• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 97
  • 59
  • 18
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 400
  • 400
  • 124
  • 115
  • 114
  • 98
  • 84
  • 75
  • 71
  • 61
  • 61
  • 60
  • 56
  • 53
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Load Distribution and Ultimate Strength of an Adjacent Precast, Prestressed Concrete Box Girder Bridge

Stillings, Tyler W. 24 September 2012 (has links)
No description available.
162

Bond Performance Between Ultra-High Performance Concrete and Prestressing Strands

Lubbers, Anna R. 04 December 2003 (has links)
No description available.
163

Investigation of Long-Term Prestress Losses in Pretensioned High Performance Concrete Girders

Waldron, Christopher Joseph 01 December 2004 (has links)
Effective determination of long-term prestress losses is important in the design of prestressed concrete bridges. Over-predicting prestress losses results in an overly conservative design for service load stresses, and under-predicting prestress losses, can result in cracking at service loads. Creep and shrinkage produce the most significant time-dependent effect on prestress losses, and research has shown that high performance and high strength concretes (HPC and HSC) exhibit less creep and shrinkage than conventional concrete. For this reason, the majority of traditional creep and shrinkage models and methods for estimating prestress losses, over-predict the prestress losses of HPC and HSC girders. Nine HPC girders, with design compressive strengths ranging from 8,000 psi to 10,000 psi, and three 8,000 psi lightweight HPC (HPLWC) girders were instrumented to determine the changes in strain and prestress losses. Several creep and shrinkage models were used to model the instrumented girders. For the HPLWC, each model over-predicted the long-term strains, and the Shams and Kahn model was the best predictor of the measured strains. For the normal weight HPC, the models under-estimated the measured strains at early ages and over-estimated the measured strains at later ages, and the B3 model was the best-predictor of the measured strains. The PCI-BDM model was the most consistent model across all of the instrumented girders. Several methods for estimating prestress losses were also investigated. The methods correlated to high strength concrete, the PCI-BDM and NCHRP 496 methods, predicted the total losses more accurately than the methods provided in the AASHTO Specifications. The newer methods over-predicted the total losses of the HPLWC girders by no more than 8 ksi, and although they under-predicted the total losses of the normal weight HPC girders, they did so by less than 5 ksi. / Ph. D.
164

Grade 300 Prestressing Strand and the Effect of Vertical Casting Position

Carroll, James Christopher 01 September 2009 (has links)
The purpose of this study was to investigate the influence an increase in strand strength and the effect the as-cast vertical location had on transfer length, development length, and flexural strength and to resolve the discrepancies regarding the definition of the top-bar/strand effect. Two types of test specimens were fabricated and tested investigating each respective item. The increase in strand strength was found to influence transfer length, development length, and flexural strength, while the as-cast vertical location was only found to influence transfer length, and in turn development length. Contrary to the historical definition, the top-bar/strand effect was found to be more dependent on the amount of concrete cast above the strand than the amount below it, with transfer lengths showing a steady increase with a decrease in the amount of concrete cast above the strand. As a result of the findings of this study, a new transfer length equation was proposed and a previously proposed flexural bond length equation was recommended for use in lieu of the current code provisions. The current equations for flexural strength were found to give adequate estimates for flexural strength, although a decrease in ductility was noted. / Ph. D.
165

Experimental Investigations of Residual Strength and Repaired Strength of Corrosion Damaged Prestressed Bridge Beams

