Spelling suggestions: "subject:"[een] PROBABILISTIC FORECASTING"" "subject:"[enn] PROBABILISTIC FORECASTING""
1 |
Calibration and use of expert probability judgementsWiper, Michael Peter January 1990 (has links)
No description available.
|
2 |
Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation ModelsElkantassi, Soumaya 04 1900 (has links)
Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.
|
3 |
MACHINE LEARNING FOR RESILIENT AND SUSTAINABLE ENERGY SYSTEMS UNDER CLIMATE CHANGEMin Soo Choi (16790469) 07 August 2023 (has links)
<p>Climate change is recognized as one of the most significant challenge of the 21st century. Anthropogenic activities have led to a substantial increase in greenhouse gases (GHGs) since the Industrial Revolution, with the energy sector being one the biggest contributors globally. The energy sector is now facing unique challenges not only due to decarbonization goals but also due to increased risks of climate extremes under climate change. </p><p>This dissertation focuses on leveraging machine learning, specifically utilizing unstructured data such as images, to address many of the unprecedented challenges faced by the energy systems. The dissertation begins (Chapter 1) by providing an overview of the risks posed by climate change to modern energy systems. It then explains how machine learning applications can help with addressing these risks. By harnessing the power of machine learning and unstructured data, this research aims to contribute to the development of more resilient and sustainable energy systems, as described briefly below. </p><p>Accurate forecasting of generation is essential for mitigating the risks associated with the increased penetration of intermittent and non-dispatchable variable renewable energy (VRE). In Chapters 2 and 3, deep learning techniques are proposed to predict solar irradiance, a crucial factor in solar energy generation, in order to address the uncertainty inherent in solar energy. Specifically, Chapter 2 introduces a cost-efficient fully exogenous solar irradiance forecasting model that effectively incorporates atmospheric cloud dynamics using satellite imagery. Building upon the work of Chapter 2, Chapter 3 extends the model to a fully probabilistic framework that not only forecasts the future point value of irradiance but also quantifies the uncertainty of the prediction. This is particularly important in the context of energy systems, as it relates to high-risk decision making.</p><p>While the energy system is a major contributor to GHG emissions, it is also vulnerable to climate change risks. Given the essential role of energy systems infrastructure in modern society, ensuring reliable and sustainable operations is of utmost importance. However, our understanding of reliability analysis in electricity transmission networks is limited due to the lack of access to large-scale transmission network topology datasets. Previous research has mostly relied on proxy or synthetic datasets. Chapter 4 addresses this research gap by proposing a novel deep learning-based object detection method that utilizes satellite images to construct a comprehensive large-scale transmission network dataset.</p>
|
4 |
Caractérisation et prédiction probabiliste des variations brusques et importantes de la production éolienne / Characterization and probabilistic forecasting of wind power production rampsBossavy, Arthur 06 December 2012 (has links)
L'énergie éolienne est aujourd'hui la source d'énergie renouvelable en plus forte expansion. Le caractère variable et partiellement contrôlable de sa production complexifie la gestion du système électrique. L'utilisation dans divers processus de décision, de prédictions du niveau de production à des horizons de 2-3 jours, permet une meilleure intégration de cette ressource. Certaines situations donnent néanmoins lieu à des performances de prédiction insatisfaisantes. Des erreurs dans la prédiction de l'instant d'apparition de variations brusques et importantes de la production, peuvent être responsables d'importants déséquilibres énergétiques, et avoir un impact négatif sur la gestion du système électrique. L'objectif de cette thèse est de proposer des approches permettant d'une part de caractériser ces variations, et d'autre part de prédire et d'estimer l'incertitude dans l'instant de leur apparition. Dans un premier temps, nous étudions différentes formes de caractérisation de ces variations. Nous proposons un modèle de rupture permettant de représenter le caractère aléatoire dans la proximité des ruptures d'un signal, tout en tenant compte des aspects borné et non-stationnaire du processus de production. A partir de simulations issues de ce modèle, nous réalisons une étude paramétrique destinée à évaluer et comparer les performances de différents filtres et approches multi-échelles de détection. Dans un deuxième temps, nous proposons une approche de prédiction