Spelling suggestions: "subject:"[een] PATH PLANNING"" "subject:"[enn] PATH PLANNING""
361 |
Line-of-Sight Guidance for Wheeled Ground VehiclesLin, Letian 23 September 2020 (has links)
No description available.
|
362 |
Optimization-Based Path Planning For Indoor UAVs in an Autonomous Exploration Framework / Optimeringsbaserad Vägplanering för Inomhus-UAV:er i ett Autonomt UtforskningsramverkCella, Marco January 2023 (has links)
Exploration is a fundamental problem in robotics that requires robots to navigate through unknown environments to autonomously gather information about their surroundings while executing collision-free paths. In this project, we propose a method for producing smooth paths during the exploration process in indoor environments using UAVs to improve battery efficiency and enhance the quality of pose estimation. The developed framework is built by merging two approaches that represent the state of the art in the field of autonomous exploration with UAVs. The overall exploration logic is given by GLocal, a paper that introduces a hybrid, i.e. both sampling-based and frontier-based, framework that is able to cope with the issue of odometry drift when exploring indoor environments due to the absence of absolute localization, e.g. through GNSS. The second approach is FUEL, which introduces a frontier-based exploration methodology which computes the ’drones path as an optimized non-uniform B-Spline. The framework described in this thesis borrows the optimized B-Spline trajectory generation from FUEL and implements it in GLocal. To do this, the original cost function defined by GLocal for each exploration viewpoint was modified and the resulting samples were used to select the initial control points of the B-Spline. Furthermore, we extended the underlying state machine governing the entire algorithm and we revisited the original re-planning logic. The presented system is evaluated in various simulated environments, showcasing the advantages and disadvantages of this method. These evaluations demonstrate its improved state estimation performance and absolute observed volume, albeit at the expense of longer traveled trajectories in big and complex environments. / Utforskning är ett grundläggande problem inom robotteknik som kräver att robotar navigerar genom okända miljöer för att autonomt samla in information om sin omgivning samtidigt som de utför kollisionsfria banor. I det här projektet föreslår vi en metod för att producera jämna banor under utforskningsprocessen i inomhusmiljöer med hjälp av UAV:er för att förbättra batterieffektiviteten och förbättra kvaliteten på posestimeringen. Det utvecklade ramverket bygger på en sammanslagning av två metoder som representerar den senaste tekniken inom autonom utforskning med UAV:er. Den övergripande utforskningslogiken ges av GLocal, en artikel som introducerar en hybrid, i.e. både samplingsbaserad och gränsbaserad, ram som kan hantera problemet med odometridrift vid utforskning av inomhusmiljöer på grund av frånvaron av absolut lokalisering, e.g. genom GNSS. Den andra metoden är FUEL, som introducerar en gränsbaserad utforskningsmetod som beräknar drönarens bana som en optimerad icke-uniform B-Spline. Ramverket som beskrivs i denna avhandling lånar den optimerade B-Spline-banegenereringen från FUEL och implementerar den i GLocal. För att göra detta modifierades den ursprungliga kostnadsfunktionen som definierades av GLocal för varje utforskningspunkt och de resulterande samplen användes för att välja de initiala kontrollpunkterna för B-Spline. Dessutom utökade vi den underliggande tillståndsmaskinen som styr hela algoritmen och vi reviderade den ursprungliga logiken för omplanering. Det presenterade systemet utvärderas i olika simulerade miljöer, vilket visar fördelarna och nackdelarna med denna metod. Dessa utvärderingar visar på förbättrad prestanda för tillståndsuppskattning och absolut observerad volym, om än på bekostnad av längre färdvägar i stora och komplexa miljöer.
|
363 |
Obstacle Avoidance for Small Unmanned Air VehiclesCall, Brandon R. 20 September 2006 (has links) (PDF)
Small UAVs are used for low altitude surveillance flights where unknown obstacles can be encountered. These UAVs can be given the capability to navigate in uncertain environments if obstacles are identified. This research presents an obstacle avoidance system for small UAVs. First, a mission waypoint path is created that avoids all known obstacles using a genetic algorithm. Then, while the UAV is in flight, obstacles are detected using a forward looking, onboard camera. Image features are found using the Harris Corner Detector and tracked through multiple video frames which provides three dimensional localization of the features. A sparse three dimensional map of features provides a rough estimate of obstacle locations. The features are grouped into potentially hazardous areas. The small UAV then employs a sliding mode control law on the autopilot to avoid obstacles. This research compares rapidly-exploring random trees to genetic algorithms for UAV pre-mission path planning. It also presents two methods for using image feature movement and UAV telemetry to calculate depth and detect obstacles. The first method uses pixel ray intersection and the second calculates depth from image feature movement. Obstacles are avoided with a success rate of 96%.
