• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 4
  • 2
  • Tagged with
  • 23
  • 23
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Physico-Chemical Processes for Oil Sands Process-Affected Water Treatment

Pourrezaei,Parastoo Unknown Date
No description available.
12

Adsorption of Single-ring Model Naphthenic Acid from Oil Sands Tailings Pond Water Using Petroleum Coke-derived Activated Carbon

Sarkar, Bithun 17 July 2013 (has links)
Petroleum coke-derived activated carbons were prepared and used for the adsorptive removal of a single-ring naphthenic acid (NA) from synthetic oil sands tailings pond water (TPW). The overall adsorption process was found to be intra-particle diffusion-controlled. The Weber-Morris intra-particle diffusion rate constants decreased from 7.43 to 1.23 mg/g min0.5 after activated carbon was post-oxidized with oxygen, suggesting a hindering effect of oxygen surface groups. The Freundlich model fit of the equilibrium adsorption isotherms and the small negative ΔHo pointed to a physisorption-dominated process and the importance of specific surface area. It was estimated that about 2.7 g/L of basic CO2-activated carbon is needed to reduce NA concentration from 120 mg/L to 2.5 mg/L (~98% removal) in synthetic TPW. However, equilibrium adsorption capacity was found to vary significantly after oxygen or nitrogen groups were introduced onto the surface. Therefore, there is a potential for enhanced adsorption by chemical functionalization of carbon.
13

Adsorption of Single-ring Model Naphthenic Acid from Oil Sands Tailings Pond Water Using Petroleum Coke-derived Activated Carbon

Sarkar, Bithun 17 July 2013 (has links)
Petroleum coke-derived activated carbons were prepared and used for the adsorptive removal of a single-ring naphthenic acid (NA) from synthetic oil sands tailings pond water (TPW). The overall adsorption process was found to be intra-particle diffusion-controlled. The Weber-Morris intra-particle diffusion rate constants decreased from 7.43 to 1.23 mg/g min0.5 after activated carbon was post-oxidized with oxygen, suggesting a hindering effect of oxygen surface groups. The Freundlich model fit of the equilibrium adsorption isotherms and the small negative ΔHo pointed to a physisorption-dominated process and the importance of specific surface area. It was estimated that about 2.7 g/L of basic CO2-activated carbon is needed to reduce NA concentration from 120 mg/L to 2.5 mg/L (~98% removal) in synthetic TPW. However, equilibrium adsorption capacity was found to vary significantly after oxygen or nitrogen groups were introduced onto the surface. Therefore, there is a potential for enhanced adsorption by chemical functionalization of carbon.
14

Simulação do processo de calcinação de gipsita em forno rotativo com aquecimento indireto

FRANÇA, Ulysses Eugênio Duarte de 29 January 2016 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2017-04-12T16:58:50Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Ulysses.pdf: 2292611 bytes, checksum: 94f0d93357c24023b30a73414786b32e (MD5) / Made available in DSpace on 2017-04-12T16:58:50Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Ulysses.pdf: 2292611 bytes, checksum: 94f0d93357c24023b30a73414786b32e (MD5) Previous issue date: 2016-01-29 / CAPES / O processo de obtenção do gesso beta, que consiste na desidratação do minério da gipsita a uma temperatura entre 125 °C e 160°C, é realizado em fornos rotativos através de queima direta ou indireta. Os principais combustíveis utilizados neste processo no Polo Gesseiro do Araripe são a lenha, o coque de petróleo, o óleo BPF e gás natural. Esta dissertação estuda a modelagem matemática de um sistema de calcinação com aquecimento indireto utilizando dois combustíveis sólidos diferentes: a lenha e o coque de petróleo. A modelagem é feita por meio do Método dos Volumes Finitos em um modelo bidimensional de coordenadas cilíndricas. Através da simulação numérica é possível prever o perfil de temperatura em uma seção transversal do forno, tal como suas taxas de aquecimento. São observadas as influências de parâmetros como vazão mássica do combustível, percentual de excesso de ar na combustão e teor de umidade da lenha. Também é realizada uma comparação entre os processos utilizando a lenha e o coque com relação ao custo e à emissão de dióxido de enxofre (SO2). / The process of obtaining the beta plaster, which consists of dehydration of the gypsum ore under a temperature between 100°C and 160 °C, is performed in rotary kilns through direct or indirect burn. The main fuels utilized in this process at Araripe Gypsum District are firewood, petroleum coke, heavy fuel oil and natural gas. This dissertation studies the mathematical modeling of a calcination system with indirect heating using two different solid fuels: firewood and petroleum coke. The modeling is made by using the Finite Volume Method in a two-dimensional model of cylindrical coordinates. Through the simulation is possible to predict the temperature behavior in a cross section of the kiln, as well as its heating rates. It was analyzed the influence of parameter such as mass flow rate, percent excess combustion air and moisture content of the firewood. A comparison between the processes using firewood and coke is also conducted, concerning the cost and the sulfur dioxide (SO2) emission.
15