probabiliste de l'instant d'apparition d'une rupture, reposant sur l'utilisation de prévisions météorologiques ensemblistes. Leur conversion en puissance fournit différents scénarii de la production, à partir desquels sont agrégées les prédictions de l'instant d'apparition d'une rupture. L'incertitude associée est représentée à l'aide d'intervalles de confiance temporels et de probabilités estimées conditionnellement. Nous évaluons la fiabilité et la finesse de ces estimations sur la base de mesures de production provenant de différentes fermes éoliennes. / Today, wind energy is the fastest growing renewable energy source. The variable and partially controllable nature of wind power production causes difficulties in the management of power systems. Forecasts of wind power production 2-3 days ahead can facilitate its integration. Though, particular situations result in unsatisfactory prediction accuracy. Errors in forecasting the timing of large and sharp variations of wind power can result in large energy imbalances, with a negative impact on the management of a power system. The objective of this thesis is to propose approaches to characterize such variations, to forecast their timing, and to estimate the associated uncertainty. First, we study different alternatives in the characterization of wind power variations. We propose an edge model to represent the random nature of edge occurrence, along with representing appropriately the bounded and non-stationary aspects of the wind power production process. From simulations, we make a parametric study to evaluate and compare the performances of different filters and multi-scale edge detection approaches. Then, we propose a probabilistic forecasting approach of edge occurrence and timing, based on numerical weather prediction ensembles. Their conversion into power provides an ensemble of wind power scenarios from which the different forecast timings of an edge are combined. The associated uncertainty is represented through temporal confidence intervals with conditionally estimated probabilities of occurrence. We evaluate the reliability and resolution of those estimations based on power measurements from various real world case studies.
|
5 |
Prévisions hydrologiques d’ensemble : développements pour améliorer la qualité des prévisions et estimer leur utilité / Hydrological ensemble forecasts : developments to improve their quality and estimate their utility.Zalachori, Ioanna 19 April 2013 (has links)
La dernière décennie a vu l'émergence de la prévision probabiliste de débits en tant qu'approche plus adaptée pour l'anticipation des risques et la mise en vigilance pour lasécurité des personnes et des biens. Cependant, au delà du gain en sécurité, la valeur ajoutée de l'information probabiliste se traduit également en gains économiques ou en une gestion optimale de la ressource en eau disponible pour les activités économiques qui en dépendent. Dans la chaîne de prévision de débits, l'incertitude des modèles météorologiques de prévision de pluies joue un rôle important. Pour pouvoir aller au-delà des limites de prévisibilité classiques, les services météorologiques font appel aux systèmes de prévision d'ensemble,générés sur la base de variations imposées dans les conditions initiales des modèlesnumériques et de variations stochastiques de leur paramétrisation. Des scénarioséquiprobables de l'évolution de l'atmosphère pour des horizons de prévision pouvant aller jusqu'à 10-15 jours sont ainsi proposés. L'intégration des prévisions météorologiques d'ensemble dans la chaîne de prévision hydrologique se présente comme une approche séduisante pour produire des prévisions probabilistes de débits et quantifier l'incertitude prédictive totale en hydrologie. / The last decade has seen the emergence of streamflow probabilistic forecasting as the most suitable approach to anticipate risks and provide warnings for public safety and property protection. However, beyond the gains in security, the added‐value of probabilistic information also translates into economic benefits or an optimal management of water resources for economic activities that depend on it.In streamflow forecasting, the uncertainty associated with rainfall predictions from numerical weather prediction models plays an important role. To go beyond the limits of classical predictability, meteorological services developed ensemble prediction systems, which are generated on the basis of perturbations of the initial conditions of the models and stochastic variations in their parameterization. Equally probable scenarios of the evolution of the atmosphere are proposed for forecasting horizons up to 10‐15 days.The integration of weather ensemble predictions in the hydrological forecasting chain is an interesting approach to produce probabilistic streamflow forecasts and quantify the total predictive uncertainty in hydrology. Last and final summary in the thesis.
