• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 82
  • 19
  • 11
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 241
  • 241
  • 89
  • 84
  • 32
  • 25
  • 22
  • 20
  • 19
  • 19
  • 18
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

GROWTH OF SILVER NANOPARTICLES ON TRANSPARENT SUBSTRATES FROM LIQUID PRECURSORS: IMPROVEMENTS AND APPLICATIONS

Jarro Sanabria, Carlos Andrés 01 January 2013 (has links)
Interest in controlling the synthesis of silver nanoparticles in colloidal solutions has increased during the last two decades. There is also growing interest in forming layers of silver nanoparticles on substrates, particularly for surface-enhanced Raman spectroscopy applications. However, methods to grow silver nanoparticles directly on substrates have not been studied extensively, and there are few techniques for controlling the size, shape, density, and location of the particles. This work presents a simple and reliable method to photodeposit silver nanoparticles onto transparent substrates. The size, shape and deposition density of the nanoparticles are influenced by the precursor solution, light intensity, and surface modification of the substrate. This allows control of the optical and electrical properties of the nanoparticle films. Furthermore, the particles can be patterned using direct laser exposure, scanning probe methods, and electron-beam lithography. Applications and advantages of this deposition method are proposed and explored.
72

The sublethal effects of nanosilver on thyroid hormone-dependent frog metamorphosis

Carew, Amanda 09 April 2013 (has links)
Nanoparticles (NPs) are engineered in the nanoscale (<100nm) to have unique physico-chemical properties from their bulk counterparts. Nanosilver (nAg) is the most prevalent nanoparticle in consumer products due to its strong antimicrobial action and can be released to the environment during product manufacture, usage and disposal. The predicted environmental concentrations are within the North American guidelines for the protection of aquatic life and in drinking water. While nAg toxicity at high concentrations has been well described, the sublethal effects at environmentally-relevant concentrations are relatively unknown. Initial screening in our lab showed nAg was a potential endocrine disrupting chemical (EDC). Amphibian metamorphosis is mediated by thyroid hormone (TH), and nAg perturbed TH-dependent transcriptional responses in the tailfin of bullfrog (Rana catesbeiana) tadpoles. The primary objective of this thesis was to further investigate and characterize the effects of low, environmentally relevant concentrations of nAg on TH-dependent metamorphosis in R. catesbeiana and Xenopus laevis. Two chronic, 28 day in vivo exposures at 0.06 and 6µg/L nAg were conducted with premetamorphic R. catesbeiana tadpoles using TH to induce precocious metamorphosis. Ionic silver (iAg) was also examined to control for the complete dissolution of Ag. Analysis of metamorphic stage progression demonstrated nAg-induced acceleration of hindlimb growth and development. After 6 days of nAg exposure, analysis with quantitative real-time polymerase chain reaction (QPCR) demonstrated nAg-induced disruption of TH-responsive transcripts in a tissue-specific manner. Furthermore, the nAg effects could not be fully explained by iAg, indicating NP-specific disruption. Two chronic, 28 day exposures to 0.018-1.8 µg/L nAg were conducted on X. laevis premetamorphic and prometamorphic tadpoles. nAg was found to significantly bioaccumulate in tadpole tissue after 28 days. Furthermore, nAg increased the hindlimb length during early premetamorphosis and in post-metamorphic juvenile tadpoles. Using an in-house MAGEX microarray and QPCR transcriptional analysis, 7 biomarkers of nAg exposure were validated. Five of these targets showed disruption to their TH-response. Furthermore, the increased mRNA abundance of two peroxidases indicated that nAg generated reactive oxygen species (ROS) even at low, environmental concentrations. This thesis demonstrates that nAg has consistent EDC actions across two distinct amphibian species, and the data suggest that regulatory guidelines for silver may need revision. A X. laevis derived fibroblast-like TH-responsive cell line, XTC-2, was used in conjunction with the 7 biomarkers of nAg exposure to gain mechanistic insight into the role of ROS in TH signaling disruption. Monocultures were created and validated to increase the specificity of TH-response. While the monocultures were successfully created, the biomarkers were not responsive to nAg in this cell line. Additional investigations were made into the relationship between genetic sex and responsiveness to TH. Genetic sexing methods were used to investigate transcriptional differences between males and females during natural and TH-induced metamorphosis. The sexing protocol was optimized and validated successfully. The genetic sex was determined for premetamorphic and prometamorphic X. laevis tadpoles exposed to TH for 48 h. QPCR and microarray analysis were used to identify three markers that demonstrated transcriptional sex-bias during early gonadal differentiation stages. / Graduate / 0307 / 0383 / 0487 / amanda_carew14@yahoo.ca
73