NO, Burnout, Flame Temperature, Emissivity, and Radiation Intensity from Oxycombustion Flames

Zeltner, Darrel Patrick 23 May 2012 (has links) (PDF)
This work produced the retrofit of an air-fired, 150 kW reactor for oxy-combustion which was then used in three oxy-combustion studies: strategic oxy-combustion design, oxy-combustion of petroleum coke, and air versus oxy-combustion radiative heat flux measurements. The oxy-combustion retrofit was accomplished using a system of mass flow controllers and automated pressure switches which allowed safe and convenient operation. The system was used successfully in the three studies reported here and was also used in an unrelated study. A study was completed where a novel high oxygen participation burner was investigated for performance while burning coal related to flame stability, NO, and burnout using a burner supplied by Air Liquide. Parameters investigated included oxygen (O2) injection location, burner swirl number and secondary carbon dioxide (CO2) flow rate. The data showed swirl can be used to stabilize the flame while reducing NO and improving burnout. Center O2 injection helped to stabilize the flame but increased NO formation and decreased burnout by reducing particle residence time. Additional CO2 flow lifted the flame and increased NO but was beneficial for burnout. High O2 concentrations up to 100% in the secondary were accomplished without damage to the burner. Petroleum coke was successfully burned using the Air Liquide burner. Swirl of the secondary air and O2 injection into the center tube of the burner were needed to stabilize the flame. Trends in the data similar to those reported for the coal study are apparent. Axial total radiant intensity profiles were obtained for air combustion and three oxy-combustion operating conditions that used hot recycled flue gas in the secondary stream. The oxygen concentration of the oxidizer stream was increased from 25 to 35% O2 by decreasing the flow rate of recycled flue gas. The decrease in secondary flow rate decreased the secondary velocity, overall swirl, and mixing which elongated the flame. Changing from air to neat CO2 as the coal carrier gas also decreased premixing which elongated the flame. Flame elongation caused increased total heat transfer from the flame. The air flame was short and had a higher intensity near the burner, while high O2 concentration conditions produced lower intensities near the burner but higher intensities and temperatures farther downstream. It was shown that oxycombustion can change flame shape, temperature and soot concentration all influencing heat transfer. Differences in gas emission appear negligible in comparison to changes in particle emission.
16

New Polygeneration Processes for Power Generation and Liquid Fuel Production with Zero CO2 Emissions

