Spelling suggestions: "subject:"[een] NAVIER-STOKES"" "subject:"[enn] NAVIER-STOKES""
521 |
Caractérisation et instabilités des tourbillons hélicoïdaux dans les sillages des rotors / Characterization and instability of helical vortices in rotor wakesAli, Mohamed 10 April 2014 (has links)
Les tourbillons hélicoïdaux générés derrière les rotors sont étudiés. Pour les générer, une méthode basée sur le couplage entre la technique de la ligne active et un solveur des équations de Navier-Stokes (ENS), incompressibles et tridimensionnelles, a été développée. Elle consiste à modéliser la pâle par son équivalent de forces volumiques. Les équations, écrites en coordonnées cylindriques, sont résolues par un schéma de différences finies, écrit en parallèle. La méthode est d'ordre deux en temps et en espace. Le solveur des ENS a été validé par la reproduction des taux de croissance d'un écoulement de jet, instable, trouvés par la théorie d'instabilité linéaire. La comparaison avec des données expérimentales a montré que la méthode prédit bien l'aérodynamique de la pâle. Ensuite, le tourbillon de bout de pâle a été, en particulier, caractérisé. La vorticité et la vitesse azimutale ont été trouvées auto-similaire et la taille du coeur suit asymptotiquement la loi de diffusion linéaire 2D. Un modèle simple du coeur du tourbillon a été proposé. La présence d'une vitesse axiale dans le coeur du tourbillon a été montrée et a été caractérisée en fonction du rapport de vitesse au bout de la pâle. Finalement, une étude de stabilité du tourbillon a été faite en utilisant une vitesse angulaire variable pour perturber l'écoulement. Les taux de croissances des modes les plus instables sont en bon accord avec celui de l'instabilité d'appariement 2D des tourbillons. Trois types de modes ont été identifiés en fonction de la fréquence des perturbations et ont été trouvés similaires aux modes décrits par la théorie et aussi trouvés, précédemment, par l'expérience. / This present work is aimed to study helical vortices encountered in the wakes of rotating elements. For this, the generation of a helical wake of a one-bladed-rotor in a laminar velocity field, is simulated by the actuator line method. This method is a coupling of a Navier-Stokes (NS) solver with the Actuator Line Method where the blade is replaced by the body forces. This method has been implemented in a finite difference code, that we have written in parallel to solve the 3D incompressible NS equations written in cylindrical coordinates. The order of accuracy of the method is two both in time and space. The NS solver was validated comparing growth rates of an unstable jet, found numerically, and those of linear instability theory. A good agreement was found. A good agreement was also found comparing numerical results to analytical formulations and experimental data. It was shown that the method predicts well the blade aerodynamics . Then, the helical tip vortex is characterized for different Reynolds numbers and Tip Speed Ratios. The vorticity and the azimuthal velocity were found self-similar and the vortex core follows asymptotically the linear 2D diffusion law. A simple model for the helical vortex core was proposed. The presence of an axial velocity inside the vortex core was highlighted. Then, a stability study of the helical tip vortex was done using an angular velocity dependent on time to perturb the flow. The largest growth rates were found in good agreement with those of the (2D) pairing instability. Three types of modes were identified based on the perturbation frequency. The results are similar to those found in previous analytical and experimental works.
