• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 11
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 85
  • 85
  • 27
  • 24
  • 22
  • 18
  • 15
  • 15
  • 14
  • 13
  • 11
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Computational Analysis of Mixing in Microchannels

Adhikari, Param C. 10 June 2013 (has links)
No description available.
72

EFFICIENT MAXWELL-DRIFT DIFFUSION CO-SIMULATION OF MICRO- AND NANO- STRUCTURES AT HIGH FREQUENCIES

Sanjeev Khare (17632632) 14 December 2023 (has links)
<p dir="ltr">This work introduces an innovative algorithm for co-simulating time-dependent Drift Diffusion (DD) equations with Maxwell\textquotesingle s equations to characterize semiconductor devices. Traditionally, the DD equations, derived from the Boltzmann transport equations, are used alongside Poisson\textquotesingle s equation to model electronic carriers in semiconductors. While DD equations coupled with Poisson\textquotesingle s equation underpin commercial TCAD software for micron-scale device simulation, they are limited by electrostatic assumptions and fail to capture time dependent high-frequency effects. Maxwell\textquotesingle s equations are fundamental to classical electrodynamics, enabling the prediction of electrical performance across frequency range crucial to advanced device fabrication and design. However, their integration with DD equations has not been studied thoroughly. The proposed method advances current simulation techniques by introducing a new broadband patch-based method to solve time-domain 3-D Maxwell\textquotesingle s equations and integrating it with the solution of DD equations. This technique is free of the low-frequency breakdown issues prevalent in conventional full-wave simulations. Meanwhile, it enables large-scale simulations with reduced computational complexity. This work extends the simulation to encompass the complete device, including metal contacts and interconnects. Thus, it captures the entire electromagnetic behavior, which is especially critical in electrically larger systems and high-frequency scenarios. The electromagnetic interactions of the device with its contacts and interconnects are investigated, providing insights into performance at the chip level. Validation through numerical experiments and comparison with results from commercial TCAD tools confirm the effectiveness of the proposed method. </p>
73

Energy-Dissipative Methods in Numerical Analysis, Optimization and Deep Neural Networks for Gradient Flows and Wasserstein Gradient Flows

Shiheng Zhang (17540328) 05 December 2023 (has links)
<p dir="ltr">This thesis delves into the development and integration of energy-dissipative methods, with applications spanning numerical analysis, optimization, and deep neural networks, primarily targeting gradient flows and porous medium equations. In the realm of optimization, we introduce the element-wise relaxed scalar auxiliary variable (E-RSAV) algorithm, showcasing its robustness and convergence through extensive numerical experiments. Complementing this, we design an Energy-Dissipative Evolutionary Deep Operator Neural Network (DeepONet) to numerically address a suite of partial differential equations. By employing a dual-subnetwork structure and utilizing the Scalar Auxiliary Variable (SAV) method, the network achieves impeccable approximations of operators while upholding the Energy Dissipation Law, even when training data comprises only the initial state. Lastly, we formulate first-order schemes tailored for Wasserstein gradient flows. Our schemes demonstrate remarkable properties, including mass conservation, unique solvability, positivity preservation, and unconditional energy dissipation. Collectively, the innovations presented here offer promising pathways for efficient and accurate numerical solutions in both gradient flows and Wasserstein gradient flows, bridging the gap between traditional optimization techniques and modern neural network methodologies.</p>
74

Antenna design using optimization techniques over various computaional electromagnetics. Antenna design structures using genetic algorithm, Particle Swarm and Firefly algorithms optimization methods applied on several electromagnetics numerical solutions and applications including antenna measurements and comparisons

