investigates that how to design a channel-shortening equalizer (CSE) at receiver which forces the length of the effective channel response as short as the CP length. The thesis describes the signal model as a matrix form. The effect channel response after CSE is investigated and then the coefficient of channel shortening filter is obtained using singular value decomposition method under various criterions. We further propose a novel CSE maximizing the shortening signal-to-interference ratio. In addition, it is demonstrated that the proposed CSE has the same performance as the conventional scheme but a lower computation complexity.
|
655 |
High-Rate And Information-Lossless Space-Time Block Codes From Crossed-Product AlgebrasShashidhar, V 04 1900 (has links)
It is well known that communication systems employing multiple transmit and multiple receive antennas provide high data rates along with increased reliability. It has been shown that coding across both spatial and temporal domains together, called Space-Time Coding (STC), achieves, a diversity order equal to the product of the number of transmit and receive antennas. Space-Time Block Codes (STBC) achieving the maximum diversity is called full-diversity STBCs. An STBC is called information-lossless, if the structure of it is such that the maximum mutual information of the resulting equivalent channel is equal to the capacity of the channel.
This thesis deals with high-rate and information-lossless STBCs obtained from certain matrix algebras called Crossed-Product Algebras. First we give constructions of high-rate STBCs using both commutative and non-commutative matrix algebras obtained from appropriate representations of extensions of the field of rational numbers. In the case of commutative algebras, we restrict ourselves to fields and call the STBCs obtained from them as STBCs from field extensions. In the case of non-commutative algebras, we consider only the class of crossed-product algebras.
For the case of field extensions, we first construct high-rate; full-diversity STBCs for arbitrary number of transmit antennas, over arbitrary apriori specified signal sets. Then we obtain a closed form expression for the coding gain of these STBCs and give a tight lower bound on the coding gain of some of these STBCs. This lower bound in certain cases indicates that some of the STBCs from field extensions are optimal m the sense of coding gain. We then show that the STBCs from field extensions are information-lossy. However, we also show that the finite-signal-set capacity of the STBCs from field extensions can be improved by increasing the symbol rate of the STBCs. The simulation results presented show that our high-rate STBCs perform better than the rate-1 STBCs in terms of the bit error rate performance.
Then we proceed to present a construction of high-rate STBCs from crossed-product algebras. After giving a sufficient condition on the crossed-product algebras under which the resulting STBCs are information-lossless, we identify few classes of crossed-product algebras that satisfy this sufficient condition and also some classes of crossed-product algebras which are division algebras which lead to full-diversity STBCs. We present simulation results to show that the STBCs from crossed-product algebras perform better than the well-known codes m terms of the bit error rate.
Finally, we introduce the notion of asymptotic-information-lossless (AILL) designs and give a necessary and sufficient condition under which a linear design is an AILL design. Analogous to the condition that a design has to be a full-rank design to achieve the point corresponding to the maximum diversity of the optimal diversity-multiplexing tradeoff, we show that a design has to be AILL to achieve the point corresponding to the maximum multiplexing gain of the optimal diversity-multiplexing tradeoff. Using the notion of AILL designs, we give a lower bound on the diversity-multiplexing tradeoff achieved by the STBCs from both field extensions and division algebras. The lower bound for STBCs obtained from division algebras indicates that they achieve the two extreme points, 1 e, zero multiplexing gain and zero diversity gain, of the optimal diversity-multiplexing tradeoff. Also, we show by simulation results that STBCs from division algebras achieves all the points on the optimal diversity-multiplexing tradeoff for n transmit and n receive antennas, where n = 2, 3, 4.
|
656 |
All-Fiber Sensing Techniques For Structural Health Monitoring And Other ApplicationsMadhav, Kalaga Venu 09 1900 (has links)
In this thesis, we explore the four aspects of fiber Bragg grating sensors: mathematical modeling of Fiber Bragg Grating response/spectral characteristics, fabrication using phase mask, application and interrogation. Applications of fiber Bragg gratings, also known as in-fiber gratings, with emphasis on their sensing capabilities, interrogation of an array of sensors and their performance in structural health monitoring scenario are documented.