Alfailakawi, Ali 27 July 2022 (has links)
The durability of infrastructure components, such as prestressed concrete bridge beams, can be significantly affected by long-term deterioration associated with corrosion. Corrosion is a major concern for bridges in Virginia, due to the frequent use of deicing salts during the winter, as well as the number of structures in marine environments. The residual capacity of corrosion damaged prestressed I-beams and box beams needs to be accurately estimated to determine if damaged bridges need to be posted, and to help with making informed decisions related to repair, rehabilitation and replacement of damaged bridges. The initial stage of the research investigated the ability to determine the in-situ strength of members that have visible corrosion-related damage. In this stage, six corrosion-damaged beams were investigated. Prior to testing, the beams were visually inspected and damage was documented. The beams were then tested in the lab to determine their flexural strength. Following testing, samples of strands were removed and tested to determine their tensile properties while cores were taken to determine compressive strength. Powdered concrete samples were removed to perform chloride concentration tests. The tested strengths of the beams were compared to calculated strengths using two methods for damage estimation and two different calculation approaches. Two repair methods were then evaluated through large-scale experimental testing, aimed at restoring the strength of deteriorated prestressed concrete beams. The investigated repairs included External Post-Tensioning (PT) and Carbon Fiber Reinforced Polymer (CFRP) laminates applied to the bottom flange of beams for flexural strengthening. A total of five full-scale bridge members were tested to failure throughout this stage. All beams were subjected to monotonically increasing loads until failure. For beams repaired with external PT, the experimental test was accompanied by a detailed approach for determining the ultimate failure load, the ultimate stress in the external tendons, and the location of the failure. For beams repaired with CFRP, the experimental test was accompanied by a parametric study that was performed to determine the maximum reduction in flexural strength for which CFRP can be considered as a viable repair method to restore the lost capacity. This dissertation provides additional information on estimating the residual capacity of corrosion-damaged beams and shows the types of repair that can restore their original strength. With this information, Departments of Transportation (DOT) can properly determine what types of repair are a suitable for the damaged girders based on their level of corrosion. / Doctor of Philosophy / Many bridges in the United States were built using longitudinal members, called girders, made of prestressed concrete. In prestressed concrete, because concrete cannot resist high tensile forces, tensioned steel cables, called strands, are used to produce compression on the concrete member to improve its behavior when it is in service. Corrosion induces cracks in the concrete superstructure which accelerates the deterioration rate and can result in a partial loss of the concrete body and exposure of the embedded steel. This causes degradation in the load-carrying capacity of the bridge girders which raises a danger to vehicles, passengers, and pedestrians. The residual capacity of corrosion damaged prestressed I-beams and box beams needs to be accurately estimated to determine if damaged bridges need to be posted, and to help with making informed decisions related to repair, rehabilitation and replacement of damaged bridges. The initial stage of the research investigated the ability to determine the in-situ strength of members that have visible corrosion-related damage. In this stage, six corrosion-damaged beams were investigated. Prior to testing, the beams were visually inspected, and damage was documented. The beams were then tested in the lab. Following testing, samples of strands were removed and tested to determine their tensile properties while cores were taken to determine compressive strength. Powdered concrete samples were removed to perform chloride concentration tests. The tested strengths of the beams were compared to calculated strengths. Two repair methods were then evaluated through large-scale experimental testing, aimed at restoring the strength of deteriorated prestressed concrete beams. The investigated repairs included External Post-Tensioning (PT) and Carbon Fiber Reinforced Polymer (CFRP) sheets applied to the bottom of beams for flexural strengthening. A total of five full-scale bridge members were tested to failure throughout this stage. All beams were subjected to monotonically increasing loads until failure. For beams repaired with external PT, the experimental test was accompanied by a detailed approach for determining the ultimate failure load, the ultimate stress in the external tendons, and the location of the failure. For beams repaired with CFRP, the experimental test was accompanied by a parametric study that was performed to determine the maximum reduction in flexural strength for which CFRP can be considered as a viable repair method to restore the lost capacity. This dissertation provides additional information on estimating the residual capacity of corrosion-damaged beams and shows the types of repair that can restore their original strength. With this information, Departments of Transportation (DOT) can properly determine what types of repair are a suitable for the damaged girders based on their level of corrosion.
166