|
522 |
Analyse et contrôle de systèmes fluide-structure avec conditions limites sur la pression / Analysis and control of fluid-structure systems with boundary conditions involving the pressureCasanova, Jean-Jérôme 05 July 2018 (has links)
Le sujet de la thèse porte sur l'étude (existence, unicité, régularité) et le contrôle de problèmes fluide-structure possédant des conditions limites sur la pression. Le système étudié couple une partie fluide, décrite par les équations de Navier-Stokes incompressibles dans un domaine 2D et une partie structure, décrite par une équation 1D de poutre amortie située sur une partie du bord du domaine fluide. Dans le Chapitre 2, on étudie l'existence de solutions fortes pour ce modèle. Nous démontrons des résultats de régularité optimale pour le système de Stokes avec conditions de bord mixtes sur un domaine non régulier. Ces résultats sont ensuite utilisés pour prouver l'existence et l'unicité de solutions fortes, locales en temps, pour le système fluide-structure sans hypothèse de petitesse sur les données initiales. Le Chapitre 3 réutilise l'analyse précédente dans le cadre de solutions périodiques en temps. Nous développons un critère d'existence de solutions périodiques pour un problème parabolique abstrait. Ce critère est ensuite appliqué au système fluide-structure et nous obtenons l'existence de solutions strictes, périodiques et régulières en temps, pour des termes sources périodiques suffisamment petits. Le quatrième volet de la thèse porte sur la stabilisation du système fluide-structure au voisinage d'une solution périodique. Le système linéarisé sous-jacent est décrit à l'aide d'un opérateur A(t) dont le domaine dépend du temps. Nous démontrons l'existence d'un opérateur parabolique d'évolution pour ce système linéaire. Cet opérateur est ensuite utilisé, dans le cadre de la théorie de Floquet, pour étudier le comportement asymptotique du système. Nous adaptons la théorie existante pour des opérateurs à domaine constant au cas de domaine non constant. Nous obtenons la stabilisation exponentielle du système linéaire à l'aide d'un contrôle sur la frontière du domaine fluide. / In this thesis we study the well-posedness (existence, uniqueness, regularity) and the control of fluid-structure system with boundary conditions involving the pressure. The fluid part of the system is described by the incompressible Navier- Stokes equations in a 2D rectangular type domain coupled with a 1D damped beam equation localised on a boundary part of the fluid domain. In Chapter 2 we investigate the existence of strong solutions for this model. We prove optimal regularity results for the Stokes system with mixed boundary conditions in non-regular domains. These results are then used to obtain the local-in-time existence and uniqueness of strong solutions for the fluid-structure system without smallness assumption on the initial data. Chapter 3 uses the previous analysis in the framework of periodic (in time) solutions. We develop a criteria for the existence of periodic solutions for an abstract parabolic system. This criteria is then used on the fluid- structure system to prove the existence of a periodic and regular in time strict solution, provided that the periodic source terms are small enough. In Chapter 4 we study the stabilisation of the fluid-structure system in a neighbourhood of a periodic solution. The underlying linear system involves an operator A(t) with a domain which depends on time. We prove the existence of a parabolic evolution operator for this linear system. This operator is then used to apply the Floquet theory and to describe the asymptotic behaviour of the system. We adapt the known results for an operator with constant domain to the case of operators with non constant domain. We obtain the exponential stabilisation of the linear system with control acting on a part of the boundary of the fluid domain.
|
523 |
Méthodes numériques hybrides basées sur une approche Boltzmann sur réseau en vue de l'application aux maillages non-uniformes / Hybrid numerical methods based on the lattice Boltzmann approach with application to non-uniform gridsHorstmann, Tobias 12 October 2018 (has links)
Malgré l'efficacité informatique et la faible dissipation numérique de la méthode de Boltzmann sur réseau (LBM) classique reposant sur un algorithme de propagation-collision, cette méthode est limitée aux maillages cartésiens uniformes. L'adaptation de l'étape de discrétisation à différentes échelles de la mécanique des fluides est généralement réalisée par des schémas LBM à échelles multiples, dans lesquels le domaine de calcul est décomposé en plusieurs sous-domaines uniformes avec différentes résolutions spatiales et temporelles. Pour des raisons de connectivité, le facteur de résolution des sous-domaines adjacents doit être un multiple de deux, introduisant un changement abrupt des échelles spatio-temporelles aux interfaces. Cette spécificité peut déclencher des instabilités numériques et produire des sources de bruit parasite rendant l'exploitation de simulations à finalités aéroacoustiques impossible. Dans la présente thèse, nous avons d'abord élucidé le sujet du raffinement de maillage dans la LBM classique en soulignant les défis et les sources potentielles d'erreur. Par la suite, une méthode de Boltzmann sur réseau hybride (HLBM) est proposée, combinant