Metal Nanoparticles/Nanowires Self-assembly on Ripple Patterned Substrate

Ranjan, Mukesh 07 October 2011 (has links) (PDF)
Plasmonic properties of self-assembled silver nanoparticles/nanowires array on periodically patterned Si (100) substrate are reported with special attention on the mechanism of nanoparticles self-assembly. The advantage of this bottom up approach over other self-assembling and lithographic methods is the flexibility to tune array periodicity down to 20 nm with interparticle gaps as low as 5 nm along the ripple. Ripple pattern have shallow modulation (~2 nm) still particles self-assembly was observed in non-shadow deposition. Therefore adatoms diffusion and kinetics is important on ripple surface for the self-assembly. PVD e-beam evaporation method used for deposition has proven to be superior to sputter deposition due to lower incident flux and lower atom energy. It was found that particles self-assembly largely dependent on angle of incidence, substrate temperature, and deposition direction due to ripple asymmetric tilt. Ostwald ripening observed during annealing on ripples substrate has striking dependency on ripple periodicity and was found to be different compared to Ostwald ripening on flat Si surface. In-situ RBS measurements of deposited silver on flat and rippled substrate confirmed different sticking of atoms on the two surfaces. The difference between maximum and minimum of the calculated local flux show a peak at an incidence angle of 70o with respect to surface normal. This explains the best alignment of particles at this angle of incidence compare to others. Self-assembled nanoparticles are optically anisotropic, i.e. they exhibit a direction dependent shift in LSPR. The reason of the observed anisotropy is a direction dependent plasmonic coupling. Different in plane and out of the plane dielectric coefficients calculated by modelling Jones matrix elements, confirms that nanoparticle/nanowire array are biaxial anisotropic (ex ¹ ey ¹ ez). The nanoparticles are predominantlyinsulating while nanowires are both metallic and insulating depending on the dimension. Silver nanoparticles/nanowires self-aligned on pre-patterned rippled substrate are presented for the first time as an active SERS substrate. Anisotropic SERS response in such arrays is attributed to different field enhancement along and across the ripples. Strong plasmonic coupling in elongated nanoparticles chain results in significantly higher SERS intensity then spherical nanoparticles/nanowires and non-ordered nanoparticles. Higher SERS intensity across the nanowires array in comparison to along the array (bulk silver) confirms electromagnetic field enhancement (hot-junction) is responsible for SERS phenomenon. Self-assembly of cobalt nanoparticle on ripple pattern substrate is also reported. Due to less adatom mobility and higher sticking cobalt self-assembly is possible only at much higher temperature. A strong uniaxial magnetic anisotropy was observed not observed for non ordered cobalt particles.
74