First, we study the process of photosensitivity phenomenon in glasses, in particular GeO2:SiO2 glasses. For mathematical modeling we consider the 1-D refractive index profile along the propagation axis of an optical fiber drawn from the preform of such glasses. These 1-D index structures exhibit a bandgap for propagation along the fiber axis. We show how the bandgap is dependent on the two structural parameters: index periodicity and effective refractive index. The mathematical model provides the characteristics of three sensor parameters -resonance wavelength also known as the Bragg wavelength (λB ), filter bandwidth (ΔλB ), and reflectivity (R). We show that the evolution of the index structure in germanosilicate glasses is dependent on the inscription parameters such as exposure time, intensity of the laser used for inscribing, the interference pattern, and coherence of the laser system. In particular, a phase mask is used as the diffffacting element to generate the required interference pattern, that is exposed on the photosensitive fiber. We present a mathematical model of the electromagnetic diffraction pattern behind the phase mask and study the effect of the limited coherence of the writing laser on the interference pattern produced by the diffracting beams from the mask.
Next, we demostrate the sensing capabilities of the fiber Bragg gratings for measuring strain, temperature and magnetic fields. We report linearity of 99.7% and sensitivity of 10.35pm/◦C for the grating temperature sensor. An array of gratings assigned with non-overlapping spectral windows is inscribed in a single fiber and applied for distributed sensing of structural health monitoring of an aircraft’s composite air-brake panel. The performance of these sensors is compared with the industry standard resistance foil gauges. We report good agreement between the two gauges (FBG and RSG).
In some applications it is more desirable to know the spectral content, rather than the magnitude of perturbation. Fiber Bragg gratings sensors can be used to track events that occur in a very small span of time and contain high frequencies. Such applications demand very high speed wavelength demodulation methods. We present two interrogation techniques: wavelength-shift time-stamping (WSTS) and reflectivity division multiplexing (RDM). WSTS interrogation method employs the multiple threshold-crossing technique to quantize the sensor grating fluctuations and in the process produces the time stamps at every level-cross. The time-stamps are assembled and with the a priori knowledge of the threshold levels, the strain signal is reconstructed. The RDM methodology is an extension of the WSTS model to address multiple sensors. We show that by assigning unique reflectivities to each of the sensors in an array, the time-stamps from each of the sensors can be tagged. The time-stamps are collected by virtue of their corresponding pulse heights, and assembled to reconstruct the strain signal of each of the array sensor. We demonstrate that the two interrogation techniques are self-referencing systems, i.e., the speed at which the signals are reconstructed is instantaneous or as fast as the signal itself.
|
657 |
Analytical And Numerical Study Of Propagation In Optical Waveguides And Devices In Linear And Nonlinear DomainsRaghuwanshi, Sanjeev Kumar 07 1900 (has links)
The objective of this thesis is to study of optical effects, arising in the form of non-uniform waveguide structure, complicated refractive index profiles or due to pulse propagation in dense wavelength division multiplexing (DWDM) optical communication systems. These effects are important and critically influence the performance of DWDM optical systems. A comprehensive survey of current literature on optical effects due to nonuniform optical structure and nonlinear optical effects is first done, showing their advantages and disadvantage in optical communication systems. A survey on methods of optical waveguide analysis is also done. The main contribution has been made to three main aspects of the problem :
Accurate analysis of uniform/non-uniform optical waveguides with arbitary refractive index profiles
Pulse propagation and distortion in DWDM Raman amplification systems.
Use of non-uniform FBG to compensate for pulse distortion
We study several existing analytical techniques developed so far for analyzing the mode of non-uniform optical waveguide structures. Later, we verify the analytical results by finite element method (FEM). The convergence study is also carried out. A new computational technique is proposed modifying the finite element method to analyze complex refractive index profiles required for the analysis, namely single mode step index profile, multi clad fiber, W -profile, chirp profile etc. An accuracy of 10−4 in the calculation of propagation constant/eigen-value is demonstrated. Dispersion characteristics of optical fibers w.r.t. different profile parameters is evaluated. A modification to scalar BPM is proposed and applied to study the effects of inhomogeneities along the propagation direction. The applicability and accuracy of the method is tested using integrated optic waveguide devices, namely, graded index slab waveguide. The proposed BPM uses Fourier decomposition of the transverse field. Coupled mode theory (CMT) of optical waveguides in non-homogeneous optical medium is applied to study the interaction of lightwaves propagation together such as in a DWDM system. The BPM results is verified by CMT.