l'algorithme de propagation-collision avec un algorithme de flux au sens eulérien obtenu à partir d'une discrétisation en volumes finis des équations de Boltzmann à vitesse discrète. La HLBM combine à la fois les avantages de la LBM classique et une flexibilité géométrique accrue. La HLBM permet d'utiliser des maillages cartésiens non-uniformes. La validation de la méthode hybride sur des cas tests 2D à finalité aéroacoustique montre qu'une telle approche constitue une alternative viable aux schémas Boltzmann sur réseau à échelles multiples, permettant de réaliser des raffinements locaux en H. Enfin, un couplage original, basé sur l'algorithme de propagation-collision et une formulation isotherme des équations de Navier-Stokes en volumes finis, est proposé. Une telle tentative présente l'avantage de réduire le nombre d'équations du solveur volumes finis tout en augmentant la stabilité numérique de celui-ci, en raison d'une condition CFL plus favorable. Les deux solveurs sont couplés dans l'espace des moments, où la solution macroscopique du solveur Navier-Stokes est injectée dans l'algorithme de propagation-collision à l'aide de la collision des moments centrés. La faisabilité d'un tel couplage est démontrée sur des cas tests 2D, et les résultas obtenus sont comparés avec la HLBM. / Despite the inherent efficiency and low dissipative behaviour of the standard lattice Boltzmann method (LBM) relying on a two step stream and collide algorithm, a major drawback of this approach is the restriction to uniform Cartesian grids. The adaptation of the discretization step to varying fluid dynamic scales is usually achieved by multi-scale lattice Boltzmann schemes, in which the computational domain is decomposed into multiple uniform subdomains with different spatial resolutions. For the sake of connectivity, the resolution factor of adjacent subdomains has to be a multiple of two, introducing an abrupt change of the space-time discretization step at the interface that is prone to trigger instabilites and generate spurious noise sources that contaminate the expected physical pressure signal. In the present PhD thesis, we first elucidate the subject of mesh refinement in the standard lattice Boltzmann method and point out challenges and potential sources of error. Subsequently, we propose a novel hybrid lattice Boltzmann method (HLBM) that combines the stream and collide algorithm with an Eulerian flux-balance algorithm that is obtained from a finite-volume discretization of the discrete velocity Boltzmann equations. The interest of a hybrid lattice Boltzmann method is the pairing of efficiency and low numerical dissipation with an increase in geometrical flexibility. The HLBM allows for non-uniform grids. In the scope of 2D periodic test cases, it is shown that such an approach constitutes a valuable alternative to multi-scale lattice Boltzmann schemes by allowing local mesh refinement of type H. The HLBM properly resolves aerodynamics and aeroacoustics in the interface regions. A further part of the presented work examines the coupling of the stream and collide algorithm with a finite-volume formulation of the isothermal Navier-Stokes equations. Such an attempt bears the advantages that the number of equations of the finite-volume solver is reduced. In addition, the stability is increased due to a more favorable CFL condition. A major difference to the pairing of two kinetic schemes is the coupling in moment space. Here, a novel technique is presented to inject the macroscopic solution of the Navier-Stokes solver into the stream and collide algorithm using a central moment collision. First results on 2D tests cases show that such an algorithm is stable and feasible. Numerical results are compared with those of the previous HLBM.
|
524 |
Desenvolvimento de esquema upwind para equações de conservação e implementação de modelagens URANS com aplicação em escoamentos incompressíveis / Development of a new upwind scheme for conservationlaws and implementation on URANS modelling with application on incompressible flowsCandezano, Miguel Antonio Caro 10 December 2012 (has links)
Nesta tese é apresentado um esquema novo de alta resolução upwind (denominado TDPUS-C3) para reconstrução de fluxos numéricos para leis de conservação não lineares e problemas relacionados em DFC. O esquema é baseado nos critérios de estabilidade CBC e TVD e desenvolvido utilizando condições de diferenciabilidade \'C POT. 3\'. Além disso, é realiozada a implementação da associação do esquema TDPLUS-C3 com a modelagem de turbulência RNG \'\\kappa - \\epsilon\'. O propósito é obter soluções numéricas de sistemas hiperbólicos de leis de conservação para dinâmica dos gases e equações de Navier-Stokes para escoamento incompreensível de fluidos newtonianos e não newtonianos (viscoelásticos). Fazendo o uso do esquema TDPUS-C3, a precisão global dos métodos numéricos é verificada acessando o erro em problemas teste (benchmark) 1D e 2D. Um estudo comparativo entre os resultados do esquema TDPUS-C3 e os esquemas upwind convencionais para leis de conservação hiperbólicas complexas é também realizado. A Associação das modelagens numéricas (upwinding mais RNG \'\\kappa - \\epsilon\') é , então, examinada na simulação de escoamentos turbulentos de fluidos newtonianos envolvendo superfícies livres móveis, usando a metodologia URANS. No geral, em