Electron-nuclear dynamics in noble metal nanoparticles

Senanayake, Ravithree Dhaneeka January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christine Aikens / Thiolate-protected noble metal nanoparticles (~2 nm size) are efficient solar photon harvesters, as they favorably absorb within the visible region. Clear mechanistic insights regarding the photo-physics of the excited state dynamics in thiolate-protected noble metal nanoclusters are important for future photocatalytic, light harvesting and photoluminescence applications. Herein, the core and higher excited states lying in the visible range are investigated using the time-dependent density functional theory method for different thiolate-protected nanoclusters. Nonadiabatic molecular dynamics simulations are performed using the fewest switches surface hopping approach with a time-dependent Kohn-Sham (FSSH-TDKS) description of the electronic states with decoherence corrections to study the electronic relaxation dynamics. Calculations on the [Au₂₅ (SH)₁₈]⁻¹ nanocluster showed that relaxations between core excited states occur on a short time scale (2-18 ps). No semiring or other states were observed at an energy lower than the core-based S₁ state, which suggested that the experimentally observed picosecond time constants could be core-to-core transitions rather than core-to-semiring transitions. Electronic relaxation dynamics on [Au₂₅ (SH)₁₈]⁻¹ with different R ligands (R = CH₃, C₂H₅, C₃H₇, MPA) [MPA = mercaptopropanoic acid] showed that all ligand clusters including the simplest SH model follow a similar trend in decay within the core states. In the presence of higher excited states, R= H, CH₃, C₂H₅, C₃H₇ demonstrated similar relaxations trends, whereas R=MPA showed a different relaxation of core states due to a smaller LUMO+1-LUMO+2 gap. Overall, the S₁ state gave the slowest decay in all ligated clusters. An examination of separate electron and hole relaxations in the [Au₂₅ (SCH₃)₁₈]⁻¹ nanocluster showed how the independent electron and hole relaxations contribute to its overall relaxation dynamics. Relaxation dynamics in the Au₁₈(SH)₁₄ nanocluster revealed that the S₁ state has the slowest decay, which is a semiring to core charge transfer state. Hole relaxations are faster than electron relaxations in the Au₁₈(SH)₁₄ cluster due its closely packed HOMOs. The dynamics in the Au₃₈(SH)₂₄ nanocluster predicted that the slowest decay, the decay of S₁₁ or the combined S₁₁-S₁₂, S₁-S₂-S₄-S₇ and S₄-S₅-S₉-S₁₀ decay, involves intracore relaxations. The phonon spectral densities and vibrational frequencies suggested that the low frequency (25 cm⁻¹) coherent phonon emission reported experimentally could be the bending of the bi-icosahedral Au₂₃ core or the “fan blade twisting” mode of two icosahedral units. Relaxation dynamics of the silver nanoparticle [Ag₂₅ (SR)₁₈]⁻¹ showed that both [Ag₂₅(SH)₁₈]⁻¹ and [Au₂₅ (SH)₁₈]⁻¹ follow a common decay trend within the core states and the higher excited states.
75

Graphenated organic nanoparticles immunosensors for the detection of TB biomarkers

Mgwili, Phelisa Yonela January 2017 (has links)
Magister Scientiae - MSc (Chemistry) / Pulmonary Tuberculosis (TB) a disease second to HIV/AIDS is a global health problem that arises in two states; as an active state and as a latent state. Diagnosis of active TB is tedious and requires expensive procedures since there is no recognizable method for the sole detection of active TB. The current diagnosis consists of chest X-rays and multiple sputum cultures used for acid-fast bacilli detection. The TB diagnosis of children is particularly difficult which further complicates the diagnosis. Thus, rapid identification of this pathogen is important for the treatment and control of this infection to allow effective and timely therapy. In an effort to solve this issue, this study reports the development of immunosensors constructed with electroactive layers of amino groups functionalized graphene oxide (GO) doped respectively with green synthesized zinc oxide (ZnO NPs) nanoparticles and silver (Ag NPs) nanoparticles on glassy carbon electrodes. The surface morphology of GO, ZnO NPs, Ag NPs and their composites was revealed by employing High-Resolution Transmission Electron Microscopy (HR-TEM) and High-Resolution Scanning Electron Microscopy (HR-SEM) while the composition and structure of these materials were studied using Fourier Transform Infra-Red Spectroscopy (FTIR). The resultant graphene oxide-metallic composites were covalently attached with CFP-10 and/or ESAT-6 antibodies to achieve the electrochemical detection. The immunosensor was then used for the impedimetric and amperometric detection of anti-CFP-10 and/or anti-ESAT-6 antigens in standard solutions.
76