The inhomogeneous waveguide theory is extended to study pulse propagation in DWDM optical communication system. Nonlinear optical effects are an important aspects of DWDM systems with fiber Raman amplifier. Finite difference time domain (FDTD) method is necessary to study these nonlinear optical effects as other conventional methods are not suitable here. Here, we discuss DWDM optical communication systems due to nonlinearity in the form of SRS effect. In case of FRA, we study the various kinds of fiber profile design parameters, for the purpose to achieve and extend the flat gain bandwidth over the EDFA window. We also propose and study, a new bi-directional optical fiber transmission scheme with various constraints, using Raman amplification process with and without pump depletion. Our scheme, provides an advantage like high SNR, low pump induced noise, for long-haul communication link. We find that, there is a quite significant crosstalk and power coupling among the dense DWDM channels but earlier discussed BPM fails to account for possible interference effects among the channels. To reduce the harmful nonlinear optical effects like four wave mixing (FWM), we need to deploy a high chromatic dispersion fiber, which will ultimately lead to high pulse walk-off rate among the DWDM channels; hence for high bit rate long haul systems, walk-off effect can not be ignored. Application of FDTD provided an improved insight into the effect of GVD on stimulated Raman scattering crosstalk than different modulation techniques and line codes. It is shown through analysis that pulse walk-off phenomena may distort the data asymmetrically; especially for case of wide-band DWDM transmission system. Hence, the pulse walk-off effect should be considered in future systems containing optical amplifier. It is shown, that large walk-off rate may reduce the crosstalk among DWDM channels but tends to increase the asymmetric pulse distortion. Data may lose due to high walk-off effect. We also investigate channel addition/removal process in DWDM fiber Raman amplifier. We also demonstrate that the pulse walk-off effect tends to lead significantly to positive chirp for higher frequency channels. This feature can be exploited to overcome the chromatic dispersion effects in DWDM transmission systems.
Pulse walk-off induced chirp, can be compensated by using the nonuniform fiber Bragg grating (NUFBG). The CMT due to periodic perturbation of the circular cylindrical waveguide structures is applied here. Here, we discuss the function of fiber Bragg grating as a transmission versus reflecting grating filter. We also discuss, FBG application to gain flattening of an EDFA window as well as how the group velocity dispersion (GVD) will be affected with bandwidth and coupling coefficient. We develop a new analytical technique to estimate the bandwidth of FBG based optical system. Finally, we investigate the dispersion compensation properties, pulse distortion, peak reflectivity analysis in uniform/non-uniform FBG due to an uniform/non-uniform incoming signal. More complicated refractive index profile can significantly reduce the GVD as well as side lobes intensity. Dispersion characteristic due to an arbitrary refractive index profile is discussed in details for the case of non-uniform FBG. Thus, we concluded that wide band DWDM optical communication system need to closely take into account various inhomogeneities and nonlinearities of optical fibers w.r.t. wave and pulse propagation.
|
658 |
New signal processing approaches to peak-to-average power ratio reduction in multicarrier systemsBae, Ki-taek 06 December 2010 (has links)
Multi-carrier systems based on orthogonal frequency division multiplexing (OFDM) are efficient technologies for the implementation of broadband
wireless communication systems. OFDM is widely used and has been adopted for current mobile broadband wireless communication systems such as IEEE 802.a/g wireless LANs, WiMAX, 3GPP LTE, and DVB-T/H digital video broadcasting systems. Despite their many advantages, however, OFDM-based systems suffer from potentially high peak-to-average power ratio (PAR). Since communication systems typically include nonlinear devices such as RF power amplifiers (PA) and digital-to-analog converters (DAC), high PAR results in increased symbol error rates and spectral radiation. To mitigate these nonlinear effects and to avoid nonlinear saturation effects of the PA, the operating point of a signal with high peak power must be backed off into the linear
region of the PA. This so-called output backoff (OBO) results in a reduced power conversion efficiency which limits the battery life for mobile applications, reduces the coverage range, and increases both the cost of the PA and power consumption in the cellular base station. With the increasing demand for high energy efficiency, low power consumption, and greenhouse gas emission reduction, PAR reduction is a key technique in the design of practical OFDM systems.
Motivated by the PAR reduction problem associated with multi-carrier systems, such as OFDM, this research explores the state of the art of PAR reduction techniques and develops new signal processing techniques that can
achieve a minimum PAR for given system parameters and that are compatible with the appropriate standards. The following are the three principal contributions of this dissertation research.