termos do comportamento global, concordância satisfatória é observada / In this thesis, a new high-resolution upwind scheme (named TDPUS-C3) for reconstruction of numerical fluxes for nonlinear conservation laws and related CFD problems in presented. The scheme is based on CBC and TVD stability criteria and developed by employing differentiability condictions (\'C POT. 3\'). In additon, the implementation of an association of the TDPUS-C3 scheme with the RNG \'\\kappa - \\epsilon\' turbulence modelling is also performed. The purpose is to obtain numerical solutions of systems of hyperbolic conservation laws for gas dynamics and Navier-Stokes equations for incompressible flow of Newtonian and non-Newtonian (viscoelstic) fluids. By using the TDPUS-C3 scheme, the global accuracy of the numerical methods is verified by assessing the error on 1D and 2D benchmark test cases. A comparative study between the TDPUS-C3 scheme and convectional upwind schemes to solve standard and complex hyperbolic conservation laws is also accomplished. The association of the numerical modelling (upwinding plus RNG \'\\kappa - epsilon\') is then examined in the simulation of turbulent Newtonian fluid flows involving moving free surfaces, by using URANS methodology. Overall, satisfactory agreement is found in terms of the overall behaviour
|
525 |
Análise computacional de casos característicos de câmaras de combustão empregando simulação de escalas adaptativas / Computational analysis of combustion chamber characteristic cases using scale-adaptivr simulationBovolato, Luiz Otávio de Carvalho 09 November 2018 (has links)
O projeto de pesquisa propôs avaliar a metodologia de Simulação de Escalas Adaptativas (SAS) para descrever escoamentos turbulentos e não-reativos utilizando estudos de casos característicos, amplamente documentados, os quais possuem comportamentos do escoamento distintos presentes em diferentes regiões de uma câmara de combustão. O primeiro estudo de caso foi a análise do escoamento sobre um degrau, em que foi avaliada a capacidade do modelo Simulação de Escalas Adaptativas, frente aos modelos de Navier-Stokes com Média de Reynolds (RANS) e Simulação de Grandes Escalas (LES) e aos dados experimentais, em prever a distribuição de pressão, ponto de recolamento e de perfis de velocidade ao longo do domínio após a separação. Pode-se notar que o modelo SAS apresentou resultados praticamente idênticos aos resultados obtidos pelo modelo RANS com relação à distribuição de pressão e a posição ponto de recolamento. Porém, os perfis de velocidade apresentaram algumas discrepâncias com relação aos perfis de velocidade dos modelos RANS e LES e dos resultados experimentais. Um segundo estudo de caso foi a análise do escoamento através de um turbilhonador, em que a capacidade do modelo SAS foi avaliada, comparando seus resultados com os resultados do modelo de Navier-Stokes Não-Estacionárias com Média de Reynolds (URANS) e com os dados experimentais, em prever perfis de velocidade em regiões de recirculação presentes neste estudo de caso. Pode-se observar que ambos os modelos conseguiram prever as principais estruturas de recirculação do escoamento, porém, os perfis de velocidade apresentaram significativas discrepâncias com relação aos dados experimentais. Em seguida, foram feitas comparações entre os modelos SAS e URANS com relação à previsão da precessão central de vórtice e de estruturas de vórtices, das quais foi observado que o modelo SAS apresenta uma maior capacidade para prever estas estruturas em relação ao modelo URANS. / The research project aimed to evaluate the Scale-Adaptive Simulation (SAS) methodology to describe turbulent and non-reactive flows using characteristic, widely documented, case studies, which have distinct flow behaviors present in different regions of a chamber of combustion. The first case study was the analysis of a flow over a backward-facing step, from which the Scale-Adaptive Simulation (SAS) model capacity was evaluated, compared to the Reynolds Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models and experimental data, in order to predict the pressure distribution, reattachment point and velocity profiles throughout the domain after separation. It can be noticed that the SAS model presented results almost identical to the results obtained by the RANS model in relation to the pressure distribution and reattachment position. However, the velocity profiles presented some discrepancies in respect to RANS and LES velocity profiles and the experimental results. A second case study was the analysis of the flow through a swirler, from which the capacity of the SAS model was evaluated, comparing its results to the results of the Unsteady Reynolds Averaged Navier-Stokes (URANS) model and with the experimental data, to predict velocity profiles in recirculation regions present in this case study. It can be observed that both models were able to predict the main recirculation structures of the flow, however, the velocity profiles presented significant discrepancies in relation to the experimental data. Then, comparisons were made between the SAS and URANS models in respect to the prediction of vortex precession vortex core and vortex structures, from which it was observed that the SAS model presents a greater capacity to predict these structures in relation to the URANS model.
