Spelling suggestions: "subject:"[een] NAVIER-STOKES"" "subject:"[enn] NAVIER-STOKES""
541 |
Solução semianalítica para o perfil vertical do vento na camada limite planetária / A semi-analytical solution for the vertical wind profile in the atmospheric boundary layerBuligon, Lidiane 04 August 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present study, using the Generalized Integral Transform Technique (GITT),
we derive a semi-analytical solution of the Navier-Stokes equation to obtain the mean wind
profile in the atmospheric boundary layer. The technique combines series expansion and an
integration employing an inverse-transform pair. The PBL is discretized into N sub-intervals
in such manner that inside each sub-region the eddy diffusivity is the average value, this allows
the use of realistic eddy diffusivity profiles, which depend on the physical characteristics of the
energy-containing eddies. The nonlinear terms are written in terms of kinematical properties
of the flow, such as divergence and vorticity, allowing the solutions to be interpreted in
terms of large-scale synoptic conditions. The model results are compared to observed wind
profiles obtained from the classical Wangara experiment. In addition, the results obtained by
the proposed model are compared with the unidimensional model solved by the method of
discretization, the model of two layers, with the logarithmic law and the Ekman model. The
method used was efficient for the problem studied, since it has presented results consistent
with those available in literature. / No presente estudo, usando a Técnica da Transformada Integral Generalizada (GITT),
deriva-se uma solução semianalítica para as Equações de Navier-Stokes aplicada à Camada
Limite Planetária (CLP). A técnica combina uma expansão em série com uma integração
por meio de um par de transformada-inversa. A CLP é discretizada em N subintervalos de
maneira que, dentro de cada sub-região, os coeficientes de difusão assumam valores médios, o
que nos permite utilizar perfis mais realísticos para o coeficiente de difusão e que dependem das
características dos turbilhões mais energéticos. Os termos não-lineares são escritos em função
das propriedades cinemáticas do escoamento, como divergência e vorticidade, permitindo que
a solução seja interpretada em termos das condições sinóticas de grande escala. O desempenho
do modelo estudado foi comparado com dados experimentais de vento medidos durante os
experimentos de Wangara. Adicionalmente, os resultados obtidos através do modelo proposto
são comparados com o modelo unidimensional resolvido pelo método de discretização, com
o modelo de duas camadas, com a Lei Logarítmica e com o modelo de Ekman. O método
empregado mostrou-se eficiente para o problema estudado, uma vez que apresentou resultados
coerentes com os disponíveis na literatura.
|
542 |
Stabilisation et simulation de modèles d'interaction fluide-structure / Stabilisation and simulation of fluid-structure interaction modelsNdiaye, Moctar 09 December 2016 (has links)
L'objet de cette thèse est l'étude de la stabilisation de modèles d'interaction fluide-structure par des contrôles de dimension finie agissant sur la frontière du domaine fluide. L'écoulement du fluide est décrit par les équations de Navier-Stokes incompressibles tandis que l'évolution de la structure, située à la frontière du domaine fluide, satisfait une équation d'Euler-Bernoulli avec amortissement. Dans le chapitre 1, nous étudions le cas où le contrôle est une condition aux limites de Dirichlet sur les équations du fluide (contrôle par soufflage/aspiration). Nous obtenons des résultats de stabilisation locale du système non-linéaire autour d'une solution stationnaire instable de ce système. Dans les chapitres 2 et 3, nous nous intéressons au cas où le contrôle est une force appliquée sur la structure (contrôle par déformation de paroi). Dans le chapitre 2, nous considérons un modèle simplifié, où l'équation d'Euler-Bernoulli pour la structure est remplacée par un système de dimension finie. Nous construisons des lois de contrôle pour les systèmes de dimension infinie, ou pour leurs approximations semi-discrètes, capables de stabiliser les systèmes linéarisés avec un taux de décroissance exponentielle prescrit, et localement les systèmes non-linéaires. Nous présenterons des résultats numériques permettant de vérifier l'efficacité de ces lois de contrôles. / The aim of this thesis is to study the stabilization of fluid-structure interaction models by finite dimensional controls acting at the boundary of the fluid domain. The fluid flow is described by the incompressible Navier-Stokes equations while the displacement of the structure, localized at the boundary of the fluid domain, satisfies a damped Euler-Bernoulli beam equation. First, we study the case where the control is a Dirichlet boundary condition in the fluid equations (control by suction/blowing). We obtain local feedback stabilization results around an unstable stationary solution of this system. Chapters 2 and 3 are devoted to the case where control is a force applied to the structure (control by boundary deformation). We consider, in chapter 2, a simplified model where the Euler-Bernoulli equation for the structure is replaced by a system of finite dimension. We construct feedback control laws for the infinite dimensional systems, or for their semi-discrete approximations, able to stabilize the linearized systems with a prescribed exponential decay rate, and locally the nonlinear systems. We present some numerical results showing the efficiency of the feedback laws.