Síntese, caracterização e avaliação do potencial antimicrobiano de nanopartículas de prata em tintas e vernizes acrílicos à base d'água

Antunes, Fabiana Sedina January 2013 (has links)
Percebe-se um interesse da indústria de fabricação de tintas na utilização de nanopartículas de prata devido às suas propriedades antimicrobianas. Neste trabalho, objetivou-se sintetizar e caracterizar soluções coloidais de nanopartículas de prata para ser um potencial aditivo antimicrobiano em tintas acrílicas à base d’água. No processo experimental, as nanopartículas de prata foram preparadas pela redução de íons de prata por boroidreto de sódio e estabilizada, utilizando citrato trissódico dihidrado. As caraterizações das nanopartículas de prata foram realizadas por espectroscopia de UV-Visível, microscopia eletrônica de transmissão e antibiograma contra bactérias Gram-positivas e Gram-negativas. Os espectros de UV-vis foram muito similares para as NPs Ag 18 ppm e para as NPs Ag 1000 ppm com os espectros de absorção na região de 400nm, que indica a presença de NPs Ag com forma esférica. Pela microscopia eletrônica de transmissão confirmou-se a presença das NPs Ag na forma esférica e observou-se a diferença de tamanho de partículas, sendo que para as NPs Ag a média foi de 7,32 nm e para NPs Ag 1000 ppm foi de 15,2 nm. O antibiograma demonstrou que as NPs Ag 18 ppm e de 1000 ppm apresentam atividade antibacteriana contra a bactéria Gram-negativa Escherichia coli e contra a bactéria Gram-positiva Staphylococcus aureus. No filme de tinta aplicado, avaliou-se a diferença de cor da tinta branca após a adição das NPs Ag, utilizando um espectrofotômetro e a perda de brilho após o ensaio de intemperismo acelerado sob radiação UV-B. Foi verificado que as NPs Ag não têm efeito sobre a perda de brilho do filme de tinta, porém induzem ao amarelamento do mesmo. Os resultados foram positivos para o ensaio de resistência a bactérias conforme a norma JIS Z 2801:2000 somente para as amostras de tinta acrílica à base d’água e verniz acrílico à base d’água com 100 ppm de NPs Ag. Para as amostras de tintas e vernizes com 3,6 ppm e 30 ppm de NPs Ag não houve efeito inibitório. Para o ensaio de resistência a fungos, segundo a norma ABNT NBR 14941, as tintas não apresentaram efeito inibitório satisfatório. / There is a particular interest of the paint manufacturing industry by using silver nanoparticles due its antimicrobial properties. This study has as objective to synthesize and characterize silver nanoparticles colloidal solutions as a potential antimicrobial additive in water-based acrylic paints. In the experimental process, the silver nanoparticles were prepared by reduction the silver ions by sodium borohydride and used trisodium citrate dihydrate as stabilizing agent. The characterizations of the silver nanoparticles were realized by spectroscopy in the infrared region, transmission electronic microscopy and Gram positive and Gram negative antibiograms. The UV-vis results were similar for the NPs Ag 18 ppm and NPs Ag 1000 ppm samples with the absorption spectra in the range of 400nm, which indicates the presence of de NPs Ag in a spherical format. By the transmission electron microscopy it was noted the presence of NPs Ag in a spherical format and differences in the particles sizes for NPs Ag (media of 7.32 nm) and for NPs Ag 1000 ppm (media of 15.2 nm) samples. The antibiogram test demonstrates that the 18 ppm and the 1000 ppm NPs Ag showed antibacterial activity against the Gram negative bacterium Escherichia coli and against the Gram positive bacteria Staphylococcus aureus. In the paint film, it was avaluated the difference of the white color after the incorporation of the NPs Ag using a spectrophotometer and the brightness lost after the UV-B accelerated weathering testing. It was noted that the NPs Ag had no effect in the brightness lost of the paint film; however inducing to the yellowing of the same. The results were positive for the bacterial resistances according to JIS Z 2801:2000 only for the water-based acrylic paints and varnish containing 100 ppm of NPs Ag. For the samples with 3,6 ppm and 30ppm it was not noted an inhibitory effect. Finally, for the fungal resistance according to ABNT NBR 14941 the paints do not showed satisfactory inhibitory effect.
77

