Spelling suggestions: "subject:"[een] NAVIER-STOKES"" "subject:"[enn] NAVIER-STOKES""
561 |
Um novo esquema upwind de alta resolução para equações de conservação não estacionárias dominadas por convecção / A new high-resolution upwind scheme for non stationary conservation equations dominated by convectionLaís Corrêa 29 March 2011 (has links)
Neste trabalho apresenta-se um novo esquema prático tipo upwind de alta resolução, denominado EPUS (Eight-degree Polynomial Upwind Scheme), para resolver numericamente equações de conservação TVD e é implementado no contexto do método das diferenças finitas. O desempenho do esquema é investigado na resolução de sistemas hiperbólicos de leis de conservação e escoamentos incompressíveis complexos com superfícies livres. Os resultados numéricos mostraram boa concordãncia com outros resultados numéricos e dados experimentais existentes / Is this work a new practical high resolution upwinding scheme, called EPUS (Eight-degree Polynomial Upwind Scheme), for the numerical solution of transient convection-dominated conservation equations is present. The scheme is based on TVD stability criterion and is implemented in the context of the finite difference methodology. The performance of the scheme is investigated by solving hyperbolic systems of conservation laws and complex incompressible flows with free surfaces. The numerical results displayed good agreement with other existing numerical and experimental data
|
562 |
Estudo de métodos de interface imersa para as equações de Navier-Stokes / Study of immersed interface methods for the Navier-Stokes equationsGabriela Aparecida dos Reis 24 June 2016 (has links)
Uma grande limitação dos métodos de diferenças finitas é que eles estão restritos a malhas e domínios retangulares. Para descrever escoamentos em domínios complexos, como, por exemplo, problemas com superfícies livres, faz-se necessário o uso de técnicas acessórias. O método de interfaces imersas é uma dessas técnicas. Nesse trabalho, primeiramente foi desenvolvido um método de projeção, totalmente livre de pressão, para as equações de Navier-Stokes com variáveis primitivas em malha deslocada. Esse método é baseado em diferenças finitas compactas, possuindo segunda ordem temporal e quarta ordem espacial. Esse método foi combinado com o método de interface imersa de Linnick e Fasel [2] para resolver numericamente as equações de Stokes com quarta ordem de precisão. A verificação do código foi feita por meio do método das soluções manufaturadas e da comparação com resultados de outros autores em problemas clássicos da literatura. / A great limitation of finite differences methods is that they are restricted to retangular meshes and domains. In order to describe flows in complex domains, e.g. free surface problems, it is necessary to use accessory techniques. The immersed interface method is one of such techniques. In the present work, firstly, a projection method was developed, which is completely pressure-free, for the Navier-Stokes equations with primitive variables in a staggered mesh. This method is based on compact finite differences, with temporal second-order precision and spatial foruth-order precision. This method was combined with the immersed interface method from Linnick e Fasel [2] in order to numerically solve the Stokes equations with fourth-order precision. The verification of the code was performed with the manufactured solutions method and by comparing results with other authors for some classical problems in the literature.
|
563 |
Desenvolvimento de estratégias de captura de descontinuidades para leis de conservação e problemas relacionados em dinâmica de fluídos / Development of strategies to capture discontinuities for conservation laws and related problems in fluid dynamicsGiseli Aparecida Braz de Lima 23 March 2010 (has links)
Esta dissertação trata da solução numérica de problemas em dinâmica dos fluidos usando dois novos esquemas upwind de alta resolução, denominados FDPUS-C1 (Five-Degree Polynomial Upwind Scheme of \' C POT. 1\' Class) e SDPUS-C1 (Six-Degree Polynomial Upwind Scheme of \'C POT.1\' Class), para a discretização de termos convectivos lineares e não-lineares. Os esquemas são baseados nos critérios de estabilidade TVD (Total Variation Diminishing) e CBC (Convection Boundedness Criterion) e são implementados, nos contextos das metodologias de diferenças finitas e volumes finitos, no ambiente de simulação Freeflow (an integrated simulation system for Free surface Flow) para escoamentos imcompressíveis 2D, 2D-1/2 e 3D, ou no código bem conhecido CLAWPACK ( Conservation LAW PACKage) para problemaw compressíveis 1D e 2D. Vários testes computacionais são feitos com o objetivo de verificar e validar os métodos numéricos contra esquemas upwind populares. Os novos esqumas são então aplicados na resolução de uma gama ampla de problemas em CFD (Computational Fluids Dynamics), tais como propagação de ondas de