|
543 |
Desenvolvimento e implementação de malhas adaptativas bloco-estruturadas para computação paralela em mecânica dos fluidos / Desenvolvimento e implementação de malhas adaptativas bloco-estruturadas para computação paralela em mecânica dos fluidos / Development and implementation of block-structured adaptive mesh refinement for parallel computations in fluid mechanics / Development and implementation of block-structured adaptive mesh refinement for parallel computations in fluid mechanicsLima, Rafael Sene de 28 September 2012 (has links)
The numerical simulation of fluid flow involving complex geometries is greatly limited
by the required spatial grid resolution. These flows often contain small regions with complex
motions, while the remaining flow is relatively smooth. Adaptive mesh refinement
(AMR) enables the spatial grid to be refined in local regions that require finer grids to
resolve the flow. This work describes an approach to parallelization of a structured adaptive
mesh refinement (SAMR) algorithm. This type of methodology is based on locally
refined grids superimposed on coarser grids to achieve the desired resolution in numerical
simulations. Parallel implementations of SAMR methods offer the potential for accurate
simulations of high complexity fluid flows. However, they present interesting challenges in
dynamic resource allocation, data-distribution and load-balancing. The overall efficiency
of parallel SAMR applications is limited by the ability to partition the underlying grid
hierarchies at run-time to expose all inherent parallelism, minimize communication and
synchronization overheads, and balance load. The methodology is based on a message
passing interface model (MPI) using the recursive coordinate bisection (RCB) for domain
partition. For this work, a semi-implicit projection method has been implemented to solve
the incompressible Navier Stokes equations. All numerical implementations are an extension
of a sequential Fortran 90 code, called "AMR3D", developed in the work of Nós
(2007) .The efficiency and robustness of the applied methodology are verified via convergence
analysis using the method of manufactured solutions. Validations were performed
by simulating an incompressible jet flow and a lid driven cavity flow. / A simulação numérica de escoamentos envolvendo geometrias complexas é fortemente
limitada pela resolução da malha espacial. Na grande maioria dos escoamentos, há pequenas
regiões do domínio onde o fluido se movimenta de forma complexa gerando gradientes
elevados, enquanto que no restante do domínio o escoamento é relativamente calmo". O
Refinamento Adaptativo de Malhas (Adaptive Mesh Refinement - AMR), possibilita que
o refinamento da malha espacial seja mais apurado em regiões especificas, enquanto que
nas demais regiões o refinamento pode ser mais grosseiro. O presente trabalho consiste
no desenvolvimento de uma metodologia de paralelização para a solução das equações de
Navier-Stokes em malhas adaptativas bloco-estruturadas (Structured Adaptive Mesh Refinement - SAMR) utilizando a interface MPI (Message Passing Interface) e o método de
bisseção por coordenadas RCB (Recursive Coordinate Bisection) para o balanço de carga.
Implementações de métodos SAMR em processamento paralelo oferecem a possibilidade
de simulações precisas de escoamentos de elevada complexidade. No entanto, apresentam
desafios interessantes quanto à dinamicidade na alocação e distribuição dos dados e no
balanceamento de carga. Cabe ressaltar que a é ciência total das aplicações envolvendo
métodos SAMR em processamento paralelo é fortemente dependente da qualidade do particionamento
dinâmico de domínio, efetuado em tempo de execução, para que se garanta
os menores custos de comunicação e sincronização possíveis, além de uma boa distribuição
da carga computacional. Neste trabalho, utilizou-se o esquema semi-implícito proposto
por Ceniceros et al. (2010) para avanço temporal. Todas as implementações foram efetuadas
como uma extensão do código AMR3D", proposto por Nós (2007). A é ciência e a
robustez do método proposto são verificadas por meio do método das soluções manufaturadas.