Optical and luminescence properties of noble metal nanoparticles

Weerawardene, K. L. Dimuthu M. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christine M. Aikens / The remarkable optical and luminescence properties of noble metal nanoparticles (with diameters < 2 nm) attract researchers due to potential applications in biomedicine, photocatalysis, and optoelectronics. Extensive experimental investigations on luminescence properties of thiolate-protected gold and silver nanoclusters during the past decade have failed to unravel their exact photoluminescence mechanism. Herein, density functional and time-dependent density functional theory (DFT and TDDFT) calculations are performed to elucidate electronic-level details of several such systems upon photoexcitation. Multiple excited states are found to be involved in photoemission from Au₂₅(SR)₁₈– nanoclusters, and their energies agree well with experimental emission energies. The Au₁₃ core-based excitations arising due to electrons excited from superatom P orbitals into the lowest two superatom D orbitals are responsible for all of these states. The large Stokes shift is attributed to significant geometrical and electronic structure changes in the excited state. The origin of photoluminescence of Ag₂₅(SR)₁₈– nanoclusters is analogous to their gold counterparts and heteroatom doping of each cluster with silver and gold correspondingly does not affect their luminescence mechanism. Other systems have been examined in this work to determine how widespread these observations are. We observe a very small Stokes shift for Au₃₈(SH)₂₄ that correlates with a relatively rigid structure with small bond length changes in its Au₂₃ core and a large Stokes shift for Au₂₂(SH)₁₈ with a large degree of structural flexibility in its Au₇ core. This suggests a relationship between the Stokes shift of gold−thiolate nanoparticles and their structural flexibility upon photoexcitation. The effect of ligands on the geometric structure and optical properties of the Au₂₀(SR)₁₆ nanocluster is explored. Comparison of the relative stability and optical absorption spectra suggests that this system prefers the [Au₇(Au₈SR₈)(Au₃SR₄)(AuSR₂)₂] structure regardless of whether aliphatic or aromatic ligands are employed. The real-time (RT) TDDFT method is rapidly gaining prominence as an alternative approach to capture optical properties of molecular systems. A systematic benchmark study is performed to demonstrate the consistency of linear-response (LR) and RT-TDDFT methods for calculating the optical absorption spectra of a variety of bare gold and silver nanoparticles with different sizes and shapes.
78

Aplicação de nanopartículas de prata e titânio na melhoria das propriedades de filmes de alginato de sódio para uso em curativos /