First, we present and derive the semi-analytical results for the output of asymptotic iterative clipping and filtering. This work provides expressions and analytical techniques for estimating the attenuation factor, error vector magnitude, and bit-error-rate (BER), using a noise enhancement factor that
is obtained by simulation. With these semi-analytical results, we obtain a relationship between the BER and the target clipping level for asymptotic iterative
clipping and filtering. These results serve as a performance benchmark for designing PAR reduction techniques using iterative clipping and filtering
in OFDM systems.
Second, we analyze the impact of the selected mapping (SLM) technique on BER performance of OFDM systems in an additive white Gaussian noise channel in the presence of nonlinearity. We first derive a closed-form expression
for the envelope power distribution in an OFDM system with SLM. Then, using this derived envelope power distribution, we investigate the BER performance and the total degradation (TD) of OFDM systems with SLM under
the existence of nonlinearity. As a result, we obtain the TD-minimizing peak backoff (PBO) and clipping ratio as functions of the number of candidate signals in SLM.
Third, we propose an adaptive clipping control algorithm and pilotaided algorithm to address a fundamental issue associated with two lowcomplexity PAR reduction techniques, namely, tone reservation (TR) and active constellation extension (ACE). Specifically, we discovered that the existing low-complexity algorithms have a low clipping ratio problem in that they can not achieve the minimum PAR when the target clipping level is set
below the initially unknown optimum value. Using our proposed algorithms, we overcome this problem and demonstrate that additional PAR reduction is
obtained for any low value of the initial target clipping ratio. / text
|
659 |
Efficient tranceiver techniques for interference and fading mitigation in wireless communication systems / Νέες αποδοτικές τεχνικές εκπομπής και λήψης για μείωση παρεμβολών σε ασύρματα δίκτυα επικοινωνίαςΒλάχος, Ευάγγελος 12 December 2014 (has links)
Wireless communication systems require advanced techniques at the transmitter and at the receiver that improve the performance in hostile radio environments. The received signal is significantly distorted due to the dynamic nature of the wireless channel caused by multipath fading and Doppler spread. In order to mitigate the negative impact of the channel to the received signal quality, techniques as equalization and diversity are usually employed in the system design.
During the transmission, the phenomenon of inter-symbol interference (ISI) occurs at the receiver due to the time dispersion of the involved channels. Hence, several delayed replicas of previous symbols interfere with the current symbol. Equalization is usually employed in order to combat the effect of the ISI. Several implementations for equalization filters have been proposed, including linear and non-linear processing, providing complexity-performance trade-offs. It is known that the length of the equalization filter determines the complexity of the technique. Since the wireless channels are characterized by long and sparse impulse responses, the conventional equalizers require high computational complexity due to the large size of their filters.
In this dissertation, we have further investigated the long standing problem of equalization in light of the recently derived theory of compressed sampling (CS) for sparse and redundant representations. The developed heuristic algorithms for equalization, can exploit either the sparsity of the channel impulse response (CIR), or the sparsity of the equalizer filters, in order to derive efficient implementation designs. To this end, building on basis pursuit and matching pursuit techniques new equalization schemes have been proposed that exhibit considerable computational savings, increased performance properties and short training sequence requirements. Our main contribution for this part is the Stochastic Gradient Pursuit algorithm for sparse adaptive equalization.
An alternative approach to combat ISI is based on the orthogonal frequency division multiplexing (OFDM) system. In this system, the entire channel is divided into many narrow subchannels, so as the transmitted signals to be orthogonal to each other, despite their spectral overlap. However, in the case of doubly selective channels, the Doppler effect destroys the orthogonality between subcarriers. Thus, similarly to ISI, the effect of intercarrier interference (ICI) is introduced at the receiver, where symbols which belong to other subcarriers interfere with the current one. Considering this problem, we have developed iterative algorithms which recursively cancels the ICI at the receiver, providing performance-complexity trade-offs.