As validações foram feitas por meio da simulação do escoamento em uma cavidade
com tampa deslizante e de um jato incompressível. / Doutor em Engenharia Mecânica
|
544 |
Projection based Variational Multiscale Methods for Incompressible Navier-Stokes Equations to Model Turbulent Flows in Time-dependent DomainsPal, Birupaksha January 2017 (has links) (PDF)
Numerical solution of differential equations having multitude of scales in the solution field is one of the most challenging research areas, but highly demanded in scientific and industrial applications. One of the natural approaches for handling such problems is to separate the scales and approximate the solution of the segregated scales with appropriate numerical method.
Variational multiscale method (VMS) is a predominant method in the paradigm of scale separation schemes.
In our work we have used the VMS technique to develop a numerical scheme for computations of turbulent flows in time-dependent domains. VMS allows separation of the entire range of scales in the flow field into two or three groups, thereby enabling a different numerical treatment for the different groups. In the context of computational fluid dynamics(CFD), VMS is a significant new improvement over the classical large eddy simulation (LES). VMS does away with the commutation errors arising due to filtering in LES. Further, in a three-scale VMS approach the model for the subgrid scale can be contained to only a part of the resolved scales instead of effecting the entire range of resolved scales.
The projection based VMS scheme that we have developed gives a robust and efficient method for solving problems of turbulent fluid flows in deforming domains, governed by incompressible Navier {Stokes equations. In addition to the existing challenges due to turbulence, the computational complexity of
the problem increases further when the considered domain is time-dependent. In this work, we have used an arbitrary Lagrangian-Eulerian (ALE) based VMS scheme to account for the domain deformation. In the proposed scheme, the large scales are represented by an additional tensor valued space. The resolved large and small scales are computed in a single unified equation, and the effect of unresolved scales is confined only to the resolved small scales, by using a projection operator. The popular Smagorinsky eddy viscosity model is used to approximate the effects of unresolved scales. The used ALE approach consists of an elastic mesh update technique. Moreover, a computationally efficient scheme is obtained by the choice of orthogonal finite element basis function for the resolved large scales, which allows to reformulate the ALE-VMS system matrix into the standard form of the NSE system matrix. Thus, any existing Navier{Stokes solver can be utilized for this scheme, with modifications. Further, the stability and error estimates of the scheme using a linear model of the NSE are also derived. Finally, the proposed scheme has been validated by a number of numerical examples over a wide range of problems.
|
545 |
Desenvolvimento de esquema upwind para equações de conservação e implementação de modelagens URANS com aplicação em escoamentos incompressíveis / Development of a new upwind scheme for conservationlaws and implementation on URANS modelling with application on incompressible flowsMiguel Antonio Caro Candezano 10 December 2012 (has links)
Nesta tese é apresentado um esquema novo de alta resolução upwind (denominado TDPUS-C3) para reconstrução de fluxos numéricos para leis de conservação não lineares e problemas relacionados em DFC. O esquema é baseado nos critérios de estabilidade CBC e TVD e desenvolvido utilizando condições de diferenciabilidade \'C POT. 3\'. Além disso, é realiozada a implementação da associação do esquema TDPLUS-C3 com a modelagem de turbulência RNG \'\\kappa - \\epsilon\'. O propósito é obter soluções numéricas de sistemas hiperbólicos de leis de conservação para dinâmica dos gases e equações de Navier-Stokes para escoamento incompreensível de fluidos newtonianos e não newtonianos (viscoelásticos). Fazendo o uso do esquema TDPUS-C3, a precisão global dos métodos numéricos é verificada acessando o erro em problemas teste (benchmark) 1D e 2D. Um estudo comparativo entre os resultados do esquema TDPUS-C3 e os esquemas upwind convencionais para leis de conservação hiperbólicas complexas é também realizado. A Associação das modelagens numéricas (upwinding mais RNG \'\\kappa - \\epsilon\') é , então, examinada na simulação de escoamentos turbulentos de fluidos newtonianos envolvendo superfícies livres móveis, usando a metodologia URANS. No geral, em termos do comportamento global, concordância satisfatória é observada / In this thesis, a new high-resolution upwind scheme (named TDPUS-C3) for reconstruction of numerical fluxes for nonlinear conservation laws and related CFD problems in presented. The scheme is based on CBC and TVD stability criteria and developed by employing differentiability condictions (\'C POT. 3\'). In additon, the implementation of