choque e escoamentos incompressíveis envolvendo superfícies livres móveis. Em particular, os resultados numéricos para leis de conservação hiperbólicas 2D e equações de Navier-Stokes incompressíveis 2D, 2D-1/2 e 3D demosntram que esses novos esquemas convectivos tipo upwind polinomiais funcionam muito bem / This dissertation deals with the numerical solution of fluid dynamics problems using two new high resolution upwind schemes,. namely FDPUS-C1 and SDPUS-C1, for the discretization of the linear and non-linear convection terms. The Schemes are based on TVD and DBC stability criteria and are implemented in the context of the finite difference and finite volume methodologies, either into the Freeflow code for 2D, 2D-1/2 and 3D incompressible flows or in the well-known CLAWPACK code for 1D and 2D compressible flows. Several computational tests are performed to verify and validate the numerical methods against other popularly used upwind schemes. The new schemes are then applied to solve a wide range of problems in CFD, such as shock wave propagation and incompressible fluid flows involving moving free msurfaces. In particular, the numerical results for 2D hyperbolic conservation laws and 2D, 2D-1/2 and 3D incompressible Navier-Stokes eqautions show that new polynomial upwind convection schemes perform very well
|
564 |
Esquemas de captura de descontinuidades para equações gerais de conservação / Stock capturing scheme for general conservation equationsRodolfo Junior Pérez Narváez 22 February 2013 (has links)
Três esquemas de captura de descontinuidade são apresentados para simular hiperbólicos de leis de conservação e equações de Navier-Stokes incompressíveis, a saber: FDHERPUS (Five Degree Hermite Upwind Scheme); RUS (Rational Upwind Scheme); e CSPUS (Cubic Spline Polynomial Upwind Scheme). Esses esquemas são baseados nos critérios de estabilidade CBC e TVD e implementados nos contextos das metodologias diferenças finitas e volumes finitos. A precisão local dos esquemas é verificada acessando o erro e a taxa de convergência em problemas testes de referência. Um estudo comparativo entre os esquemas estudados (incluido o WENO5) e o esquema bem estabelecido de van Albada, para resolver leis de conservação lineares e não lineares, é também realizado. O esquema de convecção que fornece melhores resultados em leis de conservação hiperbólicas é então examinado na simulação de escoamentos de fluidos newtonianos com superfícies livres móveis de complexidade crescente; resultados satisfatórios têm sido observados em termos do comportamento global / Three shock capturing schemes for numerical solution of hyperbolic conservation laws and incompressible Navier-Stokes equations are presented, namely: FDHERPUS (Five Degree Hermite Polynomial Upwind Scheme); RUS (Rational Upwind Scheme); and CSPUS ( Cubic Spline Polynomial Upwind Scheme). These schemes are based on CBC and TVD stability criteria and implemented in the context of finite volume methodologies. The local observed accuracy of the schemes is verified by assessing the error and convergence rate on benchmark test cases. A comparative study between the schemes (including WENO5) and the well established van. Albada scheme to solve standard linear and nonlinear hyperbolic conservation laws is also accomplished. The scheme that has provided better results in hyperbolic conservation laws is then examined in the simulation of Newtonian moving free surface flows of increasing complexity, satisfactory agreement has been observed in terms of the overall behavior
|
565 |
Modeling of multiphase flows / Modélisation des fluides multiphasiquesMecherbet, Amina 30 September 2019 (has links)
Dans cette thèse, nous nous intéressons à la modélisation et l'analyse mathématique de certains problèmes liés aux écoulements en suspension.Le premier chapitre concerne la justification du modèle de type transport-Stokes pour la sédimentation de particules sphériques dans un fluide de Stokes où l'inertie des particules est négligée et leur rotation est prise en compte. Ce travail est une extension des résultats antérieurs pour un ensemble plus général de configurations de particules.Le deuxième chapitre concerne la sédimentation d'une distribution d'amas de paires de particules dans un fluide de Stokes. Le modèle dérivé est une équation de transport-Stokes décrivant l'évolution de la position et l'orientation des amas. Nous nous intéressons par la suite au cas où l'orientation des amas est initialement corrélée aux positions. Un résultat d'existence locale et d'unicité pour le modèle dérivé est présenté.Dans le troisième chapitre, nous nous intéressons à la dérivation d'un modèle de type fluide-cinétique pour l'évolution d'un aérosol dans les voies respiratoires. Ce modèle prend en compte la variation du rayon des particules et leur température due à l'échange d'humidité entre l'aérosol et l'air ambiant. Les équations décrivant le mouvement de l'aérosol