Spelling suggestions: "subject:"[een] PARTIAL DIFFERENTIAL EQUATION"" "subject:"[enn] PARTIAL DIFFERENTIAL EQUATION""
71 |
Evolution equations in physical chemistryMichoski, Craig E. 05 August 2010 (has links)
We analyze a number of systems of evolution equations that arise in the study of physical chemistry. First we discuss the well-posedness of a system of mixing compressible barotropic multicomponent flows. We discuss the regularity of these variational solutions, their existence and uniqueness, and we analyze the emergence of a novel type of entropy that is derived for the system of equations.
Next we present a numerical scheme, in the form of a discontinuous Galerkin (DG) finite element method, to model this compressible barotropic multifluid. We find that the DG method provides stable and accurate solutions to our system, and that further, these solutions are energy consistent; which is to say that they satisfy the classical entropy of the system in addition to an additional integral inequality. We discuss the initial-boundary problem and the existence of weak entropy at the boundaries. Next we extend these results to include more complicated transport properties (i.e. mass diffusion), where exotic acoustic and chemical inlets are explicitly shown.
We continue by developing a mixed method discontinuous Galerkin finite element method to model quantum hydrodynamic fluids, which emerge in the study of chemical and molecular dynamics. These solutions are solved in the conservation form, or Eulerian frame, and show a notable scale invariance which makes them particularly attractive for high dimensional calculations.
Finally we implement a wide class of chemical reactors using an adapted discontinuous Galerkin finite element scheme, where reaction terms are analytically integrated locally in time. We show that these solutions, both in stationary and in flow reactors, show remarkable stability, accuracy and consistency. / text
|
72 |
Pathwise anticipating random periodic solutions of SDEs and SPDEs with linear multiplicative noiseWu, Yue January 2014 (has links)
In this thesis, we study the existence of pathwise random periodic solutions to both the semilinear stochastic differential equations with linear multiplicative noise and the semilinear stochastic partial differential equations with linear multiplicative noise in a Hilbert space. We identify them as the solutions of coupled forward-backward infinite horizon stochastic integral equations in general cases, and then perform the argument of the relative compactness of Wiener-Sobolev spaces in C([0, T],L2Ω,Rd)) or C([0, T],L2(Ω x O)) and Schauder's fixed point theorem to show the existence of a solution of the coupled stochastic forward-backward infinite horizon integral equations.
|
73 |
Contrôle de l'état hydraulique dans un réseau d'eau potable pour limiter les pertesJaumouillé, Elodie 04 December 2009 (has links)
Les fuites non détectées dans les réseaux d'eau potable sont responsables en moyenne de la perte de 30% de l'eau transportée. Il s'avère donc primordial de pouvoir contrôler ces fuites. Pour atteindre cet objectif, la modélisation de l'écoulement de l'eau dans les conduites en tenant compte des fuites a été formulée de différente manière. La première formulation est un système d'équations différentielles ordinaires représentant des fuites constantes, réparties uniformément le long des conduites. Le système peut s'avérer être numériquement raide lorsque des organes hydrauliques sont rajoutés. Deux méthodes implicites ont été proposées pour sa résolution : la méthode de Rosenbrock et la méthode de Gear. Les résultats obtenus montrent que le débit varie linéairement le long des conduites et que les pertes en eau par unité de longueur sont identiques sur chaque conduite. La seconde formulation prend en compte la relation entre les fuites et la pression. Un système de deux équations aux dérivées partielles a été proposé. L'EDP de transport-diffusion-réaction, contenant l'opérateur du p-Laplacien, est résolue par une méthode à pas fractionnaires. Deux méthodes ont été testées. Dans la première, la réaction est couplée avec la diffusion et dans la seconde, elle est couplée avec le transport. Les résultats indiquent que les pertes en eau ne sont pas réparties de façon homogène sur le réseau. Cette formulation décrit de manière plus réaliste les réseaux d'eau potable. Enfin, le problème du contrôle du volume des fuites par action sur la pression a été étudié. Pour cela, un problème d'optimisation est résolu sous la contrainte que la pression doit être minimale pour réduire les fuites et être suffisante pour garantir un bon service aux consommateurs. Les résultats trouvés confirment que la réduction de la pression permet de réduire le volume des fuites de façon significative et que le choix de l'emplacement du ou des points de contrôle est primordial pour optimiser cette réduction. / Leakage represents a large part, in average more than 30%, of the water supplied. Consequently, it is important to control leakage in Water Distribution System (WDS). For this purpose different methods, which take leakage into account, are proposed to model the hydraulics of WDS. The first formulation considers constant leakage in a network and leads to an ordinary differential equation. It turns out to be a hydraulic stiff problem due to valve and pump operations. This equation is solved using two methods: the first one is a generalised Runge-Kutta method and the second one the Gear method. The results show that the flow rate varies linearly along a pipe and that the water loss per unit of length is identical for each pipe. Magnitude of inertia terms has also been studied. The second formulation takes pressure-dependent leakage into account. We propose to introduce partial differential equations in order to predict more accurately hydraulic flows in WDS. Thus, the physical advection-diffusion-reaction model is presented. A nonlinear operator, called p-Laplacian, related to the diffusion is included into the model. Two resolutions of this model based on a splitting method are detailed. The results confirm that losses vary nonlinearly with pressure. Finally, the leakage-control problem is studied. For this purpose, we solve an optimisation problem with the objective to minimize the distributed volume in order to reduce leakage. The condition of sufficient pressure to satisfy consumers is imposed in this optimisation. The results prove that pressure control significantly reduces leakage and that the emplacement of the valve is important to optimise this reduction.