|
6 |
Prévision d’ensemble par agrégation séquentielle appliquée à la prévision de production d’énergie photovoltaïque / Ensemble forecasting using sequential aggregation for photovoltaic power applicationsThorey, Jean 20 September 2017 (has links)
Notre principal objectif est d'améliorer la qualité des prévisions de production d'énergie photovoltaïque (PV). Ces prévisions sont imparfaites à cause des incertitudes météorologiques et de l'imprécision des modèles statistiques convertissant les prévisions météorologiques en prévisions de production d'énergie. Grâce à une ou plusieurs prévisions météorologiques, nous générons de multiples prévisions de production PV et nous construisons une combinaison linéaire de ces prévisions de production. La minimisation du Continuous Ranked Probability Score (CRPS) permet de calibrer statistiquement la combinaison de ces prévisions, et délivre une prévision probabiliste sous la forme d'une fonction de répartition empirique pondérée.Dans ce contexte, nous proposons une étude du biais du CRPS et une étude des propriétés des scores propres pouvant se décomposer en somme de scores pondérés par seuil ou en somme de scores pondérés par quantile. Des techniques d'apprentissage séquentiel sont mises en oeuvre pour réaliser cette minimisation. Ces techniques fournissent des garanties théoriques de robustesse en termes de qualité de prévision, sous des hypothèses minimes. Ces méthodes sont appliquées à la prévision d'ensoleillement et à la prévision de production PV, fondée sur des prévisions météorologiques à haute résolution et sur des ensembles de prévisions classiques. / Our main objective is to improve the quality of photovoltaic power forecasts deriving from weather forecasts. Such forecasts are imperfect due to meteorological uncertainties and statistical modeling inaccuracies in the conversion of weather forecasts to power forecasts. First we gather several weather forecasts, secondly we generate multiple photovoltaic power forecasts, and finally we build linear combinations of the power forecasts. The minimization of the Continuous Ranked Probability Score (CRPS) allows to statistically calibrate the combination of these forecasts, and provides probabilistic forecasts under the form of a weighted empirical distribution function. We investigate the CRPS bias in this context and several properties of scoring rules which can be seen as a sum of quantile-weighted losses or a sum of threshold-weighted losses. The minimization procedure is achieved with online learning techniques. Such techniques come with theoretical guarantees of robustness on the predictive power of the combination of the forecasts. Essentially no assumptions are needed for the theoretical guarantees to hold. The proposed methods are applied to the forecast of solar radiation using satellite data, and the forecast of photovoltaic power based on high-resolution weather forecasts and standard ensembles of forecasts.
|
7 |
American Football : A Markovian Approach / Amerikansk fotboll med MarkovkedjorLarsson, Joakim, Sjökvist, Henrik January 2016 (has links)
This bachelor's thesis in applied mathematics & industrial economics is an attempt to model drives in American football using Markov chains. The transition matrix is obtained through logit regression analysis on historical data from the NFL. Different outcomes of drives are modelled as separate absorbing states in the Markov chain. Absorption probabilities are calculated representing the probabilities of each outcome. Results are tested against a Markov chain with the transition matrix based on frequency analysis. Three scoring rules unanimously declare the regression based model to be superior. The application of the model pertains to live sports betting. With the insight provided by the Markovian model, a bettor should be able to make statistically informed betting decisions. The prospect of creating a start-up based on the Markovian betting model is discussed. / Denna kandidatuppsats i tillämpad matematik & industriell ekonomi är ett försök till att modellera drives i amerikansk fotboll med hjälp av Markovkedjor. Övergångsmatrisen fås genom logit-regressionsanalys av historisk data från NFL. Olika utfall av drives modelleras som separata absorberande tillstånd i Markovkedjan. Absorptionssannolikheter beräknas, vilka representerar sannolikheterna för de olika utfallen. Resultaten testas mot en Markovkedja där övergångsmatrisen fås genom frekvensanalys. Tre olika poängregler föredrar enhälligt den regressionsbaserade modellen. Modellens tillämpning berör sportbetting. Med hjälp av Markovmodellen bör en spelare kunna ta statistiskt underbyggda beslut i deras betting. Möjligheterna att skapa ett företag baserat på Markovmodellen diskuteras.