|
364 |
Exploration Strategies for Robotic Vacuum Cleaners / Strategier för utforskning med robotdammsugareNavarro Heredia, Sofia January 2018 (has links)
In this thesis, an exploration mode for the PUREi9 robotic vacuum cleaner is implemented. This exploration would provide information for optimizing the cleaning path beforehand, and would allow the robot to relocalize itself or the charger more easily in case it gets lost. Two elements are needed in order to implement an exploration mode; first, an exploration algo-rithm which will decide the next position of the robot in order to obtain useful information about the environment (unknown areas, empty spaces, obstacles...), and second, an exploration map which stores that information and is updated each time a new relevant position is reached. These elements are related and generally both are required for performing successfully the exploration of a specific environment. A frontier-based strategy is adopted for the exploration algorithm, together with occupancy grid maps. This strategy has long been regarded as a key method for autonomous robots working in unknown or changing environments. The idea of frontier-based algorithms is to divide the environ-ment into cells of regular size and drive the robot to the frontiers between cells with no obstacles and cells for which no information has been gathered. It plans one step ahead by choosing a lo-cation which provides new environment information, instead of planning in advance all locations where the robot needs to acquire new sensor information. Based on frontier strategy, two different exploration algorithms are implemented in the project. The first one is called "random frontier strategy", which chooses arbitrarily the frontier to go among the frontiers set. The second is called "closest frontier strategy", which chooses the closest frontier as the NBV (Next Best View) the robot should drive to. A path planning algorithm, based on Dijkstra’s algorithm and a node graph, has also been implemented in order to guide the robot towards the frontiers. The two methods have been compared by means of simulations in different environments. In addition, both exploration strategies have been tested on a real device. It is found that the closest frontier strategy is more efficient in terms of path length between scanning points, while both methods give a similar exploration ratio, or percentage of fully explored cells within the final map. Some additional work is required in order to improve the performance of the exploration method in the future, such as detecting unreachable frontiers, implementing a more robust path planning algorithm, or filtering the laser measurements more extensively. / I den här rapporten har vi implementerat en utforskningsmod för robotdammsugaren Pure i9. Sådan utforskning skulle ge underlag för att optimera städmönstret i förhand och låta roboten relokalisera sig själv eller laddaren om den tappar bort sig. För att implementera utforskning behövs två saker. För det första krävs en algoritm för utforsk-ning, som bestämmer nästa position för roboten, med målet att samla användbar information om omgivningen (okända eller fria områden, hinder etc.) För det andra krävs en karta som lagrar informationen och uppdateras varje gång roboten når en relevant ny position. Dessa två hänger ihop och i allmänhet krävs båda för att framgångsrikt utforska ett specifikt område. Vi har valt en front-baserad strategi för utforskningsalgoritmen, tillsammans med en rutnäts-karta med sannolikheten för hinder. Denna strategi har länge betraktats som en nyckelmetod för autonoma robotar som arbetar i okända eller föränderliga miljöer. Idén med front-baserade strate-gier är att köra roboten till fronterna mellan celler utan hinder och celler där information saknas. Den planerar ett steg framåt genom att välja en plats som ger ny information om miljön, istället för att i förväg planera alla platser där roboten behöver samla in ny sensorinformation. Baserat på front-strategi, har vi implementerat två utforskningsalgoritmer i projektet. Den första är en slumpmässig strategi, som godtyckligt väljer en front att åka till, ur hela mängden av fronter. Den andra är en närmaste fronten-strategi som väljer den närmaste fronten som den nästa bästa utsiktspunkt som roboten ska åka till. Vi har också implementerat en algoritm för banplanering, baserad på Dijkstras algoritm och en nod-graf, för att styra roboten mot fronterna. Vi har jämfört de två metoderna genom simulering i olika miljöer. Dessutom har båda utforsk-ningsstrategierna testats på en riktig enhet. Närmaste fronten-strategin är effektivare med avse-ende på banlängd mellan skanningspunkter, medan båda metoderna ger liknande utforsknings-grad, eller samma procentandel av fullt utforskade celler inom den slutliga kartan.