For low or medium Doppler spreads, the typical approach is to approximate the frequency-domain channel matrix with a banded one. On this premise, we derived reduced-rank preconditioned conjugate gradient (PCG) algorithms in order to estimate the equalization matrix with a reduced number of iterations. Also developed an improved PCG algorithm with the same complexity order, using the Galerkin projections theory. However, in rapidly changing environments, a severe ICI is introduced and the banded approximation results in significant performance degradation. In order to recover this performance loss, we developed regularized estimation framework for ICI equalization, with linear complexity with respect the the number of the subcarriers. Moreover, we proposed a new equalization technique which has the potential to completely cancel the ICI. This approach works in a successive manner through a number of stages, conveying from the fully-connected ordered successive interference cancellation architecture (OSIC) in order to fully suppress the residual interference at each stage of the equalizer.
On the other hand, diversity can improve the performance of the communication system by sending the information symbols through multiple signal paths, each of which fades independently. One approach to obtain diversity is through cooperative transmission, considering a group of nearby terminals (relays) as forming one virtual antenna array and applying a spatial beamforming technique so as to optimize the communication via them. Such beamforming techniques differ from their classical counterparts where the array elements are located in a common processing unit, due to the distribution of the relays in the space.
In this setting, we developed new distributed algorithms which enable the relay cooperation for the computation of the beamforming weights leveraging the computational abilities of the relays. Each relay can estimate only the corresponding entry of the principal eigenvector, combining data from its network neighbours. The proposed algorithms are applied to two distributed beamforming schemes for relay networks. In the first scheme, the beamforming vector is computed through minimization of a total transmit power subject to the receiver quality-of-service (QoS) constraint. In the second scheme, the beamforming weights are obtained through maximization of the receiver SNR subject to a total transmit power constraint. Moreover, the proposed algorithms operate blindly, implying that no training data are required to be transmitted to the relays, and adaptively, exhibiting a quite short convergence period. / Τα συστήματα ασύρματων επικοινωνιών απαιτούν εξειδικευμένες τεχνικές στον πομπό και στον δέκτη, οι οποίες να βελτιώνουν την απόδοση του συστήματος σε εχθρικά περιβάλλοντα ασύρματης μετάδοσης. Λόγω της δυναμικής φύσης του ασύρματου καναλιού, που περιγράφεται από τα φαινόμενα της απόσβεσης, της πολυδιόδευσης και του Doppler, το λαμβανόμενο σήμα είναι παραμορφωμένο σε σημαντικό βαθμό. Για να αναιρέσουμε αυτήν την αρνητική επίδραση του καναλιού στην ποιότητα του λαμβανόμενου σήματος, κατά τον σχεδιασμό του συστήματος συνήθως υιοθετούνται τεχνικές όπως η ισοστάθμιση και η ποικιλομορφία.
Ένα φαινόμενο που προκύπτει στο δέκτη ενός ασύρματου συστήματος επικοινωνίας, λόγω της χρονικής διασποράς που παρουσιάζουν τα κανάλια, είναι η διασυμβολική παρεμβολή, όπου χρονικά καθυστερημένα αντίγραφα προηγούμενων συμβόλων παρεμβάλουν με το τρέχων σύμβολο. Ένας τρόπος για την αντιμετώπιση του φαινομένου αυτού, είναι μέσω της ισοστάθμισης στο δέκτη, όπου χρησιμοποιώντας γραμμικές και μη-γραμμικές τεχνικές επεξεργασίας, τα μεταδιδόμενα σύμβολα ανιχνεύονται από το ληφθέν σήμα. Ωστόσο, συνήθως τα ασύρματα κανάλια χαρακτηρίζονται από κρουστικές αποκρούσεις μεγάλου μήκους αλλά λίγων μη μηδενικών συντελεστών, και σε αυτήν την περίπτωση η υπολογιστική πολυπλοκότητα των συνήθων τεχνικών είναι πολύ υψηλή.