Abdussalam, Fathi M.A. January 2018 (has links)
Dealing with the electromagnetic issue might bring a sort of discontinuous and nondifferentiable regions. Thus, it is of great interest to implement an appropriate optimisation approach, which can preserve the computational resources and come up with a global optimum. While not being trapped in local optima, as well as the feasibility to overcome some other matters such as nonlinear and phenomena of discontinuous with a large number of variables. Problems such as lengthy computation time, constraints put forward for antenna requirements and demand for large computer memory, are very common in the analysis due to the increased interests in tackling high-scale, more complex and higher-dimensional problems. On the other side, demands for even more accurate results always expand constantly. In the context of this statement, it is very important to find out how the recently developed optimization roles can contribute to the solution of the aforementioned problems. Thereafter, the key goals of this work are to model, study and design low profile antennas for wireless and mobile communications applications using optimization process over a computational electromagnetics numerical solution. The numerical solution method could be performed over one or hybrid methods subjective to the design antenna requirements and its environment. Firstly, the thesis presents the design and modelling concept of small uni-planer Ultra- Wideband antenna. The fitness functions and the geometrical antenna elements required for such design are considered. Two antennas are designed, implemented and measured. The computed and measured outcomes are found in reasonable agreement. Secondly, the work is also addressed on how the resonance modes of microstrip patches could be performed using the method of Moments. Results have been shown on how the modes could be adjusted using MoM. Finally, the design implications of balanced structure for mobile handsets covering LTE standards 698-748 MHz and 2500-2690 MHz are explored through using firefly algorithm method. The optimised balanced antenna exhibits reasonable matching performance including near-omnidirectional radiations over the dual desirable operating bands with reduced EMF, which leads to a great immunity improvement towards the hand-held. / General Secretariat of Education and Scientific Research Libya
75

Advances In Numerical Methods for Partial Differential Equations and Optimization

Xinyu Liu (19020419) 10 July 2024 (has links)
<p dir="ltr">This thesis presents advances in numerical methods for partial differential equations (PDEs) and optimization problems, with a focus on improving efficiency, stability, and accuracy across various applications. We begin by addressing 3D Poisson-type equations, developing a GPU-accelerated spectral-element method that utilizes the tensor product structure to achieve extremely fast performance. This approach enables solving problems with over one billion degrees of freedom in less than one second on modern GPUs, with applications to Schrödinger and Cahn<i>–</i>Hilliard equations demonstrated. Next, we focus on parabolic PDEs, specifically the Cahn<i>–</i>Hilliard equation with dynamical boundary conditions. We propose an efficient energy-stable numerical scheme using a unified framework to handle both Allen<i>–</i>Cahn and Cahn<i>–</i>Hilliard type boundary conditions. The scheme employs a scalar auxiliary variable (SAV) approach to achieve linear, second-order, and unconditionally energy stable properties. Shifting to a machine learning perspective for PDEs, we introduce an unsupervised learning-based numerical method for solving elliptic PDEs. This approach uses deep neural networks to approximate PDE solutions and employs least-squares functionals as loss functions, with a focus on first-order system least-squares formulations. In the realm of optimization, we present an efficient and robust SAV based algorithm for discrete gradient systems. This method modifies the standard SAV approach and incorporates relaxation and adaptive strategies to achieve fast convergence for minimization problems while maintaining unconditional energy stability. Finally, we address optimization in the context of machine learning by developing a structure-guided Gauss<i>–</i>Newton method for shallow ReLU neural network optimization. This approach exploits both the least-squares and neural network structures to create an efficient iterative solver, demonstrating superior performance on challenging function approximation problems. Throughout the thesis, we provide theoretical analysis, efficient numerical implementations, and extensive computational experiments to validate the proposed methods. </p>
76