|
365 |
Terrain Referenced Navigation with Path Optimization : Optimizing Navigation Accuracy by Path Planning / Banplanering för terrängbaserad navigering : Optimering av navigationsprecision genom banplaneringGelin, Martin January 2022 (has links)
Terrain referenced navigation is a method of navigation that uses measurements of altitude above ground to infer the position of the vehicle, mainly aerial or underwater. This method provides an alternative to the commonly used satellite-based navigation. Satellite-based navigation methods rely on positional information being sent from an external source, which can be jammed or tampered with, a problem terrain referenced navigation does not have. Both satellite-based and terrain based navigation methods often work in conjunction with inertial navigation systems, which are accurate for short periods of time but suffer from large errors due to accumulation of errors when used for longer missions. In this thesis, several state-of-the-art methods of terrain referenced navigation are studied and evaluated, with the main focus being the different estimation methods employed. Five of the studied estimators were implemented and tested on simulated flight data from a generic aerial vehicle, resulting in improved navigation accuracy compared to using inertial navigation on its own. For the terrain referenced navigation to work well, the ground needs to be relatively unique in order to contain useful information, thus making the estimation more uncertain when flying over flat regions. To deal with this, path planning was used to alter the flight path to increase the expected information gain. Using a grid based planning algorithm together with the original route yielded a modified path with more potential information. When following this new path, the terrain referenced navigation systems are shown to estimate the position more accurately compared to the original path. The study shows that terrain referenced navigation is a viable alternative to satellite based navigation. It also indicates that modifying the path to increase the expected information gain can result in better robustness and precision. / Terrängbaserad navigering är en navigeringsmetod där mätningar av höjd över mark används för att fastställa fordonets position, huvudsakligen från luften eller under vattnet. Denna metod är ett alternativ till den allmänt använda satellitbaserade navigeringen. Satellitbaserad navigering är beroende av att positionsinformation skickas från en extern källa, som kan störas eller manipuleras, vilket är ett problem som terrängbaserad navigering inte har. Både satellitbaserade och terrängbaserade navigeringsmetoder används ofta tillsammans med tröghetsnavigeringssystem, som är noggranna under kortare tid, men som lider av stora fel på grund av ackumulering av fel när de används under längre uppdrag. I denna rapport studeras och utvärderas flera moderna metoder för terrängbaserad navigering, med huvudfokus på de olika skattningsmetoder som används. Fem av de studerade skattningsmetoderna implementerades och testades på simulerade flygdata från ett generiskt flygfarkost, vilket resulterade i förbättrad navigeringsnoggrannhet jämfört med att använda tröghetsnavigering på egen hand. För att den terrängbaserade navigeringen ska fungera bra måste marken vara relativt unik för att innehålla användbar information, vilket gör uppskattningen mer osäker när man flyger över plana områden. För att hantera detta användes banplanering för att välja en flygbana som ger maximalt informations innehåll. Genom att använda en rutnätsbaserad planeringsalgoritm tillsammans med den ursprungliga rutten erhölls en modifierad bana med mer potentiell information. Genom att följa denna nya bana uppskattas positionen bättre av de terrängbaserade navigationssystemen jämfört med den ursprungliga banan. Studien visar att terrängbaserad navigering är ett gångbart alternativ till satellitbaserad navigering. Den visar också att en ändring av banan för att öka den förväntade informationsvinsten kan leda till bättre robusthet och precision.