an association of the TDPUS-C3 scheme with the RNG \'\\kappa - \\epsilon\' turbulence modelling is also performed. The purpose is to obtain numerical solutions of systems of hyperbolic conservation laws for gas dynamics and Navier-Stokes equations for incompressible flow of Newtonian and non-Newtonian (viscoelstic) fluids. By using the TDPUS-C3 scheme, the global accuracy of the numerical methods is verified by assessing the error on 1D and 2D benchmark test cases. A comparative study between the TDPUS-C3 scheme and convectional upwind schemes to solve standard and complex hyperbolic conservation laws is also accomplished. The association of the numerical modelling (upwinding plus RNG \'\\kappa - epsilon\') is then examined in the simulation of turbulent Newtonian fluid flows involving moving free surfaces, by using URANS methodology. Overall, satisfactory agreement is found in terms of the overall behaviour
|
546 |
Implementação de um algoritmo de mecânica dos fluidos computacional projetado para plataformas de processamento paralelo com memória distribuídaAngeli, João Paulo de 30 June 2005 (has links)
Made available in DSpace on 2016-12-23T14:36:45Z (GMT). No. of bitstreams: 1
dissertacao.pdf: 1896132 bytes, checksum: dc313d94261c073031be0aad2e3bffbf (MD5)
Previous issue date: 2005-06-30 / Discute a implementação do algoritmo numérico para simulação de escoamento de fluidos incompressíveis, baseado no método de diferenças finitas, projetado para plataformas de processamento paralelo com memória distribuída, particularmente para clusters de estações de trabalho. O algoritmo de solução para as equações de Navier-Stokes utiliza um esquema explicito para pressão e um esquema implícito para as velocidades. A implementação paralela é baseada na decomposição do domínio, onde o domínio computacional do problema é decomposto em vários blocos, sendo um ou mais destinados a nós de processamento distintos. Todos os nós então processam em paralelo as tarefas de computação sobre os blocos a eles designados. O processamento paralelo inclui inicialização, cálculo de coeficientes, solução linear nos subdomínios, e comunicação entre os nós. A troca de informação entre os processos referentes a cada subdomínio é realizada utilizando a biblioteca message passing interface (MPI), o que assegura portabilidade entre diferentes plataformas computacionais, abrangendo desde máquinas maciçamente paralelas (MPP) até clusters de estações de trabalho. Para melhorar os níveis de desempenho obtidos pelo algoritmo, foram investigadas técnicas para a redução do volume de comunicação entre processadores e utilização mais eficiente da memória cache dos microprocessadores. Para avaliar o desempenho do algoritmo desenvolvido e analisar as diferentes estratégias de paralelização foram executadas simulações com cluster de 2 a 56 processadores, nas quais foram avaliados o tempo de execução, speedup e eficiência paralela. Os resultados experimentais mostram que as otimizações relacionadas aos fatores de comunicação melhoram o speedup em até 165%, e a técnica de utilização mais eficiente da memória cache pode melhorar o speedup em mais 40% acima da otimização da comunicação. / This work discusses the implementation of a numerical algorithm for simulating incompressible fluid flows, based on the finite difference method, and designed for parallel computing platforms with distributed-memory, particularly for clusters of workstations. The solution algorithm for the Navier-Stokes equations utilizes an explicit scheme for pressure and an implicit scheme for velocities. The parallel implementation is based on domain decomposition, where the original calculation domain is decomposed into several blocks, each of which given to a separate processing node. All nodes then execute computations in parallel, each node on its associated sub-domain. The parallel computations include initialization, coefficient generation, linear solution on the sub-domain, and inter-node communication. The exchange of information across the sub-domains, or processors, is achieved using the message passing interface standard, MPI. The use of MPI ensures portability across different computing platforms ranging from massively parallel machines to clusters of workstations. Three different optimization strategies were evaluated in order to improve the computational performance of the algorithm, which include techniques exploring a reduction in the communication volume between processors and a more efficient utilization of the microprocessor s cache memory. In order to evaluate the performance levels obtained, and to analyze the effectiveness of the optimization strategies adopted, simulations using a 64 nodes cluster were executed. The simulations were performed using 2 to 56 processors, where execution time and speed-up were measured. The results indicate that the optimizations related to communication factors can improve the speed-up obtained up to 165%, while the cache memory optimization technique used can improve the speed-up obtained in further 40%.