Shear Strength Assessment of Corrosion-Damaged Prestressed Concrete Girders

Al Rufaydah, Abdullah Saeed 11 January 2021 (has links)
Corrosion is a concern in old prestressed concrete bridges, especially bridges built in marine environments. Corrosion induces cracks in the concrete superstructure which accelerates the deterioration rate and can result in a complete loss of the concrete cover and exposure of the reinforcing and prestressing steel. This causes degradation in the load-carrying capacity of the bridge girders. Consequently, decisions need to be made on whether to replace, retrofit, or load post these bridges. Extensive research has focused on the flexural strength of corroded prestressed concrete girders. This research studies the shear strength of corroded prestressed concrete girders which can, then, be expanded further to evaluate the possible retrofitting techniques for restoring, or enhancing, their shear strengths. Two old prestressed concrete girders built in the 1960's and 1970's were delivered to the Murray Structural Engineering Laboratory at Virginia Tech from two decommissioned bridges in Virginia. The two girders showed signs of deterioration due to corrosion. Non-destructive testing was performed to evaluate their in-situ conditions. For both girders, each end was tested in the lab in three-point loading condition to make full use of the girders. Shear capacities of the girders were predicted using four methods in the current AASHTO LRFD and the ACI codes. In addition, analysis using Response2000 and strut-and-tie modelling were also carried out. Evaluation of these methods and comparisons with the experimental results were performed to reach to conclusions and recommendations for future work. Corrosion in strands seemed to not have as much influence on the shear capacity as on the flexural capacity. Destructive shear tests indicated that the actual shear capacities of the girders investigated in this research exceeded nominal capacities predicted by the current codes. However, the flexural capacities were reduced. Possible reasons for the girders' behaviors are discussed. / Master of Science / Many bridges in the United States were built using longitudinal members, called girders, made of prestressed concrete. In prestressed concrete, because concrete cannot resist high tensile forces, tensioned steel cables, called strands, are used to produce compression on the concrete member to improve its behavior when it is in service. Corrosion is a concern in old prestressed concrete bridges, especially bridges built in marine environments. Corrosion induces cracks in the concrete superstructure which accelerates the deterioration rate and can result in a partial loss of the concrete body and exposure of the embedded steel. This causes degradation in the load-carrying capacity of the bridge girders which raises a danger to vehicles, passengers, and pedestrians. Consequently, decisions need to be made by authorities on whether to replace, repair, or load post these bridges. Two main types of loads exist in bridge girders, namely shear forces and bending moments. Extensive research has focused on the ability of corroded prestressed concrete girders to resist stresses produced by moment, or flexure. However, bridge girders must also resist shear forces. This research studies the shear strength of corroded prestressed concrete girders which can, then, be expanded further to evaluate the possible retrofitting techniques for restoring, or enhancing, their shear strengths. Two old prestressed concrete girders built in the 1960's and 1970's were delivered to the Murray Structural Engineering Laboratory at Virginia Tech from two decommissioned bridges in Virginia. The two girders showed signs of deterioration due to corrosion. These signs include concrete losses, cracks, areas of unsound concrete, and exposed strands. Non-destructive testing was performed on the girders to evaluate the severity of their in-situ conditions. Then, two destructive full-scale tests were performed on each girder in the lab to estimate their actual shear strengths. Shear strengths of the girders were also predicted using four methods present in the current American Association of State Highway and Transportation Officials, AASHTO, and the American Concrete Institute, ACI, codes. In addition, analyses using other advanced tools were also carried out. Evaluation of these methods and comparisons with the experimental results were performed to reach to conclusions and recommendations for future work. Corrosion in strands seemed to not have as much influence on the shear strength as on the flexural strength. Destructive shear tests indicated that the actual shear strengths of the girders investigated in this research exceeded nominal strengths predicted by the current codes, the AASHTO and the ACI. However, the flexural strengths were reduced. Possible reasons for the girders' behaviors are discussed.
167

Behavior Of Partially Prestressed Concrete T-Beams Having Steel Fibers Over Partial Or Full Depth - An Experimental And Analytical Study