|
366 |
Data Harvesting and Path Planning in UAV-aided Internet-of-Things Wireless Networks with Reinforcement Learning : KTH Thesis Report / Datainsamling och vägplanering i UAV-stödda Internet-of-Things trådlösa nätverk med förstärkningsinlärning : KTH ExamensrapportZhang, Yuming January 2023 (has links)
In recent years, Unmanned aerial vehicles (UAVs) have developed rapidly due to advances in aerospace technology, and wireless communication systems. As a result of their versatility, cost-effectiveness, and flexibility of deployment, UAVs have been developed to accomplish a variety of large and complex tasks without terrain restrictions, such as battlefield operations, search and rescue under disaster conditions, monitoring, etc. Data collection and offloading missions in The internet of thingss (IoTs) networks can be accomplished with the use of UAVs as network edge nodes. The fundamental challenge in such scenarios is to develop a UAV movement policy that enhances the quality of mission completion and avoids collisions. Real-time learning based on neural networks has been proven to be an effective method for solving decision-making problems in a dynamic, unknown environment. In this thesis, we assume a real-life scenario in which a UAV collects data from Ground base stations (GBSs) without knowing the information of the environment. A UAV is responsible for the MOO including collecting data, avoiding obstacles, path planning, and conserving energy. Two Deep reinforcement learnings (DRLs) approaches were implemented in this thesis and compared. / Under de senaste åren har UAV utvecklats snabbt på grund av framsteg inom flygteknik och trådlösa kommunikationssystem. Som ett resultat av deras mångsidighet, kostnadseffektivitet och flexibilitet i utbyggnaden har UAV:er utvecklats för att utföra en mängd stora och komplexa uppgifter utan terrängrestriktioner, såsom slagfältsoperationer, sök och räddning under katastrofförhållanden, övervakning, etc. Data insamlings- och avlastningsuppdrag i IoT-nätverk kan utföras med användning av UAV:er som nätverkskantnoder. Den grundläggande utmaningen i sådana scenarier är att utveckla en UAV-rörelsepolicy som förbättrar kvaliteten på uppdragets slutförande och undviker kollisioner. Realtidsinlärning baserad på neurala nätverk har visat sig vara en effektiv metod för att lösa beslutsfattande problem i en dynamisk, okänd miljö. I den här avhandlingen utgår vi från ett verkligt scenario där en UAV samlar in data från GBS utan att känna till informationen om miljön. En UAV är ansvarig för MOO inklusive insamling av data, undvikande av hinder, vägplanering och energibesparing. Två DRL-metoder implementerades i denna avhandling och jämfördes.
|
367 |
Robot Control Using Path Integral Policy Improvement and Deep Dynamics Models / Robotstyrning med Vägenintegrerad Politikförbättring och Djupa Dynamik ModellerShi, Haoxiang January 2021 (has links)
Robotics is an interdisciplinary field that integrates computer science, electrical engineering, mechanical engineering, control engineering and other related fields. As the quick development of these fields, people have been building more complex robots with more advanced control strategies in order to solve more challenging tasks. In addition, it is always a target for researchers to achieve autonomous operation of robots so that the manpower can be saved and the robot can work in harsh environment like on Mars. In this project, I focus on the trajectory planning problem of a unicycle model running in 2D environment. I choose Path Integral Policy Improvement (PI2) control algorithm in this project as the main study object. And Model Predictive Control (MPC) is chosen as a reference in order to be compared with PI2 to evaluate the performance of PI2. In order to simulate the tasks that the robot needs to handle in practice, I use obstacles to represent the complex environment and I use Signal Temporal Logic (STL) to represent the complex tasks. Furthermore, I also incorporate the deep dynamics model in the project so that the the method put forward in this project is able to handle complex robot models and complex working environments. To evaluate the performances of PI2 and MPC, five criteria are put forward in this project. Finally, based on the evaluation results, possible improvement and future research are proposed. / Robotics är ett tvärvetenskapligt område som integrerar datavetenskap, elektroteknik, maskinteknik, styrteknik och andra relaterade områden. Som den snabba utvecklingen av dessa fält har människor byggt mer komplexa robotar med mer avancerade kontrollstrategier för att lösa mer utmanande uppgifter. Dessutom är det alltid ett mål för forskare att uppnå autonom drift av robotar så att arbetskraften kan sparas och roboten kan arbeta i tuffa miljöer som på Mars. I det här projektet fokuserar jag på banplaneringsproblemet för en enhjulingsmodell som körs i 2D-miljö. Jag väljer Path Integral Policy Improvement (PI2) kontrollalgoritm i detta projekt som huvudstudieobjekt. Och Model Predictive Control (MPC) väljs som referens för att kunna jämföras med PI2 för att utvärdera prestandan för PI2. För att simulera de uppgifter som roboten behöver hantera i praktiken använder jag hinder för att representera den komplexa miljön och jag använder Signal Temporal Logic (STL) för att representera de komplexa uppgifterna. Dessutom införlivar jag också den djupa dynamikmodellen i projektet så att metoden som läggs fram i detta projekt kan hantera komplexa robotmodeller och komplexa arbetsmiljöer. För att utvärdera prestanda för PI2 och MPC presenteras fem kriterier i detta projekt. Slutligen, baserat på utvärderingsresultaten, föreslås möjliga förbättringar och framtida forskning.
|
368 |
Heuristic Optimization and Sensing Techniques for Mission Planning of Solar-Powered Unmanned Ground VehiclesKingry, Nathaniel 04 September 2018 (has links)
No description available.
|
369 |
ASEMS: Autonomous Specific Energy Management StrategyAmirfarhangi Bonab, Saeed January 2019 (has links)
This thesis addresses the problem of energy management of a hybrid electric power unit for an autonomous vehicle. We introduce, evaluate, and discuss the idea of autonomous-specific energy management strategy. This method is an optimization-based strategy which improves the powertrain fuel economy by exploiting motion planning data.