Lima, Tiago Antônio de January 2018 (has links)
Orientador: Márcia Regina de Moura Aouada / Resumo: Os curativos são agentes que, aplicados sobre uma lesão externa, auxiliam na cicatrização e cura; geralmente são de materiais leves, ordinariamente de algodão. A ideia de um curativo inteligente é fornecer um material leve, biocompátivel, biodegradável e anatômico que irá se adaptar perfeitamente para promover a cura de diferentes tipos de lesões. O objetivo deste trabalho foi melhorar as propriedades mecânicas e de barreiras em filmes de alginato de sódio. Desta forma, nanopartículas de prata com tamanho médio de 90 nm foram obtidas através de síntese química pela redução de nitrato de prata por borohidreto de sódio, e nanodispersão de dióxido de titânio obtida em equipamento de ultrassom. As nanopartículas foram inseridas na matriz de alginato juntamente com solução de sorbitol a 65%, e os filmes foram obtidos através do processo “Casting”. Posteriormente, o material foi caracterizado e os resultados das propriedades mecânicas de tensão por deformação revelaram que a presença de nanoemulsão de titânio (TiNE) e nanopartículas de prata (AgNP) na matriz de alginato aumentou a resistência à tração em aproximadamente 6,4 e 14,3%, respectivamente. Já nos filmes que tinham sorbitol, foi reduzida em 55,5%. Em contrapartida, a deformação foi aumentada em cerca de 1 a 3%. A estabilidade térmica dos filmes também sofreu um aumento (comprovada pelas técnicas de DSC e TG). Estes efeitos no aumento do elongamento e estabilidade térmica podem estar associados à formação de uma estrutura s... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Dressings are agents that, applied on an external lesion, aid and healing; Usually they are of light materials, ordinarily of cotton. The idea of an intelligent dressing is to provide a light, biocompatible, biodegradable and anatomical material that will fit perfectly to promote healing of different types of lesions. The objective of this work was to improve the mechanical and barrier properties of sodium alginate films. In this way, silver nanoparticles (AgNP) with a mean size of 75-96 nm were obtained through chemical synthesis by reduction of silver nitrate by sodium borohydride, and titanium dioxide nanoemulsion (TiNE) by dispersion in ultrasonic equipment. Through the casting process, the nanoparticles were inserted into the alginate matrix together with 65% sorbitol solution. Subsequently, the material was characterized and the results of the tensile tests revealed that the presence of TiNE and AgNP in the alginate matrix increased the tensile strength by approximately 6.4 and 14.3% respectively. In the films that had sorbitol, it was reduced by 55.5%. In contrast, the elongation rate was increased about 1 to 3%. The thermal stability of the films also increased (as evidenced by DSC and TG techniques). These effects on increasing elongation and thermal stability may be associated with the formation of a spider-like structure with more compact regions around metal NPs and regions with polymer chain spreading with predominance of M monomers due to the eletrostatic repuls... (Complete abstract click electronic access below) / Mestre
79

Ormosils fotoativos com fosfotungstato dopados com nanopartículas SiO2@TiO2 e NP de Ag: avaliação fotocrômica e potencial de inibição bactericida frente às bactérias Staphylococcus aureus e Pseudomona aeruginosa / Photoactive ormosil-phosphotungstate materials doped with SiO2@TiO2 and Ag nanoparticles: evaluation of their photochromic response and bacteriainhibition activity against Staphylococcus aureus and Pseudomonas aeruginosa