Khojasteh Salkuyeh, Yaser 06 1900 (has links)
The price and accessibility of fossil fuels, especially crude oil, are subject to considerable fluctuations due to growing demand on energy, limited resources, and energy security concerns. In addition, climate change caused by burning of fossil fuels is a challenge that energy sector is currently facing. These challenges incentivize development of alternative processes with no greenhouse gas emissions that can meet transportation fuels, chemical liquids, and electricity demands. Coal-based processes are of particular interest because coal price is both low and stable. However, these processes have a large environmental impact and are also less economically attractive than natural gas based plants due to the recent significant drop in natural gas price. However, even for natural gas plants, attempts to reduce CO2 emissions by using traditional CO2 capture and sequestration technologies not only decrease the thermal efficiency and profitability of the plant significantly but still release some CO2 to the atmosphere. The aim of this thesis is to develop, simulate and optimize an integrated polygeneration plant that uses multiple feedstocks and produces multiple products with low to zero CO2 emissions. Several process alternatives are investigated in this work to show the effect of each feedstock and product on the performance of the proposed plant. A comprehensive study is performed in each section, including process simulation in Aspen Plus software, development of custom models required for some units, as well as cost analysis by using Aspen Icarus software and empirical cost estimations from literature. Moreover, derivative free optimization techniques such as particle swarm optimization (PSO), genetic algorithm (GA) and simulated annealing (SA) are implemented to drive the design to economically optimum conditions as a function of the market price and carbon taxes. The final model will also introduce emerging technologies that can achieve higher efficiency and lower CO2 emissions compared to commercial systems, such as chemical looping gasification, chemical looping combustion, nuclear heat reforming, etc. By integrating multiple feedstocks and processes, the model can exploit certain synergies which are unavailable to traditional plants, resulting in significant efficiency improvements. In addition to power and liquid fuels, this polygeneration process offers benefits for petrochemical plants. Despite limited worldwide crude oil reserves, the demand for petrochemical products is still growing fast and it is highly important for petrochemical industry to find new resources as feedstock and diversify their supply chain network. By integration of the polygeneration plant in the same facility with novel processes that produce olefins (petrochemical feedstock) not from oil, but from syngas, it is possible to supply the required feed at lower cost than commercial steam cracking plants. / Thesis / Doctor of Philosophy (PhD)
17

Sintese de materiais carbonosos ativados a partir de coque de petroleo / Synthesis of activaded carbon materials from petroleum coke

Méndez, Manoel Orlando Alvarez, 1977- 28 March 2005 (has links)
Orientador: Antonio Carlos Luz Lisboa / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-06T17:26:02Z (GMT). No. of bitstreams: 1 Mendez_ManoelOrlandoAlvarez_M.pdf: 2603376 bytes, checksum: 0c8ee135799f28f8bda8e30c0023f76d (MD5) Previous issue date: 2005 / Resumo: Materiais Carbonosos Ativados (MCA), tais como Carvões Ativados (CA) e Peneiras Moleculares de Carbono (PMC), são caracterizados por apresentar elevada área superficial específica e um grande volume de poros em sua matriz carbonosa, sendo sua principal propriedade a de adsorver moléculas tanto na fase líquida quanto na gasosa. O Brasil importa em sua totalidade peneiras moleculares produzidas a partir de precursores carbonosos, empregando-os nas mais diversas áreas de ciência e tecnologia e em vários segmentos industriais. O coque de petróleo é um resíduo com alto teor de carbono fixo e baixo teor de cinzas, e em decorrência de sua estrutura praticamente amorfa, é um material de pouco valor comercial, sendo considerado um resíduo problemático, tanto em termos ambientais quanto comerciais. Desta forma, a utilização de coque de petróleo para a produção de CAs e de PMCs torna-se atrativa para a utilização deste resíduo. O presente trabalho teve como objetivo estudar a síntese de carvões ativados através das ativações física e química de coque de petróleo proveniente da unidade de coqueamento retardado da REPLAN - PETROBRÁS, buscando avaliar as influências dos parâmetros de processo na qualidade dos CAs, tais como: concentração de agente ativante, tempo de ativação, temperatura de ativação e granulometria do coque de petróleo. A ativação física apresentou resultados insatisfatórios devido a baixa reatividade do coque de petróleo com o dióxido de carbono. Contudo, o coque de petróleo apresentou uma maior reatividade com hidróxido de potássio, permitindo desenvolver uma metodologia adequada para a ativação química do coque de petróleo com KOH, de modo a obter carvões ativados de elevada área superficial. Os resultados obtidos indicam a possibilidade de produção de carvões ativados de elevada área superficial, superiores a 2000 m2.g-1 a partir do coque de petróleo / Abstract: Activated Carbon MateriaIs (ACM), such as Activated Carbons (AC) and Carbon Molecular Sieves (CMS), are characterized by a high specific surface area em high pore volume in their carbon matrix, being their principal property to adsorb molecules in liquid and gas phase. Brazil imports all its molecular sieves, using them in several areas of science and technology and industrial segments. Petroleum coke is a high carbon content residue with low ash content, and due to its amorphous structure have low comercial value, being considered an environmental and comercial problem. In this sense, the utilization of petroleum coke to produce AC and CMS becomes an atractive utilization of this residue. The objective of the present work was to study the synthesis of activated carbon by physical and chemical processes using as raw material the petroleum coke originated from the delayed coking unit from REPLAN PETROBRAS, evaluating the infiuence of process parameters, such as activating agent concentration, activation time, activation temperature and average particle size on the AC quality. The results of physical activation of petroleum coke was not satisfactory due to the low reactivity of the petroleum coke with the carbon dioxide. However, the petroleum coke presented higher reactivity with potassium hidroxide, given the possibility to develop an adequate methodology to chemically activate petroleum coke with KOH, in order to obtain activated carbon with high specific surface area. The results indicated the possibility to produce activated carbon materiaIs from petroleum coke with surface area higher than 2000 m2 .g-l / Mestrado / Engenharia de Processos / Mestre em Engenharia Química
18