|
547 |
Propriedades de soluções para as equações de Navier-Stokes, MHD e magneto-micropolaresSouza, Taynara Batista de 18 March 2016 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / In this work, we study blow-up results in finite time for the solution (u, b)(·, t) (defined in
[0, T∗)), as well as for their spacial derivatives, of the Magnetohydrodynamic (MHD) system. These
results are obtained by extending some statements found in the literature for the classical Navier-
Stokes equations. In order to cite an example, we prove that k(u, b)(·, t)kq explodes at a rate
(T∗ − t)−q−3
2q , for all t ∈ [0, T∗) and 3 < q < ∞. In addition, we prove some sufficient conditions
for the existence of global solution (in time) for the Navier-Stokes and MHD equations. Finally, we
generalize some results established from the MHD equations, involving Sobolev Spaces Homogeneous,
to the Magneto-micropolar system. More precisely, we show that if the solution (u,w, b)(·, t)
presents blow-up in T∗ < ∞, then k(u,w, b)(·, t)k ˙H sk(u,w, b)(·, t)k
2s
1+2 −1
2 ≥ C(T∗ − t)
s
1+2 , for all
t ∈ [0, T∗), where δ ∈ (0, 1) and s ≥ 1
2 + δ. / Neste trabalho, discutimos inicialmente resultados de explos˜ao no tempo T∗ < ∞ para a solução (u, b)(·, t) (definida em [0, T∗)), como tamb´em para as suas derivadas, do sistema Magnetohidrodinâmico (MHD). Estes foram obtidos por uma extensão de resultados similares encontrados para as clássicas equações de Navier-Stokes. Em ordem a citarmos um exemplo, provamos que k(u, b)(·, t)kq explode a uma taxa (T∗ − t)−q−3 2q , para todo t ∈ [0, T∗) e 3 < q < ∞. Em seguida, avaliamos algumas condições suficientes para a existência de solução global no tempo para as equações de Navier-Stokes e MHD. Por fim, generalizamos observações de explosão, também em tempo finito, da solução das equações MHD, envolvendo espaços de Sobolev Homogêneos, para o sistema Magneto-micropolar. Mais precisamente, provamos que se a solução (u,w, b)(·, t) apresenta explosão em T∗ < ∞, então k(u,w, b)(·, t)k ˙Hsk(u,w, b)(·, t)k
2s1+2 −1 2 ´e limitado inferiormente por C(T∗ − t) s 1+2 , para todo t ∈ [0, T∗), se δ ∈ (0, 1) e s ≥ 1 2 + δ.