|
8 |
Towards a Stochastic Operation of Switzerland’s Power GridMaury, Alban January 2023 (has links)
As Europe’s power production becomes increasingly reliant on intermittent renewable energy sources, uncertainties are likely to arise in power generation plans. Similarly, with the growing prevalence of electric vehicles, electric demand is also becoming more uncertain. These uncertainties in both production and demand can lead to challenges for European power systems. This thesis proposes the use of Monte-Carlo simulations to translate uncertainties in power generation and demand into uncertainties in the power grid. To integrate stochasticity in the forecasts, this thesis separates the multivariate probabilistic forecasting problem by first forecasting the marginal loads individually and probabilistically. Copula theory is then used to integrate spatial correlations and create realistic scenarios. These scenarios serve as inputs for Monte-Carlo simulations to estimate uncertainties in the power system. The methodology is tested using power injection data and the power system model of Switzerland. The results demonstrate that integrating stochasticity in forecasts improves the reliability of the power system. The proposed approach effectively models the uncertainty in both production and demand and provides valuable information for decision-making. / I takt med att Europas elproduktion blir alltmer beroende av intermittenta förnybara energikällor kommer det sannolikt att uppstå osäkerheter i planerna för elproduktion. På samma sätt blir efterfrågan på elektricitet mer osäker i takt med att elfordon blir allt vanligare. Dessa osäkerheter i både produktion och efterfrågan kan leda till utmaningar för de europeiska kraftsystemen. I denna avhandling föreslås att Monte-Carlo-simuleringar används för att omvandla osäkerheter i elproduktion och efterfrågan till osäkerheter i elnätet. För att integrera stokasticitet i prognoserna separerar denna avhandling det multivariata probabilistiska prognosproblemet genom att först individuellt och probabilistiskt prognostisera belastningar. Kopulateori används sedan för att integrera rumsliga korrelationer och skapa realistiska scenarier. Dessa scenarier tjänar som indata för Monte-Carlo-simuleringar för att uppskatta osäkerheterna i kraftsystemet. Metodiken testas med hjälp av data om inmatning av el och med hjälp av Schweiz kraftsystem. Resultaten visar att integrering av stokasticitet i prognoser förbättrar kraftsystemets tillförlitlighet. Den föreslagna metoden modellerar effektivt osäkerheten i både produktion och efterfrågan och ger värdefull information för beslutsfattandet.
|
9 |
[en] FORECASTING PROBABILISTIC DENSITY DISTRIBUTION OF WIND POWER GENERATION USING NON-PARAMETRIC TECHNIQUES / [pt] PREVISÃO DA DISTRIBUIÇÃO DA DENSIDADE DE PROBABILIDADE DA GERAÇÃO DE ENERGIA EÓLICA USANDO TÉCNICAS NÃO PARAMÉTRICASSORAIDA AGUILAR VARGAS 11 July 2016 (has links)
[pt] Como resultado do processo de contração de novos Leilões de energia eólica e a
entrada em operação de novos parques eólicos ao sistema elétrico Brasileiro, é necessário
que o planejamento da operação das atividades de curto prazo como a regulação,
atendimento da carga, balanceamento e programação do despacho das unidades geradoras
entre outras atividades, seja efetuado de tal que os riscos técnicos e financeiros sejam
minimizados. Porém esta não é uma tarefa simples, já que fornecer previsões exatas para
esse processo apresenta uma série de desafios, como a incorporação da incerteza no
cálculo das previsões. Daqui que a literatura técnica reporta diversas técnicas que
proporcionam estimativas da densidade de probabilidade de geração de energia eólica,
pois tais estimações permitem obter previsões da densidade de probabilidade para a
energia eólica. Neste contexto, a previsão da velocidade do vento nos aproveitamentos
eólicos passa a ser uma informação fundamental para os modelos de apoio à decisão que
suportam a operação econômica e segura dos sistemas elétricos, pois a maioria dos
modelos precisa da previsão da velocidade do vento para calcular a previsão da energia
eólica. Este trabalho apresenta uma proposta uma estratégia de especificação não
paramétrica para a previsão da geração de energia eólica, empregando a comumente
conhecida densidade condicional por kernel, o qual permite calcular a função densidade
de probabilidade da produção eólica para qualquer horizonte de tempo, condicionada à
previsão da velocidade do vento obtida através da aplicação da metodologia de Análise