[en] APPRECIATION OF THE POTENCIAL OF HUMIC ACID EXTRACTION FROM DIFFERENT CARBON BEARING MATERIALS / [pt] AVALIAÇÃO SOBRE O POTENCIAL DE EXTRAÇÃO DE ÁCIDOS HÚMICOS A PARTIR DE DIFERENTES PRECURSORES CARBONÁCEOS

03 November 2021 (has links)
[pt] O Ácido Húmico (AH) é uma fração orgânica obtida em solos, corpos hídricos bem como em matrizes carbonáceas. Nos últimos anos o interesse associado a esta substância vem crescendo progressivamente à medida que novas aplicações são descobertas, tais como: fertilizantes, recuperação de áreas degradadas e tratamento de efluentes contaminados com metais. As principais características dos AH são dependentes do método de extração e da matriz escolhida, posto que se pode extraí-lo de uma ampla gama de matérias primas, assim como por meio de diferentes métodos. Dentro deste contexto, o objetivo principal do presente trabalho pretende avaliar o potencial de extração de ácido húmico a partir de diferentes precursores carbonáceos. Foram utilizadas três matrizes carbonáceas distintas: rejeito de carvão mineral (RCM), coque mineral (CM) e coque verde de petróleo (CVP). Além deste estudo experimental foram apresentados alguns resultados de estudo semelhante disponível na literatura. O método de extração utilizado foi adaptado de Trompowski et al (2005), e a caracterização foi feita utilizando-se técnicas de ICP-OES, CNHS, MEV/EDS, FTIR e Difração de Raio-X. A eficiência da extração, em termos de recuperação em massa, variou, significativamente, em função do método adotado, sendo os melhores resultados associados ao rejeito de carvão mineral (17,0 porcento), ao passo que a menor eficiência está relacionada ao coque verde de petróleo, após destilação (0,2 porcento). A extração a partir do coque verde de petróleo, como recebido, é inviável em função da sua imiscibilidade com a solução de ácido nítrico. Os resultados obtidos a partir do FTIR foram satisfatórios para todos os AH analisados, apresentando bandas características de AH e compatíveis com o indicado na literatura. Os resultados da análise de ICP-OES apresentaram baixa presença de metais e elementos traços para o AH oriundo do coque mineral. No que diz respeito ao ácido húmico extraído do rejeito de carvão mineral, que apresentou a maior concentração inicial de metais, principalmente ferro, foi implementado, com sucesso, uma purificação utilizando ácido nítrico. Com base nos resultados obtidos é possível afirmar que a utilização de diferente precursores carbonosos permitiu a extração de AH com características semelhantes aqueles citados na literatura e extraídos de outras fontes. / [en] The humic acid (HA) is an organic fraction that can be found in soil and watercourses as well as in carbonaceous matrices. In recent years the interest associated with this substance has been growing steadily as new applications are discovered, such as fertilizers, remediation of degraded areas and treatment of wastewater contaminated with metals. The main features of HA are dependent on the method of extraction and the chosen matrix, since it can be extract from a wide range of raw materials, as well as by different methods. Within this context, the main objective of this work is related to an assessment of the potential of extracting humic acid from different carbonaceous precursors. three different carbonaceous matrices were used: coal tailings (RCM), coke (CM) and green petroleum coke (CVP). Besides this experimental study some results of a similar study available in the literature were presented. The extraction method used was adapted from Trompowski et al, and the characterization was done using ICP- OES techniques, CNHS, MEV / EDS and FTIR. The extraction efficiency, in terms of mass recovery, significantly varied depending on the method used, the best results being associated with coal tailings (17.0 percent), while lower efficiency relates to the calcinated petrocoke after distillation (0.2 percent). The extraction from green petroleum coke, as received, is unfeasible due to its immiscibility with the nitric acid solution. The results obtained from FTIR were satisfactory for all the HA analyzed, displaying bands consistent with those from HA and compatible with bands shown in the literature. The results of the analysis of ICP-OES showed a low presence of metals and trace elements coming from the HA for coke. With respect to the extracted humic acid from coal tailings, which showed the highest initial concentration of metals, particularly iron, was successfully implemented, a purification with nitric acid. Based on the results obtained it can be stated that the use of different carbonaceous precursors allowed the extraction of humic acid with similar characteristics as cited in the literature and those obtained from other sources.
19