|
526 |
Estudo de métodos de interface imersa para as equações de Navier-Stokes / Study of immersed interface methods for the Navier-Stokes equationsReis, Gabriela Aparecida dos 24 June 2016 (has links)
Uma grande limitação dos métodos de diferenças finitas é que eles estão restritos a malhas e domínios retangulares. Para descrever escoamentos em domínios complexos, como, por exemplo, problemas com superfícies livres, faz-se necessário o uso de técnicas acessórias. O método de interfaces imersas é uma dessas técnicas. Nesse trabalho, primeiramente foi desenvolvido um método de projeção, totalmente livre de pressão, para as equações de Navier-Stokes com variáveis primitivas em malha deslocada. Esse método é baseado em diferenças finitas compactas, possuindo segunda ordem temporal e quarta ordem espacial. Esse método foi combinado com o método de interface imersa de Linnick e Fasel [2] para resolver numericamente as equações de Stokes com quarta ordem de precisão. A verificação do código foi feita por meio do método das soluções manufaturadas e da comparação com resultados de outros autores em problemas clássicos da literatura. / A great limitation of finite differences methods is that they are restricted to retangular meshes and domains. In order to describe flows in complex domains, e.g. free surface problems, it is necessary to use accessory techniques. The immersed interface method is one of such techniques. In the present work, firstly, a projection method was developed, which is completely pressure-free, for the Navier-Stokes equations with primitive variables in a staggered mesh. This method is based on compact finite differences, with temporal second-order precision and spatial foruth-order precision. This method was combined with the immersed interface method from Linnick e Fasel [2] in order to numerically solve the Stokes equations with fourth-order precision. The verification of the code was performed with the manufactured solutions method and by comparing results with other authors for some classical problems in the literature.
|
527 |
Modélisation et simulation numérique de la déformation et la rupture de la plaque d'athérosclérose dans les artères / Modeling and numerical simulation of the deformation and the rupture of the plaque of atherosclerosis in the arteries.Abbas, Fatima 18 April 2019 (has links)
Cette thèse est consacrée à la modélisation mathématique du flux sanguin dans les artères en présence de la sténose à cause de l'athérosclérose. L'athérosclérose est une maladie vasculaire complexe caractérisée par la formation d'une plaque menant au rétrécissement de l'artère. Elle est responsable des crises cardiaques et des accidents vasculaires cérébraux. Quels que soient les nombreux facteurs de risque identifiés - cholestérol et lipides, pression, régime alimentaire malsain et obésité - seuls des facteurs mécaniques et hémodynamiques peuvent donner une cause précise de cette maladie. Dans la première partie de la thèse, nous introduisons le modèle mathématique tridimensionnel décrivant l'introduction entre le sang et la paroi artérielle. Le modèle consiste à coupler la dynamique du flux sanguin donnée par les équations de Navier-Stokes formulées dans le cadre Arbitrary Lagrangian Eulerian (ALE) avec les équations élastodynamiques décrivant l'élasticité de la paroi artérielle considérée comme un matériau hyperélastique modélisé par la loi de comportement non-linéaire de Saint Venant-Kirchhoff en tant que système d'interaction fluide-structure. Théoriquement, nous prouvons l'existence et l'unicité locale dans le temps de la solution pour ce système lorsque le fluide est supposé être un fluide homogène Newtonien incompressible et que la structure est décrite par la loi de comportement non-linéaire quasi-incompressible de Saint Venant-Kirchhoff. Les résultats sont établis en utilisant l'outil clé; le théorème du point fixe. La deuxième partie est consacrée à l'analyse numérique de ce modèle. Le sang est considéré comme un