|
74 |
Three-Dimensional Model of the Release and Diffusion of Paclitaxel in the Stent-Polymer-Wall-Lumen System of a Blood VesselLamontagne, Steven 08 1900 (has links)
No description available.
|
75 |
Pathwise Uniqueness of the Stochastic Heat Equation with Hölder continuous o diffusion coefficient and colored noise / Pfadweise Eindeutigkeit der stochastischen Wärmeleitungsgleichung mit Hölder-stetigem Diffusionskoeffizienten und farbigem RauschenRippl, Thomas 29 October 2012 (has links)
No description available.
|
76 |
在常微分方程下利用二次逼近法探討人口成長模型問題 / On the Parabola Approximation Method in Ordinary Differential Equation - Modelling Problem on The Population Growth李育佐, Li,Yu Tso Unknown Date (has links)
在人口統計領域中,早期習慣將人口變化視為時間的函數,企圖以Deterministic Function來刻劃,例如:1798年Malthus提出的Malthusian Growth Model ;1825年Gompertz提出的Gompertz Model以及1838年Verhulst主張以Logistic Function描述人口成長。而近年來則是傾向於逐項分析各種因素的隨機性模型,例如:1983年Holford加入世代的APC模型;1992年Lee 和Carter提出的Lee-Carter死亡率模型以及2003年Renshaw與Haberman提出改善Lee-Carter死亡率模型的Reduction Factor模型。
人口變化主要分成自然增加與社會增加,而自然增加是為出生扣掉死亡,社會增加則為移入扣掉移出。首先,本文先不考慮遷移的部分,各別以出生與死亡人口的變化為研究對象,視其變化為一隨時間變動的動態系統,以常微分方程來刻劃。由台灣地區人口統計資料顯示,出生率或死亡率都有逐年下降的趨勢,而且隨著時間而變化加劇的傾向,使得以往使用的模型不易捕捉變化,因此我們提出「二次逼近法」,從出生、死亡人數對時間的變化率與曲度利用數值分析的方式來估計出生與死亡數,進而從中找出在此動態系統背後隱藏的規則。而後再同時考慮其他各種變項,以偏微分方程來刻劃,最後即可建立台灣地區人口變化模型。 / In early population statistics, the population changes were regarded as a function of time so that people tended to
describe the variations by deterministic functions. For instance, Malthus proposed the Malthusian Growth Model in 1798; Gompertz presented Gompertz Model in 1825; Verhulst advocated using logistic function to describe an increase in population. In recent years, people tend to use the stochastic forecast method to analyse every factor term by term. For instance, the Age-Period-Cohort (APC) Model which was proposed by Holford in 1983; Lee and Carter proposed the Lee-Carter Mortality Model in 2003; and Renshaw and Haberman proposed the Reduction Factor Model in 2003 that improve the Lee-Carter Mortality Model.
The population changes equal to nature and social increase, where the nature increase is the difference between birth and death population, and the social increase is the difference between immigrants and emigrants. First, we focus on natural increase rather than social increase. Moreover, we use ordinary differential equation to decribe the variation as a dynamic system over time. From the data obtained from the Ministry of Interior Taiwan, we know that the fertility and mortality has been decreasing, and the change is getting more violent year by year. Under the consideration that previous models are not able to accurately present the changes of birth and death, we proposed "second-order (or parabola) approximation method." From the variation rates and curvatures of birth and death population, we estimated the population size. Furthermore, we want to find the rule in the dynamic system. Later we will consider other factors simultaneously, and describe them by partial differential equation. Finally, the population model is constructed.