est une équation de type Vlasov-Navier Stokes couplée avec des équations d'advection diffusion pour l'évolution de la température et la vapeur d'eau dans l'air ambiant.Le dernier chapitre traite de l'analyse mathématique de l'équation de transport-Stokes dérivée au premier chapitre. Nous présentons un résultat d'existence et d'unicité globale pour des densités initiales de type $L^1 cap L^infty$ ayant un moment d'ordre un fini. Nous nous intéressons ensuite à des densités initiales de type fonction caractéristique d'une gouttelette et montrons un résultat d'existence locale et d'unicité d'une paramétrisation régulière de la surface de la gouttelette. Enfin nous présentons des simulations numériques montrant l'aspect instable de la gouttelette. / This thesis is devoted to the modelling and mathematical analysis of some aspects of suspension flows.The first chapter concerns the justification of the transport-Stokes equation describing the sedimentation of spherical rigid particles in a Stokes flow where particles rotation is taken into account and inertia is neglected. This work is an extension of former results for a more general set of particles configurations.The second chapter is dedicated to the sedimentation of clusters of particle pairs in a Stokes flow. The derived model is a transport-Stokes equation describing the time evolution of the position and orientation of the cluster. We also investigate the case where the orientation of the cluster is initially correlated to its position. A local existence and uniqueness result for the limit model is provided.In the third chapter, we propose a coupled fluid-kinetic model taking into accountthe radius growth of aerosol particles due to humidity in the respiratorysystem. We aim to numerically investigate the impact of hygroscopic effects onthe particle behaviour. The air flow is described by the incompressibleNavier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air humidity and temperature, both quantities satisfying a convection-diffusion equation with a source term.The last chapter is dedicated to the analysis of the transport-Stokes equation derived in the first chapter. First we present a global existence and uniqueness result for $L^1cap L^infty$ initial densities with finite first moment. Secondly, we consider the case where the initial data is the characteristic function of a droplet. We present a local existence and uniqueness result for a regular parametrization of the droplet surface. Finally, we provide some numerical computations that show the regularity breakup of the droplet.
|
566 |
Kortewegovy tekutiny - modelování, analýza a počítačové simulace / Korteweg fluids - modeling, analysis and computer simulationsBlaškovičová, Monika January 2015 (has links)
We present two possible thermodynamical approaches towards a derivation of a model, proposed by Korteweg at the beginning of the 20th century, that is suitable to describe phase transitions liquid-vapor with non-sharp interfaces. The first approach (Dunn, Serrin (1985)) is based on classical rational continuum thermodynamics. The second approach (Heida, Málek (2010)) stems from the principles of classical nonequilibrium continuum thermodynamics. We compare both approaches in favor of the second one. The considered constitutive equation for the Cauchy stress is nonlinear. Nonlinearity and higher order derivatives of the density makes the analysis of relevant problems for the Navier-Stokes- Korteweg (NSK) fluid more difficult in comparison to problems concerning Navier-Stokes equations. Special attention is devoted to the appropriate choice of the boundary conditions. We also investigate the influence of compressibility on the stability of bubbles by comparing numerical simulations for compressible NSK fluid and its incompressible variant. Instabilities observed for a compressible NSK fluid are due to the pressure that has a different meaning for incompressible fluid. Powered by TCPDF (www.tcpdf.org)
|
567 |
Modelling of two-phase flow with surface active particlesAland, Sebastian 27 July 2012 (has links)
Kolloidpartikel die von zwei nicht mischbaren Fluiden benetzt werden, tendieren dazu sich an der fluiden Grenzfläche aufzuhalten um die Oberflächenspannung zu minimieren. Bei genügender Anzahl solcher Kolloide werden diese zusammengedrückt und lassen die fluide Grenzfläche erstarren. Das gesamte System aus Fluiden und Kolloiden bildet dann eine spezielle Emulsion mit interessanten Eigenschaften. In dieser Arbeit wird ein kontinuum Model für solche Systeme entwickelt, basierend auf den Prinzipien der Massenerhaltung und der themodynamischen Konsistenz. Dabei wird die makroskopische Zwei-Phasen-Strömung durch eine Navier-Stokes Cahn-Hilliard Gleichung modelliert und die mikroskopischen Partikel an der fluiden Grenzfläche durch einen Phase-Field-Crystal Ansatz beschrieben. Zur Evaluation des verwendeten Strömungsmodells wird ein Test verschiedener