|
548 |
Méthodes de correction de pression pour les équations de Navier-Stokes compressibles / Pressure correction schemes for compressible flowsKheriji, Walid 28 November 2011 (has links)
Cette thèse porte sur le développement de schémas semi-implicites à pas fractionnaires pour les équations de Navier-Stokes compressibles ; ces schémas entrent dans la classe des méthodes de correction de pression.La discrétisation spatiale choisie est de type "à mailles décalées :éléments finis mixtes non conformes (éléments finis de Crouzeix-Raviart ou Rannacher-Turek) ou schéma MAC classique.Une discrétisation en volumes finis décentrée amont du bilan de masse garantit la positivité de la masse volumique.La positivité de l'énergie interne est obtenue en discrétisant le bilan d'énergie interne continu, par une méthode de volumes finis décentrée amont, enfin, et en couplant ce bilan d'énergie interne discret à l'étape de correction de pression.On effectue une discrétisation particulière en volumes finis sur un maillage dual du terme de convection de vitesse dans le bilan de quantité de mouvement et une étape de renormalisation de la pression; ceci permet de garantir le contrôle au cours du temps de l'intégrale de l'énergie totale sur le domaine.L'ensemble de ces estimations a priori implique en outre, par un argument de degré topologique, l'existence d'une solution discrète. L'application de ce schéma aux équations d'Euler pose une difficulté supplémentaire.En effet, l'obtention de vitesses de choc correctes nécessite que le schéma soit consistant avec l'équation de bilan d'énergie totale, propriété que nous obtenons comme suit. Tout d'abord, nous établissons un bilan discret (local) d'énergie cinétique.Ce dernier comporte des termes sources, que nous compensons ensuite dans le bilan d'énergie interne. Les équations d'énergie cinétique et interne sont associées au maillage dual et primal respectivement, et ne peuvent donc être additionnées pour obtenir un bilan d'énergie totale ; cette dernière équation est toutefois retrouvée, sous sa forme continue, à convergence : si nous supposons qu'une suite de solutions discrètes converge lorsque le pas de temps et d'espace tendent vers 0,, nous montrons en effet, en 1D au moins, que la limite en satisfait une forme faible.Ces résultats théoriques sont confortés par des tests numériques.Des résultats similaires sont obtenus pour les équations de Navier-Stokes barotropes. / This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods.The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MAC scheme. An upwind finite volume discretization of the mass balanced guarantees the positivity of the density. The positivity of the internal energy is obtained by discretising the internal energy balance by an upwind finite volume scheme and by coupling the discrete internal energy balance with the pressure correction step.A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, along with a renormalization of the pressure; this allows to guarantee the control in time of integral of the total energy over the domain.All these a priori estimates implies lead to the existence of a discrete solution by a topological degree argument.The application of this scheme the equations of Euler yields an additional difficulty.Indeed, obtaining correct shock speeds requires that the scheme be consistent with the total energy balance,, property which we obtain as follows.First of all, a local discrete kinetic energy balance is established; it contains source terms which are compensated by adding some source terms in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a balance total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests.Similar results are obtained for the barotropic Navier--Stokes equations
|
549 |
Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes / Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometriesMontagnier, Julien 01 July 2010 (has links)
La prévention des risques industriels nécessite de simuler la dispersion turbulente de polluants. Cependant, les outils majoritairement utilisés à ce jour ne permettent pas de traiter les champs proches dans le cas de géométries complexes, et il est nécessaire d'utiliser les outils de CFD (“ Computational Fluid Dynamics ”) plus adaptés, mais plus coûteux. Afin de simuler les écoulements atmosphériques avec dispersion de polluants, les modèles CFD doivent modéliser correctement d'une part, les effets de flottabilité, et d'autre part les effets de la turbulence. Plusieurs approches existent, notamment dans la prise en compte des effets de flottabilité et la modélisation de la turbulence, et nécessitent des méthodes numériques adaptées aux spécificités mathématiques de chacune d'entre elles, ainsi que des schémas numériques précis pour ne pas polluer la modélisation. Une formulation d'ordre élevé en volumes finis, sur maillages non structurés, parallélisée, est proposée pour simuler les écoulements atmosphériques avec dispersion de polluants. L'utilisation de schémas d'ordre élevé doit permettre d'une part de réduire le nombre de cellules et diminuer les temps de simulation pour atteindre une précision donnée, et d'autre part de mieux contrôler la viscosité numérique