|
77 |
Modelos matemáticos para o retoque digital de imagensSilva, André Luiz Ortiz da [UNESP] 23 February 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-02-23Bitstream added on 2014-06-13T20:55:45Z : No. of bitstreams: 1
silva_alo_me_sjrp.pdf: 1157182 bytes, checksum: 08ed86b39eb7aa9014461e7988e01266 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho apresentamos conceitos teþoricos fundamentais como os Príncipios da Boa Continuação de Gestalt e da Conectividade de Kanizsa, os quais estão intimamente relacionados `a percepção visual humana estudada por psicólogos. Tais conceitos são muito importantes no contexto do processamento de imagens, principalmente no que se refere ao processo de Retoque Digital de Imagens, influenciando e auxiliando pesquisadores a criar modelos matemáticos que imitem o sistema visual humano, com a intenção de deixar o processo mais real possþývel. Apresentamos também, diversos modelos matemþaticos propostos para solucionar o problema de retoque digital, bem como técnicas para implementação computacional de tais modelos. / In this work we present fundamental theoretical concepts like the Gestalt s Good Continuation Principle and the Kanizsa s Connectivity Principle, which are closely related to human visual perception studied by psychologists. Such concepts are very important in the context of the image processing, mainly in those related to the inpainting process. These concepts are influencing and helping researchers to create mathematical models that imitate the human visual system, with the purpose to make the process as real as possible. We also present, various mathematical models developed to solve the inpainting problem and techniques for the computational implementation of theses models.
|
78 |
Étude de réseaux complexes de systèmes dynamiques dissipatifs ou conservatifs en dimension finie ou infinie. Application à l'analyse des comportements humains en situation de catastrophe. / Complex networks of dissipative or conservative dynamical systems in finite or infinite dimension. Application to the study of human behaviors during catastrophic events.Cantin, Guillaume 12 October 2018 (has links)
Cette thèse est consacrée à l'étude de la dynamique des systèmes complexes. Nous construisons des réseaux couplés à partir de multiples instances de systèmes dynamiques déterministes, donnés par des équations différentielles ordinaires ou des équations aux dérivées partielles de type parabolique, qui décrivent un problème d'évolution. Nous étudions le lien entre la dynamique interne à chaque nœud du réseau, les éléments de la topologie du graphe portant ce réseau, et sa dynamique globale. Nous recherchons les conditions de couplage qui favorisent une dynamique globale particulière à l'échelle du réseau, et étudions l'impact des interactions sur les bifurcations identifiées sur chaque nœud. Nous considérons en particulier des réseaux couplés de systèmes de réaction-diffusion, dont nous étudions le comportement asymptotique, en recherchant des régions positivement invariantes, et en démontrant l'existence d'attracteurs exponentiels de dimension fractale finie, à partir d'estimations d'énergie qui révèlent la nature dissipative de ces réseaux de systèmes de réaction-diffusion. Ces questions sont étudiées dans le cadre de quelques applications. En particulier, nous considérons un modèle mathématique pour l'étude géographique des réactions comportementales d'individus, au sein d'une population en situation de catastrophe. Nous présentons les éléments de modélisation associés, ainsi que son étude mathématique, avec une analyse de la stabilité des équilibres et de leurs bifurcations. Nous établissons l'importance capitale des chemins d'évacuation dans les réseaux complexes construits à partir de ce modèle, pour atteindre l'équilibre attendu de retour au comportement du quotidien pour l'ensemble de la population considérée, tout en évitant une propagation du comportement de panique. D'autre part, la recherche de solutions périodiques émergentes dans les réseaux d'oscillateurs nous amène à considérer des réseaux complexes de systèmes hamiltoniens pour lesquels nous construisons des perturbations polynomiales qui provoquent l'apparition de cycles limites, problématique liée au XVIème problème de Hilbert. / This thesis is devoted to the study of the dynamics of complex systems. We consider coupled networks built with multiple instances of deterministicdynamical systems, defined by ordinary differential equations or partial differential equations of parabolic type, which describe an evolution problem.We study the link between the internal dynamics of each node in the network, its topology, and its global dynamics. We analyze the coupling conditions which favor a particular dynamics at the network's scale, and study the impact of the interactions on the bifurcations identified on each node. In particular, we consider coupled networks of reaction-diffusion systems; we analyze their asymptotic behavior by searching positively invariant regions, and proving the existence of exponential attractors of finite fractal dimension, derived from energy estimates which suggest the dissipative nature of those networks of reaction-diffusion systems.Our framework includes the study of multiple applications. Among them, we consider a mathematical model for the geographical analysis of behavioral reactions of individuals facing a catastrophic event. We present the modeling choices that led to the study of this evolution problem, and its mathematical study, with a stability and bifurcation analysis of the equilibria. We highlight the decisive role of evacuation paths in coupled networks built from this model, in order to reach the expected equilibrium corresponding to a global return of all individuals to the daily behavior, avoiding a propagation of panic. Furthermore, the research of emergent periodic solutions in complex networks of oscillators brings us to consider coupled networks of hamiltonian systems, for which we construct polynomial perturbationswhich provoke the emergence of limit cycles, question which is related to the sixteenth Hilbert's problem.