Navier-Stokes Cahn-Hilliard Modelle anhand eines bekannten Benchmark Szenarios durchgeführt. Die Ergebnisse werden mit denen von anderen Methoden zur Simulation von Zwei-Phasen-Strömungen verglichen. Desweiteren wird eine neue Methode zur Simulation von Zwei-Phasen-Strömungen in komplexen Gebieten vorgestellt. Dabei wird die komplexe Geometrie implizit durch eine Phasenfeldvariable beschrieben, welche die charakteristische Funktion des Gebietes approximiert. Die Strömungsgleichungen werden dementsprechend so umformuliert, dass sie in einem größeren und einfacheren Gebiet gelten, wobei die Randbedingungen implizit durch zusätzliche Quellterme eingebracht werden. Zur Einarbeitung der Oberflächenkolloide in das Strömungsmodell wird schließlich die Variation der freien Energie des Gesamtsystems betrachtet. Dabei wird die Energie der Partikel durch die Phase-Field-Crystal Energie approximiert und die Energie der Oberfläche durch die Ginzburg-Landau Energie. Eine Variation der Gesamtenergie liefert dann die Phase-Field-Crystal Gleichung und die Navier-Stokes Cahn-Hilliard Gleichungen mit zusätzlichen elastischen Spannunngen. Zur Validierung des Ansatzes wird auch eine sharp interface Version der Gleichungen hergeleitet und mit der zuvor hergeleiteten diffuse interface Version abgeglichen. Die Diskretisierung der erhaltenen Gleichungen erfolgt durch Finiten Elemente in Kombination mit einem semi-impliziten Euler Verfahren. Durch numerische Simulationen wird die Anwendbarkeit des Modells gezeigt und bestätigt, dass die oberflächenaktiven Kolloide die fluide Grenzfläche hinreichend steif machen können um externen Kräften entgegenzuwirken und das gesamte System zu stabilisieren. / Colloid particles that are partially wetted by two immiscible fluids can become confined to fluidfluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids compose an emulsion with interesting new properties and offer an important route to new soft materials. Based on the principles of mass conservation and thermodynamic consistency, we develop a continuum model for such systems which combines a Cahn-Hilliard-Navier-Stokes model for the macroscopic two-phase fluid system with a surface Phase-Field-Crystal model for the microscopic colloidal particles along the interface. We begin with validating the used flow model by testing different diffuse interface models on a benchmark configuration for a two-dimensional rising bubble and compare the results with reference solutions obtained by other two-phase flow models. Furthermore, we present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. Finally, we derive the thermodynamically consistent diffuse interface model for two-phase flow with interfacial particles by taking into account the surface energy and the energy associated with surface colloids from the surface PFC model. The resulting governing equations are the phase field crystal equations and Navier-Stokes Cahn-Hilliard equations with an additional elastic stress. To validate our approach, we derive a sharp interface model and show agreement with the diffuse interface model. We demonstrate the feasibility of the model and present numerical simulations that confirm the ability of the colloids to make the interface sufficiently rigid to resist external forces and to stabilize interfaces for long times.
|
568 |
A Simple Parallel Solution Method for the Navier–Stokes Cahn–Hilliard EquationsAdam, Nadja, Franke, Florian, Aland, Sebastian 24 February 2022 (has links)
We present a discretization method of the Navier–Stokes Cahn–Hilliard equations which offers an impressing simplicity, making it easy to implement a scalable parallel code from scratch. The method is based on a special pressure projection scheme with incomplete pressure iterations. The resulting scheme admits solution by an explicit Euler method. Hence, all unknowns decouple, which enables a very simple implementation. This goes along with the opportunity of a straightforward parallelization, for example, by few lines of Open Multi-Processing (OpenMP) or Message Passing Interface (MPI) routines. Using a standard benchmark case of a rising bubble, we show that the method provides accurate results and good parallel scalability. / Wir stellen eine Diskretisierungsmethode der Navier-Stokes-Cahn-Hilliard-Gleichungen vor, welche es erlaubt, mit wenig Aufwand einen einfachen, skalierbar parallelen Code zu implementieren. Die Methode basiert auf einem Druckprojektionsschema mit unvollständigen Druckiterationen was eine Lösung durch eine explizite Euler-Methode erlaubt. Somit sind alle Unbekannten entkoppelt, was eine sehr einfache Implementierung mit einer unkomplizierten Parallelisierung ermöglicht, zum Beispiel durch Open Multi-Processing (OpenMP) oder Message Passing Interface (MPI) Routinen. Anhand eines Standard-Benchmark-Falls einer aufsteigenden Blase zeigen wir, dass die Methode genaue Ergebnisse und eine gute parallele Skalierbarkeit liefert.