fluide non-Newtonien dont le comportement et les propriétés rhéologiques sont décrits par le modèle de Carreau, tandis que la paroi artérielle est un matériau homogène incompressible décrit par les équations élastodynamiques quasi-statiques. Les simulations sont effectuées dans l'espace à deux dimensions R^2 à l'aide du logiciel FreeFem ++ en utilisant la méthode des éléments finis. Nous nous concentrons sur l'étude de la viscosité, de la vitesse et des contraintes de cisaillement maximale. En outre, nous visons à localiser les zones de recirculation qui sont formées à la suite de l'existence de la sténose. En se basant sur de ces résultats, nous procédons à la détection de la zone de solidification où le sang passe de l'état liquide à un matériau de type gelée. Ensuite, nous spécifions que le sang solidifié est un matériau élastique linéaire qui obéit à la loi de Hooke et qui subit à une force de surface externe représentant la contrainte exercée par le sang sur la zone de solidification. Les résultats numériques concernant le sang solidifié sont obtenus en résolvant les équations d'élasticité linéaires à l'aide de FreeFem ++. Nous analysons principalement la déformation de cette zone ainsi que les contraintes de cisaillement la paroi. Les résultats obtenus vont nous permettre de proposer une hypothèse pour la formulation d'un modèle de rupture. / This thesis is devoted to the mathematical modeling of the blood flow in stenosed arteries due to atherosclerosis. Atherosclerosis is a complex vascular disease characterized by the build up of a plaque leading to the narrowing of the artery. It is responsible for heart attacks and strokes. Regardless of the many risk factors that have been identified- cholesterol and lipids, pressure, unhealthy diet and obesity- only mechanical and hemodynamic factors can give a precise cause of this disease. In the first part of the thesis, we introduce the three dimensional mathematical model describing the blood-wall setting. The model consists of coupling the dynamics of the blood flow given by the Navier-Stokes equations formulated in the Arbitrary Lagrangian Eulerian (ALE) framework with the elastodynamic equations describing the elasticity of the arterial wall considered as a hyperelastic material modeled by the non-linear Saint Venant-Kirchhoff model as a fluid-structure interaction (FSI) system. Theoretically, we prove local in time existence and uniqueness of solution for this system when the fluid is assumed to be an incompressible Newtonian homogeneous fluid and the structure is described by the quasi-incompressible non-linear Saint Venant-Kirchhoff model. Results are established relying on the key tool; the fixed point theorem. The second part is devoted for the numerical analysis of the FSI model. The blood is considered to be a non-Newtonian fluid whose behavior and rheological properties are described by Carreau model, while the arterial wall is a homogeneous incompressible material described by the quasi-static elastodynamic equations. Simulations are performed in the two dimensional space R^2 using the finite element method (FEM) software FreeFem++. We focus on investigating the pattern of the viscosity, the speed and the maximum shear stress. Further, we aim to locate the recirculation zones which are formed as a consequence of the existence of the stenosis. Based on these results we proceed to detect the solidification zone where the blood transits from liquid state to a jelly-like material. Next, we specify the solidified blood to be a linear elastic material that obeys Hooke's law and which is subjected to an external surface force representing the stress exerted by the blood on the solidification zone. Numerical results concerning the solidified blood are obtained by solving the linear elasticity equations using FreeFem++. Mainly, we analyze the deformation of this zone as well as the wall shear stress. These analyzed results will allow us to give our hypothesis to derive a rupture model.