First, to build a firm base for further evaluations, we will develop a high-fidelity system-level model for our case study using MATLAB/Simulink. This model mostly concerns about energy-related aspects of the powertrain and the vehicle. We will derive and implement the equations for each of the model subsystems. We derive model parameters using available data in the literature or online. Evaluation of the developed model shows acceptable conformity with the actual dynamometer data. We will use this model to replace the built-in rule-based logic with the proposed strategy and assess the performance.\par
Second, since we are considering an optimization-based approach, we will develop a novel convex representation of the vehicle and powertrain model. This translates to reformulating the model equations using convex functions. Consequently, we will express the fuel-efficient energy management problem as the convex optimization problem. We will solve the optimization problem using dedicated numerical solvers. Extracting the control inputs using this approach and applying them on the high-fidelity model provides similar results to dynamic programming in terms of fuel consumption but in substantially less amount of time. This will act as a pivot for the subsequent real-time analysis.\par
Third, we will perform a proof-of-concept for the autonomous-specific energy management strategy. We implement an optimization-based path and trajectory planning for a vehicle in the simplified driving scenario of a racing track. Accordingly, we use motion planning data to obtain the energy management strategy by solving an optimization problem. We will let the vehicle to travel around the circuit with the ability to perceive and plan up to an observable horizon using the receding horizon approach. Developed approach for energy management strategy shows a substantial reduction in the fuel consumption of the high-fidelity model, compared to the rule-based controller. / Thesis / Master of Science in Mechanical Engineering (MSME) / The automotive industry is on the verge of groundbreaking transformations as a result of electrification and autonomous driving. Electrified autonomous car of the future is sustainable, energy-efficient, more convenient, and safer. In addition to the advantages of electrification and autonomous driving individually, the intersection and interaction of these mainstreams provide new opportunities for further improvements on the vehicles. Autonomous cars generate an unprecedented amount of real-time data due to excessive use of perception sensors and processing units. This thesis considers the case of an autonomous hybrid electric vehicle and presents the novel idea of autonomous-specific energy management strategy. Specifically, this thesis is a proof-of-concept, a trial to exploit the motion planning data for a self-driving car to improve the fuel economy of the hybrid electric power unit by adopting a more efficient energy management strategy. With the ever-increasing number of autonomous hybrid electric vehicles, particularly in the self-driving fleets, the presented method shows an extremely promising potential to reduce the fuel consumption of these vehicles.
|
370 |
Optical flow-based perception, behavior-based control and topological path planning for mobile robots using fuzzy logic conceptsMai, Ngoc Anh 03 March 2021 (has links)
Recently, mobile robots with visual perception working in dynamic environments have been extensively investigated because this method of perception offers a large amount of environmental information. Optical flow perception is an important class of visual perception because it offers powerful perception methods and it offers both egomotion and structure from motion estimation. Especially advantageous is the fact that optical flow perception does not require a priori knowledge of the working environment and can work with minimum hardware, i.e. a mono-camera as the main navigation sensor.
In this thesis, a new approach of optical flow-based perception through qualitative interpretations is developed. Compared to the classical metric approaches for optical flow perception, this approach uses much simpler arithmetic and requires less computation time because of the use of qualitative optical flow interpretations. The qualitative optical flow interpretations provide mobile robots with visual perception a more detailed image of their 3D working environment, e.g. obstacle positions and indoor object types. By using fuzzy logic for the interpretations, the optical flow perception becomes simple and intelligent in a bioinspired manner and moreover gains robustness under noisy conditions in the working environment. On the other hand, this thesis develops a generic modular structure of a behavior-based control system with three clearly separate modules for perception, motion control, and path planning. These modules are connected by simple IO interfaces. The system concept is independent of the specific type of perception. The designed behaviors are functionally classified into two separated modules, concerning collision-free motion control and goal oriented path planning. The hierarchical organization of these behaviors makes the operation of the control system more efficient and enables an easy adjustment of behaviors. Some of the behaviors use fuzzy logic concepts, which result in flexible and smooth robotic motion. Furthermore a new scheme for topological path planning in combination with fuzzy-based behaviors is developed for the goal-oriented navigation of a mobile robot. This combination allows a mobile robot to perform topological path planning in a real environment without metric information regarding its global and local positions. This enables an easy adjustment of topological path planning for different sensor perceptions or landmarks by just changing the topological map data.