|
569 |
Comportement d’un fluide autour d’un petit obstacle, problèmes de convections et dynamique chaotique des films liquides / Motion of a small rigid body in an incompressible viscous fluid, convection problems and dynamics of falling filmsHe, Jiao 20 September 2019 (has links)
Cette thèse est consacrée à trois différentes équations d’évolution non-linéaires dans le cadre de mécanique des fluides : le système fluide-solide, le système de Boussinesq et un modèle de films liquides. Pour le système fluide-solide, nous étudions l’évolution d’un petit solide en mouvement dans un fluide newtonien incompressible dans le cas où l’obstacle se contracte vers un point. En supposant que la densité du solide tend vers l’infini, nous montrons la convergence des solutions du système fluide-solide vers une solution des équations de Navier-Stokes dans $\mathbb{R}^d$ , avec $d^2$ et 3. Pour le problème de convection, nous travaillons sur l’unicité des solutions ‘mild’ du système de Boussinesq et généralise de plusieurs manières différentes des résultats classiques d’unicité pour les équations de Navier-Stokes. Dans la dernière partie, nous exposons nos contributions à l’étude des interface 2D de films liquides en dimension trois. Nous montrons qu’une variante 2D, non-local, de l’équation de Kuramoto-Sivashinsky admet un attracteur globale compact et obtenons enfin une majoration du nombre d’oscillations spatiales des solutions / This thesis is devoted to three different non-linear evolution equations in fluid mechanics : the fluid-solid system, the Boussinesq system and a falling films model. For the fluid-solid system, we study the evolution of a small moving solid in incompressible viscous fluid in the case the obstacle converges to a point. Assuming that the density of the solid tends to infinity, we prove that the rigid body has no influence on the limit equation by showing the convergence of solutions of the fluid-solid system towards to a solution of the Navier-Stokes equations in the full $\mathbb{R}^d$ , avec $d^2$ et 3. For the convection problem, we provide several uniqueness classes on the velocity and the temperature and generalize some classical uniqueness result for ‘mild’ solutions of the Navier-Stokes equations. We then work on a falling films model in three dimensions (2D interface). We show that a non-local variant of the Kuramoto-Sivashinsky equation admits a compact global attractor and we study the number of spatial oscillations of the solutions
|
570 |
Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène / Development of a multiscale finite element method for incompressible flows in heterogeneous mediaFeng, Qingqing 20 September 2019 (has links)
Le cœur d'un réacteur nucléaire est un milieu très hétérogène encombré de nombreux obstacles solides et les phénomènes thermohydrauliques à l'échelle macroscopique sont directement impactés par les phénomènes locaux. Toutefois les ressources informatiques actuelles ne suffisent pas à effectuer des simulations numériques directes d'un cœur complet avec la précision souhaitée. Cette thèse est consacré au développement de méthodes d'éléments finis multi-échelles (MsFEMs) pour simuler les écoulements incompressibles dans un milieu hétérogène avec un coût de calcul raisonnable. Les équations de Navier-Stokes sont approchées sur un maillage grossier par une méthode de Galerkin stabilisé, dans laquelle les fonctions de base sont solutions de problèmes locaux sur des maillages fins prenant précisément en compte la géométrie locale. Ces problèmes locaux sont définis par les équations de Stokes ou d'Oseen avec des conditions aux limites ou des termes sources appropriés. On propose plusieurs méthodes pour améliorer la précision des MsFEMs, en enrichissant l'espace des fonctions de base locales. Notamment, on propose des MsFEMs d'ordre élevée dans lesquelles ces conditions aux limites et termes sources sont choisis dans des espaces de polynômes dont on peut faire varier le degré. Les simulations numériques montrent que les MsFEMs d'ordre élevés améliorent significativement la précision de la solution. Une chaîne de simulation multi-échelle est construite pour simuler des écoulements dans des milieux hétérogènes de dimension deux et trois. / The nuclear reactor core is a highly heterogeneous medium crowded with numerous solid obstacles and macroscopic thermohydraulic phenomena are directly affected by localized phenomena. However, modern computing resources are not powerful enough to carry out direct numerical simulations of the full core with the desired accuracy. This thesis is devoted to the development of Multiscale Finite Element Methods (MsFEMs) to simulate incompressible flows in heterogeneous media with reasonable computational costs. Navier-Stokes equations are approximated on the coarse mesh by a stabilized Galerkin method, where basis functions are solutions of local problems on fine meshes by taking precisely local geometries into account. Local problems are defined by Stokes or Oseen equations with appropriate boundary conditions and source terms. We propose several methods to improve the accuracy of MsFEMs, by enriching the approximation space of basis functions. In particular, we propose high-order MsFEMs where boundary conditions and source terms are chosen in spaces of polynomials whose degrees can vary. Numerical simulations show that high-order MsFEMs improve significantly the accuracy of the solution. A multiscale simulation chain is constructed to simulate successfully flows in two- and three-dimensional heterogeneous media.
|
Page generated in 0.0543 seconds