|
528 |
Esquemas de captura de descontinuidades para equações gerais de conservação / Stock capturing scheme for general conservation equationsNarváez, Rodolfo Junior Pérez 22 February 2013 (has links)
Três esquemas de captura de descontinuidade são apresentados para simular hiperbólicos de leis de conservação e equações de Navier-Stokes incompressíveis, a saber: FDHERPUS (Five Degree Hermite Upwind Scheme); RUS (Rational Upwind Scheme); e CSPUS (Cubic Spline Polynomial Upwind Scheme). Esses esquemas são baseados nos critérios de estabilidade CBC e TVD e implementados nos contextos das metodologias diferenças finitas e volumes finitos. A precisão local dos esquemas é verificada acessando o erro e a taxa de convergência em problemas testes de referência. Um estudo comparativo entre os esquemas estudados (incluido o WENO5) e o esquema bem estabelecido de van Albada, para resolver leis de conservação lineares e não lineares, é também realizado. O esquema de convecção que fornece melhores resultados em leis de conservação hiperbólicas é então examinado na simulação de escoamentos de fluidos newtonianos com superfícies livres móveis de complexidade crescente; resultados satisfatórios têm sido observados em termos do comportamento global / Three shock capturing schemes for numerical solution of hyperbolic conservation laws and incompressible Navier-Stokes equations are presented, namely: FDHERPUS (Five Degree Hermite Polynomial Upwind Scheme); RUS (Rational Upwind Scheme); and CSPUS ( Cubic Spline Polynomial Upwind Scheme). These schemes are based on CBC and TVD stability criteria and implemented in the context of finite volume methodologies. The local observed accuracy of the schemes is verified by assessing the error and convergence rate on benchmark test cases. A comparative study between the schemes (including WENO5) and the well established van. Albada scheme to solve standard linear and nonlinear hyperbolic conservation laws is also accomplished. The scheme that has provided better results in hyperbolic conservation laws is then examined in the simulation of Newtonian moving free surface flows of increasing complexity, satisfactory agreement has been observed in terms of the overall behavior
|
529 |
Um esquema upwind polinomial por partes para problemas em mecânica dos fluidos / A piecewise polynomial upwind scheme for problems in fluid mechanicsSartori, Patrícia 20 April 2011 (has links)
Este trabalho de pesquisa é dedicado ao desenvolvimento, análise e implementação de um novo esquema upwind de alta resolução (denominada PFDPUS) para a aproximação de termos convectivos em leis de conservação e problemas relacionados em mecânica dos fluídos. Usando variáveis normalizadas de Leonard, o equema PFDPUS é baseado em uma função polinomial por partes que satisfaz os critérios de estabilidade CBC e TVD. O desempenho do esquema PEDPUS é investigado na solução das equações de advecção de escalares, Burgers, Euler e MHD. O novo esquema é então aplicado para simular escoamentos incompressíveis envolvendo superfícies livres móveis. Para tanto, o esquema PFDPUS é implementado dentro do software CLAWPACK para problemas compressíveis, e no código Freeflow para poblemas incompressíveis. Os resultados numéricos são comparados com dados experimentais, numéricos e analíticos / This work is dedicated to the development, analysis and implementation of a new high-resolution upwind scheme (called PFDPUS) for approximation of convective terms in conservation laws and related fluid mechanics problems. By using the normalized variables of Leonard, the PFDPUS scheme is based on a piecewise polynomical function that satisfies the CBC and TVD stability criteria. The performance of the PFDPUS scheme is assessed by solving advection of scalars, Burgers, Euler and MHD equations. Then the new scheme is applied to simulate incompressible flows involving moving free surfaces. The PFDPUS scheme is implemented into the CLAWPACK software for compressible problems, and in the Freeflow code for incompressible problems. The numerical results are compared with experimental, numerical and analytical data
|
530 |
Um novo esquema upwind de alta resolução para equações de conservação não estacionárias dominadas por convecção / A new high-resolution upwind scheme for non stationary conservation equations dominated by convectionCorrêa, Laís 29 March 2011 (has links)
Neste trabalho apresenta-se um novo esquema prático tipo upwind de alta resolução, denominado EPUS (Eight-degree Polynomial Upwind Scheme), para resolver numericamente equações de conservação TVD e é implementado no contexto do método das diferenças finitas. O desempenho do esquema é investigado na resolução de sistemas hiperbólicos de leis de conservação e escoamentos incompressíveis complexos com superfícies livres. Os resultados numéricos mostraram boa concordãncia com outros resultados numéricos e dados experimentais existentes / Is this work a new practical high resolution upwinding scheme, called EPUS (Eight-degree Polynomial Upwind Scheme), for the numerical solution of transient convection-dominated conservation equations is present. The scheme is based on TVD stability criterion and is implemented in the context of the finite difference methodology. The performance of the scheme is investigated by solving hyperbolic systems of conservation laws and complex incompressible flows with free surfaces. The numerical results displayed good agreement with other existing numerical and experimental data
|
Page generated in 0.0432 seconds