Espectral Singular (SSA) para previsão. A metodologia foi validada com sucesso usando
a série temporal das medias horárias da velocidade do vento e da produção eólica de um
parque eólico Brasileiro. Os resultados foram comparados contra outras metodologias
para a previsão da velocidade do vento, onde a abordagem não paramétrica proposta
produz resultados muito proeminentes. / [en] As a result of the new contracting process wind power auctions and the entrance into operation of new wind farms to the Brazilian electrical system, it is requires that the planning of the operation of short-term activities such as regulation, balancing and programming dispatch of units commitment among other activities, is made such that the technical and financial risks are minimized. But this is not a simple task, since providing accurate forecasts for this process presents several challenges, as the incorporation of uncertainty in the calculation of the forecasts. Hence the technical literature reports several techniques that provide estimates of the probability of wind power generation density, because such estimates allow to obtain forecasts of the wind power probability density function. In this context, wind speed forecasting in wind farms becomes essential information for decision support models which helps the economic and safe operation of electrical systems, due to the fact that most of the models need to the wind speed predictions for forecasting wind energy. This thesis proposes a non-parametric specification strategy for forecasting of wind power generation, using the commonly known conditional kernel density estimation, which allows the estimation of the probability density function of wind power generation for any time horizon, conditioned on wind speed forecast obtained by applying the Singular Spectrum Analysis methodology (SSA). The methodology has been successfully validated using the time series of wind speed and hourly averages of wind production of a Brazilian wind farm. The results were compared against other methodologies for wind speed prediction, and the proposed non-parametric approach produced very prominent results.
|
10 |
A Comparison of Statistical Methods to Generate Short-Term Probabilistic Forecasts for Wind Power Production Purposes in Iceland / En jämförelse av statistiska metoder för attgenerera kortsiktiga probabilistiska prognoser för vindkraftsproduktion på IslandJóhannsson, Arnór Tumi January 2022 (has links)
Accurate forecasts of wind speed and power production are of great value for wind power producers. In Southwest Iceland, wind power installations are being planned by various entities. This study aims to create optimal wind speed and wind power production forecasts for wind power production in Southwest Iceland by applying statistical post-processing methods to a deterministic HARMONIE-AROME forecast at a single point in space. Three such methods were implemented for a 22 month-long set of forecast-observation samples in 1h resolution: Temporal Smoothing (TS), Observational Distributions on Discrete Intervals (ODDI - a relatively simple classification algorithm) and Quantile Regression Forest (QRF - a relatively complicated Machine Learning Algorithm). Wind power forecasts were derived directly from forecasts of wind speed using an idealized power curve. Four different metrics were given equal weight in the evaluation of the methods: Root Mean Square Error (RMSE), Miss Rate of the 95-percent forecast interval (MR95), Mean Median Forecast Interval Width (MMFIW - a metric to measure the forecast sharpness) and Continuous Ranked Probability Score (CRPS). Of the three methods, TS performed inadequately while ODDI and QRF performed significantly better, and similarly to each other. Both ODDI and QRF predict wind speed and power production slightly more accurately than deterministic AROME in terms of their Root Mean Square Error. In addition to an overall evaluation of all three methods, ODDI and QRF were evaluated conditionally. The results indicate that QRF performs significantly better than ODDI at forecasting wind speed and wind power at wind speeds above 13 m/s. Else, no strong discrepancies were found between their conditional performance. The results of this study are limited by a relatively scarce data set and correspondingly short time series. The results indicate that applying statistical post-processing methods of varying complexity to deterministic wind speed forecasts is a viable approach to gaining a probabilistic insight into the wind power potential at a given location.
|
Page generated in 0.0499 seconds