Thomas, Job 09 1900 (has links) (PDF)
No description available.
168

Improving efficiency and effectiveness in the design, manufacturing and construction of the beam and block slab systems

Khuzwayo, Bonga PraiseGod January 2015 (has links)
Submitted in fulfillment for the Master of Engineering, Department of Civil Engineering and Surveying, Durban University of Technology. Durban. South Africa, 2015. / Beam and block slab systems have become a preferred suspended flooring technology in South Africa. Their structural efficiency and relatively low cost makes them suitable for low to medium cost developments. Like all other structural components, they are required to demonstrate sound structural integrity. Concerns were raised by some manufacturers and users in Durban (South Africa) about (a) the lack of basic technical information which makes it difficult to identify methods of improving efficiency and effectiveness of these flooring systems in general, (b) the efficiency and effectiveness of concrete masonry rebated filler blocks - with respect to the load carrying capacity and protecting the structural topping from fire, (c) what constitutes acceptable quality of a deliberately roughened precast concrete surface, (d) interfacial tensile bond strength of special connections and (e) an alternative rib that can span 5 metres without temporary props. These issues were investigated by the student. Thus, this project aimed at improving the structural efficiency and effectiveness in designing, manufacturing and constructing beam and block slab systems was undertaken in Durban, South Africa, between 2012 and 2013. Pilot studies (involving questionnaires), interviews with manufacturers, site visits, and testing of non-structural and structural components were also undertaken. The first aim (in order to address concern (a)) was to provide users of beam and block slab systems with basic technical information about the possible ways to improve efficiency and effectiveness in the design, manufacturing and construction of beam and block slab systems by undertaking an exploratory (pilot) study to better understand users of these systems concerns. The second aim (to address concern (b)) was to investigate, by conducting a series of strength to weight ratio tests, how efficient or inefficient these filler blocks are, examine the structural integrity with respect to the integrity of the manufacturing methodologies and the product thereof, and formulate a method to quantify the fire-resistivity of concrete masonry rebated filler blocks to the structural topping with respect to confining fire. The third aim (to address concern (c)) was to determine what constituted acceptable quality of a deliberately roughened precast concrete surface through a literature review and by conducting a survey to learn about the construction methodologies used by manufacturers. Site visits were undertaken to validate information given by the contractors. The fourth aim (to address concern (d)) was to determine interfacial tensile bond strength through physical testing of deliberately roughened concrete ribs which are sometimes used in special connections. The fifth aim (to address the last concern (e)) was to make an assessment by undertaking a basic comparison study between one local beam and block slab system that uses a shallow rectangular precast pretensioned rib to beam and block slab systems used in the United Kingdom and propose an ideal section (precast pretensioned rib) that spans up to 5 metres without temporary props. With respect to the first aim, it was found that the lack of technical knowledge, including access to critical information about the design philosophy, manufacturing and construction standards of these flooring systems leads to reluctance in selecting them. The outcome of the second aim is that all concrete masonry rebated filler blocks tested were found to be effective because they supported more than the required construction load but some were shown to be inefficient as more materials, such as binders, are wasted in producing over-strength filler blocks and also, undertaking trial mix designs and the testing of samples prior to batch production will reduce costs. A method is formulated in the thesis that could also show that concrete masonry rebated filler blocks provide significant protection to the structural topping thereby preventing fire progression. With respect to the third aim, although a broom or brush is effective in providing a surface roughness (Rz) of 3 mm, it is not always efficient when considering factors like the variation in uniformity, appearance of laitance and roughening frequency, which are not addressed by the South African codes. The outcome of the fourth aim is that connections should be designed such that they do not rely purely on the tensile bond strength but through reinforcing bars (or ties) taking the full tension load causing delamination. With respect to the fifth aim, a basic comparison study indicates that T-section beams are more efficient than common rectangular ribs (±150 mm wide x ±60 mm deep) since they can eliminate completely the use of temporary props for spans of up to 4.51 m. Consequently, further research is underway to design an inverted T-section rib by using high strength precast pretensioned concrete that can span up to 5 m without using temporary props.
169