Gasification of Biomass, Coal, and Petroleum Coke at High Heating Rates and Elevated Pressure

Lewis, Aaron D 01 November 2014 (has links) (PDF)
Gasification is a process used to convert any carbonaceous species through heterogeneous reaction to obtain the desired gaseous products of H2 and CO which are used to make chemicals, liquid transportation fuels, and power. Both pyrolysis and heterogeneous gasification occur in commercial entrained-flow gasifiers at pressures from 4 to 65 atm with local gas temperatures as high as 2000 °C. Many gasification studies have been performed at moderate temperatures, heating rates, and pressures. In this work, both pyrolysis and char gasification experiments were performed on coal, petroleum coke, and biomass at conditions pertinent to commercial entrained-flow gasifiers. Rapid biomass pyrolysis experiments were performed at atmospheric pressure in an entrained-flow reactor for sawdust, switchgrass, corn stover, and straw mostly using a peak gas temperature of 1163 K at particle residence times ranging from 34 to 113 ms. Biomass pyrolysis was modeled using the Chemical Percolation Devolatilization model assuming that biomass pyrolysis occurs as a weighted average of its individual components (cellulose, hemicellulose, and lignin). Thermal cracking of biomass tar into light gas was included using a first-order model with kinetic parameters regressed in the current study. Char gasification rates were measured for biomass, petroleum coke, and coal in a pressurized entrained-flow reactor at high heating-rate conditions at total pressures between 10 and 15 atm. Peak centerline gas temperatures were between 1611 and 1879 K. The range of particle residence times used in the gasification experiments was 42 to 275 ms. The CO2 gasification rates of biomass and petroleum coke chars were measured at conditions where the reaction environment consisted of approximately 40 and 90 mol% CO2. Steam gasification rates of coal char were measured at conditions where the maximum H2O concentration was 8.6 mol%. Measured data was used to regress apparent kinetic parameters for a first-order model that describes char conversion. The measured char gasification rates were far from the film-diffusion limit, and are pertinent for pulverized particles where no internal particle temperature gradients are important. The modeling and measured data of char gasification rates in this research will aid in the design and efficient operation of commercial entrained-flow gasifiers, as well as provide validation for both existing and future models at a wide range of temperatures and pressures at high heating-rate conditions.
20