|
79 |
Solving Partial Differential Equations by Taylor Meshless Method / La modélisation avancée et la simulation en utilisant la série de TaylorYang, Jie 22 January 2018 (has links)
Le but de cette thèse est de développer une méthode numérique simple, robuste, efficace et précise pour résoudre des problèmes d'ingénierie de grande taille à partir de la méthode Taylor Meshless (TMM) et fournir de nouvelles idées principales de TMM est d'utiliser comme fonctions de forme des polynômes d'ordre élevé qui sont des solutions approchées de l'EDP. Ainsi la discrétisation ne concerne que la frontière. Les coefficients de ces fonctions de forme sont obtenus en discrétisant les conditions aux limites par des procédures de collocation associées à la méthode des moindres carrés. TMM est alors une véritable méthode sans maillage sans processus d'intégration, les conditions aux limites étant obtenues par collocation. Les principales contributions de cette thèse sont les suivantes: 1) Basé sur TMM, un algorithme général et efficace a été développé pour résoudre des EDP elliptiques tridimensionnelles; 2) Trois techniques de couplage pour des résolutions par morceaux ont été discutées dans des cas de problèmes à grande échelle: la méthode de collocation par les moindres carrés et deux méthodes de couplage basées sur les multiplicateurs de Lagrange; 3) Une méthode numérique générale pour résoudre les EDP non-linéaires a été proposée en combinant la méthode de Newton, la TMM et la technique de différentiation automatique. 4) Pour résoudre des problèmes avec un bord non régulier, des solutions singulières satisfaisant l'équation de contrôle sont introduites comme des fonctions de forme complémentaires, ce qui fournit une base théorique pour la résolution de problèmes singuliers / Based on Taylor Meshless Method (TMM), the aim of this thesis is to develop a simple, robust, efficient and accurate numerical method which is capable of solving large scale engineering problems and to provide a new idea for the follow-up study on meshless methods. To this end, the influence of the key factors in TMM has been studied by solving three-dimensional and non-linear Partial Differential Equations (PDEs). The main idea of TMM is to use high order polynomials as shape functions which are approximated solutions of the PDE and the discretization concerns only the boundary. To solve the unknown coefficients, boundary conditions are accounted by collocation procedures associated with least-square method. TMM that needs only boundary collocation without integration process, is a true meshless method. The main contributions of this thesis are as following: 1) Based on TMM, a general and efficient algorithm has been developed for solving three-dimensional PDEs; 2) Three coupling techniques in piecewise resolutions have been discussed and tested in cases of large-scale problems, including least-square collocation method and two coupling methods based on Lagrange multipliers; 3) A general numerical method for solving non-linear PDEs has been proposed by combining Newton Method, TMM and Automatic Differentiation technique; 4) To apply TMM for solving problems with singularities, the singular solutions satisfying the control equation are introduced as complementary shape functions, which provides a theoretical basis for solving singular problems
|
80 |
Derivaçao de uma Equação Diferencial Parcial Não-Linear na Propagação de Frentes de Reação em Química / Derivation of a partial differential equation in non-linear propagation of fronts from reaction in chemistryCARDOSO FILHO, João Lopes 29 August 2008 (has links)
Made available in DSpace on 2014-07-29T16:02:22Z (GMT). No. of bitstreams: 1
Trabalho - Joao Lopes Cardoso Filho.pdf: 808434 bytes, checksum: 704ba35b2a4ad822c43237b7d22af060 (MD5)
Previous issue date: 2008-08-29 / In this dissertação we deducted a nonlinear evolution equations which model vertical propagation of chemical reaction fronts. We establish which the initial value problem
∂tu - ∂²x u - ½(∂xu)² - µ(1-∂²x) - ½u = 0, x Є [-π, π], t > 0
u(.,0) = ø, 2 π - periódica
it is a the Cauchy problem locally well-posed. / Nesta dissertação deduzimos uma equação de evolução não-linear que modela a propagação vertical de frentes de reação em química. Também resolvemos o problema devalor inicial
∂tu - ∂²x u - ½(∂xu)² - µ(1-∂²x) - ½u = 0, x Є [-π, π], t > 0
u(.,0) = ø, 2 π - periódica
Demonstrando a boa-postura do Problema de Cauchy, localmente no tempo.
|
Page generated in 0.0286 seconds