Contribuição ao estudo da instabilidade lateral de vigas pré-moldadas / On the lateral stability of precast concrete beams

Lima, Maria Cristina Vidigal de 26 February 2002 (has links)
A verificação da estabilidade lateral de vigas pré-moldadas merece maior atenção em vigas longas e delgadas, especialmente durante as fases transitórias, como o içamento e o transporte, e também quando se leva em conta a deformabilidade das ligações temporárias. Apresenta-se nesta tese, um estado da arte sobre o problema da instabilidade lateral em vigas pré-moldadas, a fim de situar este trabalho no contexto técnico atual, bem como estudos anteriores relacionados à torção pura e quando associada a outras solicitações. Alguns modelos numéricos foram implementados computacionalmente a fim de simular o comportamento não-linear físico de vigas de concreto armado e protendido sob ação conjunta de torção, flexão bi-lateral e força axial. O modelo adequado a situações onde a torção é predominante sobre a flexão baseia-se na analogia ao comportamento de treliça espacial e na extensão da teoria dos campos diagonais comprimidos. Os resultados numéricos obtidos foram satisfatoriamente comparados aos experimentais disponíveis na literatura técnica. Nos casos onde a flexão é predominate, utilizou-se um modelo numérico que permite calcular a rigidez à torção após a fissuração por flexão da viga, sendo este o recomendado para as análises das fases transitórias de içamento por cabos. Duas vigas longas e esbeltas de concreto armado, sob tombamento lateral gradual e ação única do peso-próprio, foram moldadas e ensaiadas no laboratório. Os resultados experimentais obtidos serviram para validar o modelo numérico. No ensaio, a utilização de estações totais para medidas de deslocamentos mostrou ser uma boa alternativa, comparando-se bem aos resultados numéricos calculados. As medidas experimentais das deformações no concreto e nas armaduras concordaram satisfatoriamente com as respostas numéricas. Na aplicação à elementos estruturais com protensão, o comportamento numérico obtido para uma viga protendida de ponte de seção I, sob tombamento lateral gradual, comparou-se satisfatoriamente com a resposta experimental. Enfim, a medida da segurança do içamento de uma viga protendida de ponte e de uma tesoura protendida de cobertura foi calculada numericamente, considerando apoios deformáveis à torção. Os resultados numéricos mostram a importância de se escolher adequadamente o comprimento dos balanços, bem como a inclinação dos cabos de suspensão, garantindo a estabilidade da viga / The lateral stability of long and slender precast concrete beams requires great attention. In particular, it is important to ensure the stability of these members during transitory phases like tilting and transport, and also when the deformability of temporary supports is taken into account. The state of the art of the problem of lateral stability in precast concrete beams is presented in order to place this work in the current technical context. Previous studies of the problem of pure torsion and combined loading are reviewed. Numerical models considering the physical non-linear behavior of reinforced and prestressed concrete beams subjected to combined torsion, bi-axial bending and axial loads were implemented. The appropriate model when torsion dominates over bending is based on the space truss model and an extension of the diagonal compression field theory. The numerical results obtained compared satisfactorily with the experimental ones available in the technical literature. In bending dominated cases, a numerical model that evaluates the torsional stiffness in a cracked state due to bending is recommended for the analyses of temporary phases such as tilting. Two slender reinforced concrete beam models were built and tested under controlled gradual tilting conditions and self-weight action. These experimental results were used to validate the numerical model. Experimental results obtained using total stations for measuring displacements showed to be a good alternative, comparing well with those provided by the numerical model. The experimental measures of deformations in concrete and steel agreed well with the numerical calculations. Good agreement between numerical and experimental results was obtained for a prestressed concrete I-beam gradually tilted. Finally, a numerical analysis considering the flexibility of the supports of a prestressed concrete I-beam and a prestressed concrete truss with variable cross-section was carried out. The numerical results showed the importance of choosing the appropriate overhang length as well as the inclination of the suspension cables, in order to ensure the stability of the beam
170