Στα πλαίσια αυτής της διατριβής, αναπτύχθηκαν νέοι ευριστικοί αλγόριθμοι για το πρόβλημα της ισοστάθμισης, οι οποίοι εκμεταλλεύονται είτε την αραιότητα της κρουστικής απόκρισης είναι την αραιότητα του αντιστρόφου φίλτρου, προκειμένου να παραχθούν αποδοτικές υλοποιήσεις. Θεωρώντας τον μη γραμμικό ισοσταθμιστή ανατροφοδότησης-απόφασης, έχει δειχθεί ότι κάτω από συνήθεις υποθέσεις για τους συντελεστές της κρουστικής απόκρισης του καναλιού, το εμπρόσθιο φίλτρο και το φίλτρο ανατροφοδότησης μπορούν να αναπαρασταθούν από αραιά διανύσματα. Για τον σκοπό αυτό, τεχνικές Συμπιεσμένης Καταγραφής, οι οποίες έχουν χρησιμοποιηθεί κατα κόρον σε προβλήματα ταυτοποίησης συστήματος, μπορούν να βελτιώσουν σε μεγάλο βαθμό την απόδοση κλασσικών ισοσταθμιστών που δεν λαμβάνουν υπόψιν τους την αραιότητα των διανυσμάτων. Έχοντας ως βάση τις τεχνικές basis pursuit και matching pursuit, αναπτύχθηκαν νέα σχήματα ισοσταθμιστών τα οποία παρουσιάζουν αξιοσημείωτη μείωση στο υπολογιστικό κόστος. Επίσης, αντίθετα με τη συνήθη πρακτική ταυτοποίησης συστήματος, αναπτύχθηκε νέος ευριστικό αλγόριθμος για το πρόβλημα αραιής προσαρμοστικής ισοστάθμισης, με την ονομασία Stochastic Gradient Pursuit. Επιπλέον, ο αλγόριθμος αυτός επεκτάθηκε και για την περίπτωση όπου ο αριθμός των μη μηδενικών στοιχείων του ισοσταθμιστή είναι άγνωστος.
Μία διαφορετική προσέγγιση για την αντιμετώπιση του φαινομένου της διασυμβολικής παρεμβολής είναι μέσω του συστήματος orthogonal frequency-division multiplexing (OFDM), όπου το συνολικό κανάλι χωρίζεται σε πολλά στενά υπο-κανάλια, με τέτοιον τρόπο ώστε τα μεταδιδόμενα σήματα να είναι ορθογώνια μεταξύ τους, παρότι παρουσιάζουν φασματική επικάλυψη. Ωστόσο, σε χρονικά και συχνοτικά επιλεκτικά κανάλια, το φαινόμενο Doppler καταστρέφει την ορθογωνιότητα των υπο-καναλιών. Σε αυτήν την περίπτωση, παρόμοια με το φαινόμενο της διασυμβολικής παρεμβολής, εμφανίζεται το φαινόμενο της διακαναλικής παρεμβολής, όπου τα σύμβολα που ανήκουν σε διαφορετικά υπο-κανάλια παρεμβάλουν στο τρέχον. Θεωρώντας αυτό το πρόβλημα, αναπτύχθηκαν νέα σχήματα ισοστάθμισης που ακυρώνουν διαδοχικά την παρεμβολή αυτή, παρέχοντας έναν συμβιβασμό μεταξύ της απόδοσης και της πολυπλοκότητας.
Στις περιπτώσεις όπου το φαινόμενο Doppler δεν είναι τόσο ισχυρό, η συνήθης τακτική είναι η προσέγγιση του πίνακα του καναλιού με έναν πίνακα ζώνης. Με αυτό το σκεπτικό, αναπτύχθηκαν αλγόριθμοι μειωμένης τάξης που βασίζονται στην επαναληπτική μέθοδο preconditioned conjugate gradient (PCG), προκειμένου να εκτιμήσουμε τον πίνακα ισοστάθμισης με έναν μειωμένο αριθμό επαναλήψεων. Επίσης, αναπτύχθηκαν τεχνικές που βασίζονται σε προβολές Galerkin για την βελτίωση της απόδοσης των συστημάτων χωρίς να αυξάνουν σημαντικά την πολυπλοκότητα. Ωστόσο, για τις περιπτώσεις όπου το φαινόμενο Doppler έχει ισχυρή επίδραση στο δέκτη του τηλεπικοινωνιακού συστήματος, όπως στις περιπτώσεις πολύ δυναμικών καναλιών, τότε η προσέγγιση με τον πίνακα ζώνης μειώνει σημαντικά την απόδοση του συστήματος. Με στόχο να ανακτήσουμε την απώλεια αυτή, αναπτύχθηκαν τεχνικές κανονικοποιημένης εκτίμησης, με γραμμική πολυπλοκότητα σε σχέση με τον αριθμό των υπο-καναλιών. Επιπρόσθετα, αναπτύχθηκε ένα νέο σχήμα ισοστάθμισης που έχει την δυνατότητα να ακυρώσει πλήρως την διακαναλική παρεμβολή. Το συγκεκριμένο σχήμα λειτουργεί βασιζόμενο σε έναν αριθμό διαδοχικών σταδίων, ακολουθώντας την φιλοσοφία της αρχιτεκτονικής fully-connected ordered successive interference cancellation (OSIC), με στόχο να μειώσει την εναπομείναντα παρεμβολή σε κάθε στάδιο του ισοσταθμιστή