des schémas en vue de simulations LES (Large Eddy Simulation), pour lesquelles la viscosité numérique des schémas peut masquer les effets de la modélisation. Deux schémas d'ordre élevé ont été étudiés et implémentés dans un solveur 3D Navier Stokes incompressible sur des maillages volumes finis non structurés. Nous avons développé un premier schéma d'ordre élevé, correspondant à un schéma Padé volumes finis, et nous avons étendu le schéma de reconstruction polynomiale de Carpentier (2000) aux écoulements incompressibles. Les propriétés numériques des différents schémas implémentés dans le même code de calcul sont étudiées sur différents cas tests bi-dimensionnels (calcul de flux convectifs et diffusifs sur une solution a-priori, convection d'une tâche gaussienne, décroissance d'un vortex de Taylor et cavité entraînée) et tri-dimensionnel (écoulement autour d'un obstacle cubique). Une attention particulière a été portée à l'étude de la précision et du traitement des conditions limites. L'implémentation proposée du schéma polynomial permet d'approcher, pour un maillage identique, les temps de simulation obtenus avec un schéma décentré classique d'ordre 2, mais avec une précision supérieure. Le schéma compact donne la meilleure précision. En utilisant une méthode de Jacobi sans calcul implicite de la matrice pour calculer le gradient, le temps de simulation devient intéressant uniquement lorsque la précision requise est importante. Une alternative est la résolution du système linéaire par une méthode multigrille algébrique. Cette méthode diminue considérablement le temps de calcul du gradient et le schéma Padé devient performant même pour des maillages grossiers. Enfin, pour réduire les temps de simulation, la parallélisation des schémas d'ordre élevé est réalisée par une décomposition en sous domaines. L'assemblage des flux s'effectue naturellement et différents solveurs proposés par les librairies PETSC et HYPRE (solveur multigrille algébrique et méthode de Krylov préconditionnée) permettent de résoudre les systèmes linéaires issus de notre problème. / The prevention of industrial risks requires simulating turbulent dispersion of pollutants. However, the tools mostly used so far do not allow near fields treated in the case of complex geometries, and it is necessary to utilize the tools of CFD (Computational Fluid Dynamics ") more suitable but more expensive. To simulate atmospheric flows with dispersion of pollutants, the CFD models must correctly model the one hand, the effects of buoyancy, and secondly the effects of turbulence. Several approaches exist, including taking into account the effects of buoyancy and turbulence modeling, and require numerical methods adapted to the specific mathematics of each, and accurate numerical schemes to avoid pollution modeling. A formulation of high order finite volume on unstructured meshes, parallelized, is proposed to simulate the atmospheric flows with dispersion of pollutants. The use of high order schemes allow one hand to reduce the number of cells and decrease the simulation time to achieve a given accuracy, and secondly to better control the viscosity numerical schemes for simulation LES (Large Eddy Simulation), for which the numerical viscosity patterns may mask the effects of modeling. Two high-order schemes have been studied and implemented in a 3D Navier Stokes solver on unstructured mesh finite volume. We developed the first high-order scheme, corresponding to a Padé finite volume scheme, and we have extended the scheme of reconstruction polynomial Carpentier (2000) for incompressible flows. The numerical properties of the various schemes implemented in the same computer code are studied different two-dimensional test cases (calculation of diffusive and convective flow on a solution a priori, a task Gaussian convection, decay of a vortex of Taylor and driven cavity) and tri-dimensional (flow past an obstacle cubic). Particular attention has been paid to the study of the accuracy and treatment of boundary conditions. The implementation of the polynomial allows to obtain quasi identical simulation time compared to a classical upwind scheme of order 2, but with higher accuracy. The compact layout gives the best accuracy. Using a Jacobi method without calculation implied matrix to calculate the gradient, the simulation time becomes interesting only when the required accuracy is important. An alternative is the resolution of linear system by an algebraic multigrid method. This method significantly reduces the computation time of the gradient and the Padé scheme is effective even for coarse meshes. Finally, to reduce simulation time, the parallelization schemes of high order is achieved by a decomposition into subdomains. The assembly flow occurs naturally and different solvers provided by PETSc libraries and HYORE (algebraic multigrid solver and preconditioned Krylov method) used to solve linear systems from our problem. The work was to identify and determine the parameters that lead to lowest time resolution simulation. Various tests of speed-up and scale-up were used to determine the most effective and optimal parameters for solving linear systems in parallel from our problem. The results of this work have been the subject of a communication in an international conference "Parallel CFD 2008" and an article submitted to "International Journal for Numerical Methods in Fluids" (Analysis of high-order finite volume schemes for the incompressible Navier Stokes equations)