Numerical methods for approximating solutions to rough differential equations

Gyurko, Lajos Gergely January 2008 (has links)
The main motivation behind writing this thesis was to construct numerical methods to approximate solutions to differential equations driven by rough paths, where the solution is considered in the rough path-sense. Rough paths of inhomogeneous degree of smoothness as driving noise are considered. We also aimed to find applications of these numerical methods to stochastic differential equations. After sketching the core ideas of the Rough Paths Theory in Chapter 1, the versions of the core theorems corresponding to the inhomogeneous degree of smoothness case are stated and proved in Chapter 2 along with some auxiliary claims on the continuity of the solution in a certain sense, including an RDE-version of Gronwall's lemma. In Chapter 3, numerical schemes for approximating solutions to differential equations driven by rough paths of inhomogeneous degree of smoothness are constructed. We start with setting up some principles of approximations. Then a general class of local approximations is introduced. This class is used to construct global approximations by pasting together the local ones. A general sufficient condition on the local approximations implying global convergence is given and proved. The next step is to construct particular local approximations in finite dimensions based on solutions to ordinary differential equations derived locally and satisfying the sufficient condition for global convergence. These local approximations require strong conditions on the one-form defining the rough differential equation. Finally, we show that when the local ODE-based schemes are applied in combination with rough polynomial approximations, the conditions on the one-form can be weakened. In Chapter 4, the results of Gyurko & Lyons (2010) on path-wise approximation of solutions to stochastic differential equations are recalled and extended to the truncated signature level of the solution. Furthermore, some practical considerations related to the implementation of high order schemes are described. The effectiveness of the derived schemes is demonstrated on numerical examples. In Chapter 5, the background theory of the Kusuoka-Lyons-Victoir (KLV) family of weak approximations is recalled and linked to the results of Chapter 4. We highlight how the different versions of the KLV family are related. Finally, a numerical evaluation of the autonomous ODE-based versions of the family is carried out, focusing on SDEs in dimensions up to 4, using cubature formulas of different degrees and several high order numerical ODE solvers. We demonstrate the effectiveness and the occasional non-effectiveness of the numerical approximations in cases when the KLV family is used in its original version and also when used in combination with partial sampling methods (Monte-Carlo, TBBA) and Romberg extrapolation.
77

動態規劃數值解 :退休後資產配置 / Dynamic programming numerical solution: post retirement asset allocation

蔡明諺, Tsai, Ming Yen Unknown Date (has links)
動態規劃的問題並不一定都存在封閉解(closed form solution),即使存在,其過程往往也相當繁雜。本研究擬以 Gerrard & Haberman (2004) 的模型為基礎,並使用逼近動態規劃理論解的數值方法來求解,此方法參考自黃迪揚(2009),其研究探討在有無封閉解的動態規劃下,使用此數值方法求解可以得到 逼近解。本篇嘗試延伸其方法,針對不同類型的限制,做更多不同的變化。Gerrard & Haberman (2004)推導出退休後投資於風險性資產與無風險性資產之最適投資策略封閉解, 本研究欲將模型投資之兩資產衍生至三資產,分別投資在高風險資產、中風險資產與無風險資產,實際市場狀況下禁止買空賣空的情況與風險趨避程度限制資產投資比例所造成的影響。並探討兩資產與三資產下的投資結果,並加入不同的目標函數:使用控制變異數的限制式來降低破產機率、控制帳戶差異部位讓投資更具效率性。雖然加入這些限制式會導致目標函 數過於複雜,但是用此數值方法還是可以得出逼近解。 / Dynamic Programming’s solution is not always a closed form. If it do exist, the solution of progress may be too complicated. Our research is based on the investing model in Gerrard & Haberman (2004), using the numerical solution by Huang (2009) to solve the dynamic programming problem. In his research, he found out that whether dynamic programming problem has the closed form, using the numerical solution to solve the problems, which could get similar result. So in our research, we try to use this solution to solve more complicate problems. Gerrard & Haberman (2004) derived the closed form solution of optimal investing strategy in post retirement investment plan, investing in risky asset and riskless asset. In this research we try to invest in three assets, investing in high risk asset, middle risk asset and riskless asset. Forbidden short buying and short selling, how risk attitude affect investment behavior in risky asset and riskless asset. We also observe the numerical result of 2 asset and 3 asset, using different objective functions : using variance control to avoid ruin risk, consideration the distance between objective account and actual account to improve investment effective. Although using these restricts may increase the complication of objective functions, but we can use this numerical solution to get the approximating solution.
78

Characterization of nonlinearity parameters in an elastic material with quadratic nonlinearity with a complex wave field