Η απόδοση ενός τηλεπικοινωνιακού συστήματος μπορεί επίσης να βελτιωθεί με την χρήση τεχνικών ποικιλομορφίας, δηλαδή με την μετάδοση των συμβόλων μέσω πολλών ανεξάρτητων μονοπατιών. Μία τεχνική ποικιλομορφίας είναι η συνεργατική μετάδοση, όπου μία ομάδα κοντινών τερματικών (relays) σχηματίζουν μία εικονική συστοιχία κεραιών και τεχνικές διαμόρφωσης λοβού μετάδοσης χρησιμοποιούνται προκειμένου να βελτιστοποιηθεί η επικοινωνία μέσω των τερματικών. Οι συγκεκριμένες τεχνικές διαμόρφωσης λοβού μετάδοσης, διαφέρουν από τις κλασσικές όπου η συστοιχία κεραιών βρίσκεται τοποθετημένη σε έναν κόμβο, καθώς τα τερματικά κατανέμονται στον χώρο.
Υπό αυτές τις συνθήκες, αναπτύχθηκαν κατανεμημένοι αλγόριθμοι οι οποίοι εκμεταλλεύονται την επικοινωνία και τις υπολογιστικές δυνατότητες των τερματικών για τον υπολογισμό των συνιστωσών του διανύσματος διαμόρφωσης λοβού μετάδοσης. Κάθε τερματικό εκτιμά μόνο την αντίστοιχη συνιστώσα από το κύριο ιδιοδιάνυσμα, συνδιάζοντας δεδομένα από τα γειτονικά τερματικά. Οι προτεινόμενοι αλγόριθμοι εφαρμόστηκαν σε δύο σχήματα κατανεμημένης μετάδοσης μέσω ενδιάμεσων κόμβων. Στο πρώτο σχήμα, τα βάρη του διανύσματος διαμόρφωσης λοβού μετάδοσης υπολογίστηκαν με βάση την ελαχιστοποίηση της συνολικής ισχύος μετάδοσης υπό τον περιορισμό συγκεκριμένου κατωφλίου για την ποιότητα του λαμβανόμενου σήματος. Στο δεύτερο σχήμα, υπολογίστηκαν μεγιστοποιώντας την ποιότητα του λαμβανόμενου σήματος υπό τον περιορισμό ενός κατωφλίου για την συνολική ισχύ μετάδοσης. Επιπλέον, οι αλγόριθμοι που αναπτύχθηκαν λειτουργούν τυφλά, δηλαδή χωρίς φάση εκπαίδευσης, και προσαρμοστικά με μικρό διάστημα σύγκλισης.
|
660 |
Towards quantum telecommunication and a Thorium nuclear clockRadnaev, Alexander G. 17 August 2012 (has links)
This thesis presents the investigations of Rubidium atoms in magneto-optical traps and triply charged Thorium ions in electrodynamic traps for future advances in long-distance quantum telecommunication, next generation clocks, and fundamental tests of current physical theories. Experimental realizations of two core building blocks of a quantum repeater are described: a multiplexed quantum memory and a telecom interface for long-lived quantum memories. A color change of single-photon level light fields by several hundred nanometers in an optically thick cold gas is demonstrated, while preserving quantum entanglement with a remotely stored matter excitation. These are essential elements for long-distance quantum telecommunication, fundamental tests of quantum mechanics, and applications in secure communication and computation. The first trapping and laser cooling of Thorium-229 ions are described. Thorium-229 nuclear electric quadrupole moment is revealed by hyperfine spectroscopy of triply charged Thorium-229 ions. A system to search for the isomer nuclear transition in Thorium-229 is developed and tested with the excitation of a forbidden electronic transition at 717 nm. Direct excitation of the nuclear transition with laser light would allow for an extremely accurate clock and a sensitive test bed for variations of fundamental physical constants, including the fine structure constant.
|
Page generated in 0.0575 seconds