Lidiane Patricia Gonçalves 13 April 2015 (has links)
Neste trabalho foram preparados materiais híbridos do tipo silicatos organicamente modificados (Ormosils) contendo fosfotungstato, [PW12O40]-3 e dopados com nanopartículas sintetizadas core@shell SiO2@TiO2. Os objetivos a serem atingidos com estes materiais são obter filmes com alta sensibilidade à radiação UV e capazes de fotossintetizar nanopartículas de Ag no seu interior e superfície visando revestimentos antibacterianos. O pigmento fotocrômico nos filmes é o fosfotungstato e o core@shell irá atuar como agente potencializador da resposta fotocrômica dele. Dessa maneira variou-se a quantidade de volume da suspensão das partículas core@shell tentando maximizar a resposta fotocrômica com a menor quantidade possível de partículas adicionadas. Observa-se uma resposta não linear da sensibilidade ao UV observada pelo aumento no fotocromismo com a quantidade de suspensão de partículas adicionada. Ormosils com nanopartículas de Ag fotossintetizadas foram preparados com intuito de verificar a inibição desses na formação de biofilmes de bactérias patogênicas, ou seja, Staphylococcus aureus e Pseudomona aeruginosa. Os materiais foram caracterizados por espectroscopias vibracionais, espectroscopia de fotoelétrons de raios X (XPS), Difração de Raios X (DRX), Fluorescência de Raios X, Microscopia de Força Atômica(AFM) e Microscopia Eletrônica de Varredura (MEV). Nos testes de inibição da formação de biofilme notou-se uma maior inibição frente às bactérias S. aureus usando filmes de ormosils core@shell. Entretanto, para a inibição de P. aeruginosa a presença de core@shell não de maneira significativa. Na presença de NP de Ag ambas as bactérias foram inibidas totalmente. Os testes microbiológicos foram caracterizados através de contagem de placa, microscopia de Epifluorescencia, teste de reaproveitamento, teste do halo de crescimento, Microscopia Eletrônica de Varredura e espectroscopia de fotoelétrons de raios X (XPS). / In this project, hybrid materials based on organo modiefied silicates (Ormosils) containing phosphotunsgtic acid (HPW) and doped with SiO2@TiO2 core@shell nanoparticles were prepared. The objectives of the project was to obtain films of these hybrid ormosil-HPW-SiO2@TiO2 materials with high sensitivity to UV radiation and, which after coating with silver nanoparticles, could be used for antibacterial applications. The HPW in these films serves as the photochromic component while the role of SiO2@TiO2 particles was to enhance the innate phototromic reponse of the HPW. The prepared hybrid materials and hybrid films were characterized by vibrational spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis, X-ray fluoresence, atomic force microscopy and scanning electron microscopy. The effect of addition of SiO2@TiO2 particles on the photochromic reponse was systematically studied in order to obtain films with maximum photochromic response. The UV sensitity or the photochromic response showed a non-linear increase as function of the amount of SiO2@TiO2 particles added. The hybrid ormosil-HPW-SiO2@TiO2 films modified with silver nanoparticles were studied for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa as model bacteria. The ormosil-HPW-SiO2@TiO2 films showed a good degree of inhibition against S. aureus, while the presence of SiO2@TiO2 in the ormosil-HPW films had no significant effect on the inhibition ability of the hybrid films against P. aeruginosa. The ormosil-HPW-SiO2@TiO2 films modified with Ag totally inhibited the growth of both the model bacteria studied. These photochromic and antibacterial hybrid films can find useful applications in UV-sensing devices and antibacterial coatings.
80

Deposição fotoquímica de nanopartículas de prata em argilas e avaliação da sua atividade antimicrobiana / Photochemical deposition of silver nanoparticles on clays and evaluation their antimicrobial activity