Braun, Michael Rainer 19 November 2008 (has links)
This research investigates wave propagation in an elastic half-space with a quadratic nonlinearity in its stress-strain relationship. Different boundary conditions on the surface are considered that result in both one- and two-dimensional wave propagation problems. The goal of the research is to examine the generation of second-order frequency effects and static effects which may be used to determine the nonlinearity present in the material. This is accomplished by extracting the amplitudes of those effects in the frequency domain and analyzing their dependency on the third-order elastic constants (TOEC). For the one-dimensional problems, both analytical approximate solutions as well as numerical simulations are presented. For the two-dimensional problems, numerical solutions are presented whose dependency on the material's nonlinearity is compared to the one-dimensional problems. The numerical solutions are obtained by first formulating the problem as a hyperbolic system of conservation laws, which is then solved numerically using a semi-discrete central scheme. The numerical method is implemented using the package CentPack. In the one-dimensional cases, it is shown that the analytical and numerical solutions are in good agreement with each other, as well as how different boundary conditions may be used to measure the TOEC. In the two-dimensional cases, it is shown that there exist comparable dependencies of the second-order frequency effects and static effects on the TOEC. Finally, it is analytically and numerically investigated how multiple reflections in a plate can be used to simplify measurements of the material nonlinearity in an experiment.
79

Hydro-mechanical behavior of deep tunnels in anisotropic poroelastic medium / Comportement hydro-mécanique des tunnels profonds dans les milieux poreux anisotropes élastiques

Tran, Nam Hung 15 December 2016 (has links)
Les tunnels profonds sont souvent construits dans les roches sédimentaires et métamorphiques stratifiées qui présentent habituellement des propriétés anisotropes en raison de leur structure et des propriétés des constituants. Le présent travail vise à étudier les tunnels profonds dans un massif rocheux anisotrope élastique en portant une attention particulière sur les effets des couplages hydromécaniques par des approches analytiques et numériques. Une solution analytique pour un tunnel creusé dans un massif rocheux anisotrope saturé est développée en tenant compte du couplage hydro-mécanique dans le régime permanent. Cette solution analytique est utilisée pour réaliser une série d’études paramétriques afin d'évaluer les effets des différents paramètres du matériau anisotrope sur le comportement du tunnel. Dans un deuxième temps la solution analytique est élargie pour décrire le comportement du tunnel pendant la phase transitoire hydraulique. Afin de compléter ces études analytiques qui prennent en compte seulement un couplage unilatéral (dans le sens que seul le comportement hydraulique influence le comportement mécanique et pas l’inverse) de l’analyse numérique avec un couplage complet, ont été réalisés. Une application de la solution analytique sur la méthode de convergence-confinement est aussi bien abordée qui peut prendre en compte l'influence du front de taille du tunnel sur le travail du soutènement ainsi que sur le massif. La solution obtenue peut servir comme un outil de dimensionnement rapide des tunnels en milieux poreux en le combinant avec des approches de dimensionnement comme celle de convergence confinement. / Deep tunnels are often built in the sedimentary and metamorphic foliated rocks which exhibits usually the anisotropic properties due to the presence of the discontinuity. The analysis of rock and liner stresses due to tunnel construction with the assumption of homogeneous and isotropic rock would be incorrect. The present thesis aims to deal with the deep tunnel in anisotropic rock with a particular emphasis on the effects of hydraulic phenomenon on the mechanical responses or reciprocal effects of hydraulic and mechanical phenomena by combining analytical and numerical approach. On that point of view, a closed-formed solution for tunnel excavated in saturated anisotropic ground is developed taking into account the hydromechanical coupling in steady-state. Based on the analytical solution obtained, parametric studies are conducted to evaluate the effects of different parameters of the anisotropic material on the tunnel behavior. The thesis considers also to extend the analytical solution with a time-dependent behavior which takes into account the impact of the pore pressure distribution on mechanical response over time, i.e., one way coupling modeling. In addition, some numerical analysis based on fully-coupled modeling, i.e., two ways coupling, are conducted which are considered as the complete solution for the analytical solution. An application of the closed-form solution on convergence-confinement method is as well referred which can take into account the influence of the tunnel face on the work of the support as well as the massif. The obtained solution could be used as a quick tool to calibrate tunnels in porous media by combining with design approaches such as convergence-confinement method.
80

Robust Least Squares Kinetic Upwind Method For Inviscid Compressible Flows

Ghosh, Ashis Kumar 06 1900 (has links) (PDF)
No description available.

Page generated in 0.0775 seconds