Determinação fotométrica de sulfato e cloreto em coque de petróleo, molibdênio em plantas e zinco em águas empregando multicomutação com bomba de seringa / Photometric determination of sulfate and chloride in petroleum coke, molybdenum in plants and zinc in water employing multicommutation with syringe pump

Santos Junior, Felisberto Gonçalves 07 December 2016 (has links)
Nesta tese foram desenvolvidos procedimentos analíticos fotométricos automáticos para determinação simultânea de sulfato e cloreto em coque de petróleo, molibdênio em plantas sem etapa de pré-concentração com solvente orgânico e zinco em águas empregando microextração líquido-líquido. Em todos os procedimentos reportados nesta tese, o módulo de análise foi baseado no processo de multicomutação, utilizou-se bomba de seringa como propulsor de fluidos e válvulas solenoide de três vias como dispositivos de comutação para controlar as inserções das alíquotas da amostra e dos reagentes no percurso analítico. As detecções fotométricas foram realizadas empregando fotômetros de LEDs, construídos para este projeto, equipados com celas de fluxo com caminho óptico longo (50,0 mm para cloreto, sulfato e zinco, 200,0 mm para molibdênio). O fotômetro foi construído com LEDs de alto brilho como máximos de emissão em 472 nm para cloreto, sulfato e molibdênio e 525 nm para zinco. Os procedimentos para determinação simultânea de sulfato e cloreto apresentaram faixa linear entre 10-700 mg L-1; 0,25-10 mg L-1; limite de detecção de 5,3 mg L-1; 0,16 mg L-1; coeficiente de variação de 3,0%; 0,9 % (n=10), respectivamente, e frequência de amostragem de 75 determinações por hora para cada analito. O procedimento para determinação de molibdênio apresentou faixa linear entre 50 - 500 ?g L-1, limite de detecção 9,1 ?g L-1, coeficiente de variação 1,07% (n=10) e frequência de amostragem de 51 determinações por hora. O procedimento para zinco apresentou uma faixa linear entre 10-100 ?g L-1, limite de detecção 8,3 ?g L-1, coeficiente de variação 3,3% (n=10) e frequência de amostragem de 19 determinações por hora / In this thesis, automated photometric analytical procedures for simultaneous determination of sulfate and chloride in petroleum coke, molybdenum in plants without pre-concentration step and zinc in water using liquid-liquid microextraction were developed. All procedures reported in this thesis, employed flow analysis modules based on multicommuted process, syringe pump for fluid propulsion and solenoid three-way valves as commutation devices the insertion aliquots of sample and reagents solutions in the analytical path. Photometric detections were performed, using LEDs-photometers, built for this project, equipped with flow cells with long optical path (50.0 mm for chloride, sulfate and zinc, 200.0 mm for molybdenum) and the high intense radiation beam LEDs with maximum emission at 472 nm for chloride, sulfate and molybdenum and 525 nm for zinc. The procedures for simultaneous determination of sulfate and chloride showed linear response between 10 to 700 mg L-1; 0.25 to 10 mg L-1; detection limit of 5.3 mg L-1; 0.16 mg L-1; variation coefficient of 3.0%; 0.9% (n = 10), respectively, and sampling throughput of 75 determinations per hour for each analyte. The procedure for molybdenum presented a linear response between 50 to 500 ?g L-1, detection limit of 9.1 ?g L-1, variation coefficient of 1.07% (n = 10) and sampling throughput of 51 determinations per hour. The procedure for zinc showed linear response between 10 to 100 ?g L-1, detection limit of 8.3 ?g L-1, variation coefficient of 3.3% (n = 10) and sampling throughput of 19 determinations per hour

Page generated in 0.0684 seconds