The performance of the optical flow-based perception embedded in the behavior-based control system with the topological path planning has been successfully tested through experiments in a real environment under most realistic conditions including relevant noise effects, e.g. unfavorable lightning conditions, non-standard objects, image processing limitations, image noise, etc. / Heutzutage werden mobile Roboter zunehmend mit Kameras ausgestattet, da diese eine Vielzahl von Informationen über die Umgebung bereitstellen. Die Perzeption mit Hilfe des optischen Flusses ist eine wichtige Methode der Bildverarbeitung, da sie eine leistungsfähige Umgebungserfassung und die Nachahmung biologisch-inspirierter Prozesse erlaubt. Dabei können sowohl Informationen zur Eigenbewegung als auch Daten über die Struktur der Umgebung gewonnen werden. Besonders vorteilhaft ist hierbei einerseits die Tatsache, dass keinerlei a-priori-Informationen über die Umwelt benötigt werden und anderseits die geringen Hardwareansprüche von Kamerasystemen. So kann beispielsweise eine einfache Monokamera als Hauptsensor zur Navigation für den mobilen Roboter verwendet werden.
In der vorliegenden Arbeit wird ein neuer Ansatz zur optischen Fluss basierten Perzeption mittels qualitativer Interpretation entwickelt. Verglichen mit klassischen metrischen Methoden, arbeitet der vorgestellte Ansatz dabei mit einer simpleren Arithmetik und benötigt weniger Rechenzeit. Die qualitative Verarbeitung des optischen Flusses bietet dem Roboter ein detaillierteres Bild der dreidimensionalen Arbeitsumgebung. So können beispielsweise Hindernispositionen ermittelt und Objekttypen im Innenraum erfasst werden. Durch die Verwendung von Fuzzy-Logik bei der Interpretation der visuellen Information gestaltet sich die Umgebungserfassung mit Hilfe des optischen Flusses sehr einfach und erlaubt eine bioinspirierte intelligente Entscheidungsfindung, die auch robust gegenüber realen gestörten Umgebungsbedingungen ist.
Weiterhin wird in der vorliegenden Arbeit eine generische modulare Struktur für eine verhaltensbasierte Steuerung mit drei klar getrennten Modulen für Perzeption, Bewegungssteuerung und Pfadplanung vorgestellt. Diese Module werden über einfache Schnittstellen miteinander verbunden. Dadurch ist das entstandene System auch auf andere Perzeptionsmethoden mobiler Roboter anwendbar. Die realisierten Verhaltensmuster werden dabei funktionsorientiert in zwei Module eingeordnet: Ein Modul sichert hierbei die kollisionsfreie Bewegungssteuerung, ein weiteres realisiert die zielorientierte Pfadplanung. Die hierarchische Organisation dieser Verhaltensmuster ermöglicht ein effizientes und einfaches Vorgehen bei der Modifikation der hinterlegten Eigenschaften. Dabei nutzen manche dieser Verhaltensmuster wiederum Konzepte der Fuzzy-Logik, um die Roboterbewegung so flexibel und leichtgängig zu realisieren, wie es bei biologischen Systemen der Fall ist.
Für die zielorientierte Navigation eines mobilen Roboters wurde in einem dritten Schwerpunkt eine neue Methode für die topologische Pfadplanung in Kombination mit Fuzzy-Logik-basierten Verhalten entwickelt. Diese Kombination ermöglicht dem Roboter die topologische Pfadplanung in einer realen Umgebung ohne jegliche Verwendung von metrischen Informationen in Bezug auf seine Position und Orientierung. Dadurch kann die Pfadplanung durch einfache Modifikationen der topologischen Kartendaten für verschiedene Perzeptionssensoren oder Landmarkenrepräsentationen angepasst werden.
Die Leistungsfähigkeit der Perzeption mittels des optischen Flusses innerhalb der verhaltensbasierten Steuerung zusammen mit der topologischen Pfadplanung wird anhand von Experimenten mit einem mobilen Roboter in einer realen Umgebung gezeigt. Dabei werden auch unterschiedlichste Bedingungen, wie sich ändernden Lichtverhältnissen, unbekannten Objekten, Einschränkungen bei der Bildverarbeitung sowie Bildrauschen berücksichtigt.
|
Page generated in 0.0712 seconds