Análise da continuidade em lajes alveolares: estudo teórico e experimental / Analysis of continuity in hollow core slabs: theoretical and experimental study

Santos, Andreilton de Paula 10 November 2014 (has links)
A maioria dos edifícios de concreto pré-moldado, construídos no Brasil e no exterior, é constituída por lajes alveolares. Este trabalho considera o estudo da continuidade dessas lajes. No cálculo desses elementos, a prática comum é considerá-los como simplesmente apoiados. Para melhorar o desempenho, é possível promover a continuidade nos apoios intermediários. Isso pode ser feito colocando armadura na região tracionada da ligação, no interior da capa, ou através de barras concretadas dentro dos alvéolos. O objetivo deste trabalho é investigar o comportamento de pavimentos formados por lajes alveolares com continuidade, com armadura na capa. Para isso, foi realizado um estudo envolvendo análise teórica e experimental em três modelos. Esses modelos, em escala real, foram submetidos a um carregamento transversal, distribuído de forma linear. Os estudos teóricos consideraram uma simulação numérica com elementos de viga e a fórmula de Branson para descrever o comportamento não linear físico do material. Além disso, foram avaliadas as expressões dos principais códigos nacionais e internacionais, no que diz respeito à ruptura por cisalhamento da seção transversal e da interface laje-capa. Os resultados da análise experimental indicaram que o modelo 1 rompeu por cisalhamento da seção transversal, com o mecanismo de tração diagonal do concreto. O modelo 2 apresentou ruptura por cisalhamento da interface. No modelo 3, a ruptura foi por flexão. O comportamento dos modelos ensaiados foi governado pela fissuração da capa na região de momento negativo. A análise teórica com elementos de barra representou de forma satisfatória o comportamento dos modelos ensaiados. As únicas formulações que apresentaram resultados coerentes com os três ensaios foram: EUROCODE 2:2004, para o cálculo da resistência ao cisalhamento da interface, e FIB MODEL CODE 2010, para o cálculo da resistência ao cisalhamento da seção transversal. Conclui-se que a continuidade melhora o desempenho das lajes alveolares, uma vez que reduz os deslocamentos no meio do vão e aumenta a capacidade de carga. / Most buildings of precast concrete built in Brazil and abroad consist of hollow core slabs. This paper considers the study of the continuity of these slabs. In design of these elements the common practice is to consider them as simply supported. To improve the performance it is possible to promote the continuity in the intermediate supports. This can be done by placing reinforcement in the tensioned region of the connection, inside the topping, or by bars concreted inside the voids. The aim of this work is to investigate the behavior of hollow core floors with continuity, with reinforcement in the topping. For this, a study involving theoretical and experimental analysis was conducted in three models. The full-scale models were subjected to a transverse loading distributed linearly. The theoretical studies have considered a numerical simulation with beam elements and the Branson formula to describe the physical nonlinear behavior of the material. Furthermore, the specifications of the major Brazilian and international codes were evaluated, with respect to failure by shear of the cross section and the slab-topping interface. The results of the experimental analysis indicated that the model 1 failed by shear of the cross section with the mechanism of diagonal tension of the concrete. Model 2 presented shear failure of the interface. In model 3, the failure was by flexure. The behavior of the tested models was ruled by cracking of the topping in region of negative bending moment. Theoretical analysis with beam elements represented satisfactorily the behavior of the tested models. The only formulations that presented consistent results with the three tests were: EUROCODE 2:2004, to calculate the shear strength of the interface, and FIB MODEL CODE 2010, for calculating of the shear strength of the cross section. It is concluded that the continuity improves the performance of the hollow core slabs, as it reduces the displacements at mid-span and increases the bearing capacity.

Page generated in 0.0567 seconds