|
550 |
RANS and LES of multi-hole sprays for the mixture formation in piston enginesKhan, Muhammad 20 January 2014 (has links)
Cette thèse porte sur la simulation des jets de gouttes générés par des pulvérisateurs essence haute pression, pulvérisateurs qui sont un point clef des systèmes de combustion automobile de la présente et future génération devant diminuer les émissions de CO2 et de polluants. Dans un premier temps les jets de gouttes (« sprays ») sont simulés par simulation moyennée. Les résultats de simulation d’un jet donnant des résultats en moyenne satisfaisant, l'interaction de jets en injecteurs multi-trous est alors simulée. Les résultats sont cohérents par rapport aux mesures d'entraînement d’air. La simulation permettant d'avoir accès au champ complet 3D, le mécanisme d'interaction jet à jet et de développement instationnaire du spray est décrit en détail. La formation d’un mouvement descendant au centre du spray et celle d'un point d'arrêt central sont trouvés. Finalement, Ces résultats sont étendus au cas surchauffé, cas où la pression dans la chambre est inférieure à la pression de vapeur saturante. Un modèle simple semi-empirique est proposé pour tenir compte de la modification des conditions proches de la buse d’injection. Le modèle prédit correctement les tendances des variations de paramètres et capture la forme générale du spray qui se referme sur lui-même. La seconde grande partie est consacrée au développement d’un modèle de spray par l’approche des grandes échelles (SGE), limité ici aux cas non évaporant. Il comprend la modélisation de sous-maille de la dispersion turbulente, des collisions-coalescence et des termes d’échange de quantité de mouvement de sous-maille. L'effet du choix du modèle de sous-maille pour la viscosité turbulente de sous-maille est montré, le choix retenu étant le modèle de Smagorinski dynamique. Afin d'améliorer la représentativité cruciale des conditions d’injections, un couplage faible est réalisé à partir de résultats de simulations existantes de l'écoulement interne aux buses. Les fonctions densité de probabilité simple et jointes extraits des résultats de simulations sont validés par rapport aux mesures PDA en situation pseudo-stationnaire et la pénétration liquide et la forme du spray est comparée aux visualisations par ombroscopie. Enfin, différentes zones caractéristiques sont identifiées et des longueurs sont notées pour les cas d'injection à 100 et 200bar. / Over the years numerical modelling and simulation techniques have constantly been improved with the increase in their use. While keeping the computational resources in mind, numerical simulations are usually adapted to the required degree of accuracy and quality of results. The conventional Reynolds Average Navier Stokes (RANS) is a robust, cheap but less accurate approach. Large Eddy Simulation (LES) provides very detailed and accurate results to the some of the most complex turbulence cases but at higher computational cost. On the other hand, Direct Numerical Simulation (DNS) is although the most accurate of the three approaches but at the same time it is computationally very expensive which makes it very difficult to be applied to the most of the complex industrial problems. The current work is aimed to develop a deeper understanding of multi-hole Gasoline Direct Injection (GDI) sprays which pose many complexities such as; air entrainment in the multi-hole spray cone, Jet-to-Jet interactions, and changes in the spray dynamics due to the internal flow of the injector. RANS approach is used to study multi-hole injector under cold, hot and superheated conditions. Whereas, LES is utilized to investigate the changes in the dynamics of the single spray plume due to the internal flow of the GDI injector. To reduce computational cost of the simulations, dynamic mesh refinement has been incorporated for both LES and RANS simulation. A thorough investigation of air entrainment in three and six hole GDI injectors has been carried out using RANS approach under non superheated and superheated conditions. The inter plume interactions caused by the air entrainment effects have been analysed and compared to the experimental results. Moreover, the tendencies of semi collapse and full collapse of multi-hole sprays under non superheated and superheated conditions have been investigated in detail as well. A methodology of LES has been established using different injection strategies along with various subgrid scale models for a single spray plume. In GDI multi-hole sprays, the internal flow of the injector plays a very crucial role in the outcome the spray plume. A separate already available internal flow LES simulation of the injector has been coupled with the external spray simulation in order to include the effect of nozzle geometry and the cavitation phenomenon which completely change the dynamics of the spray.
|
Page generated in 0.0652 seconds