Patricia Coelho Lombardo Carniatto 17 June 2016 (has links)
No presente trabalho nanopartículas de prata (NPsAg) foram preparadas via fotoquímica na presença de citrato de sódio ou argila (SWy-1, SYn-1 e Laponita B) como estabilizantes e, Irgacure 2959 ou Lucirin TPO como fotorredutores. As NPsAg foram caracterizadas por Espectroscopia de UV-Vis, Espalhamento de Luz Dinâmico (DLS), Difração de raios X (DRX) e Microscopia Eletrônica de Transmissão (MET). Durante a síntese fotoquímica, foi observado o aparecimento de uma banda de absorção plasmônica por volta de 400 nm, seguida pela alteração da coloração da solução, passando de incolor para amarela, indicando a formação das nanopartículas. As imagens de MET revelaram que durante a formação ocorre a rápida redução da prata, originando pequenas partículas esféricas, como também grandes aglomerações de prata. Durante a irradiação os aglomerados maiores desaparecem por fotofragmentação, as partículas menores coalescem até atingirem certa estabilidade e, no final da irradiação, apenas partículas de morfologia esférica estão em solução. O tipo de estrutura (intercalada ou esfoliada) obtida após a fotorredução da prata mostrou ser um fator determinante no tamanho e estabilidade das NPsAg. Os resultados de DRX mostraram que as amostras de NPsIrg/Lap B, NPsLuc/Lap B e NPsLuc/SWy-1 apresentaram alguma esfoliação da argila após a redução da prata. Nesse caso, as NPsAg obtidas foram mais uniformes e com menores diâmetros (~3 nm). A esfoliação da argila promove uma maior área de adsorção e estabilidade para as NPsAg. Por outro lado as amostras com estrutura intercalada (NPsIrg/SWy-1) e não intercalada (NPsIrg/SYn-1 e NPsLuc/SYn-1) revelaram partículas com diâmetros maiores (5-12 nm), não uniformes e agregação de algumas partículas. A atividade antimicrobiana das argilas puras, NPsLuc/Citrato e NPsLuc/Argila, foi investigada contra as bactérias Escherichia coli (E. coli) e Staphylococcus aureus (S. aureus). A amostra de NPsLuc/SWy-1 apresentou uma ótima atividade antimicrobiana contra ambas as bactérias testadas (~ 4% de índice de sobrevivência). Por outro lado, a argila Laponita B e NPsLuc/Lap B não demonstraram nenhuma atividade antimicrobiana. A presença de sítios ácidos na região interlamelar da argila SWy-1 contribui na liberação de íons Ag+ da superfície das NPsAg e, consequentemente, melhora a atividade antimicrobiana das NPsAg. Os resultados de fotocalorimetria (PCA) mostraram que os valores da porcentagem de conversão e da velocidade de polimerização (Rp) diminuem com a adição de NPsAg (5 e 10% v/v). A porcentagem de conversão mudou de 61%, na ausência de NPsAg/Citrato e NPsAg/Argila, para aproximadamente 53% na presença de de NPsAg/Citrato e NPsAg/Argila. A presença das nanopartículas pode ser responsável por uma menor penetração de luz ao sistema. Portanto, a fotólise do fotoiniciador pode ser menos eficiente. / In the present work was obtained by photochemical method silver nanoparticles (AgNPs) in the presence of citrate or clay (SWy-1, SYn-1, and Laponite B) as stabilizers and Irgacure 2959 or Lucirin TPO as photoreductors. AgNPs were characterized using UV-Vis pectroscopy, Dynamic Light Scattering (DLS), X ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). During the photochemical synthesis was observed a plasmon absorption band around 400 nm, followed by a change of colour in the solution, from colorless to yellow, indicating the formation of nanoparticles. TEM images revealed that during the formation occurs a fast silver reduction, resulting in spherical particles and large silver clusters. During the irradiation, large aggregates desappeared for photofragmentation, smaller particles coalesce to achieve some stability and in the end of irradiation only spherical morphology particles were in solution. The typical structure (intercalated or exfoliated) obtained after silver photoreduction proved to be a determining factor in the size and stability of AgNPs. XRD results showed that NPsIrg/Lap B, NPsLuc/Lap B and NPsLuc/SWy-1 samples presented some clay exfoliation after the silver reduction. The XRD results of AgNPs samples stabilized with Laponite B (NPsIrg/Lap B e NPsLuc/Lap B) and NPsLuc/SWy-1 presented exfoliated and partially exfoliated structures, respectively. In this case, AgNPs obtained were more uniform and presented smaller diameters (~ 3 nm). The clay exfoliation promoted greater absorption area and stability for AgNPs. On the other hand, samples with intercalated (NPsIrg/SWy-1) and non intercalated (NPsIrg/SYn-1 e NPsLuc/SYn-1) structure, presented particles with larger diameters (5-12 nm), non uniform and some aggregation of these particles. The antimicrobial activities of pure clays, NPsLuc/Citrate and NPsLuc/Clay were investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The NPsLuc/SWy-1 sample showed good antimicrobial activity against both tested species (~ 4% survival index). On the other hand, Laponite B and NPsLuc/Lap B samples did not demonstrate any antimicrobial activity. The presence of the acid sities in the interlayer region of the SWy-1 clay contributed to the Ag+ ions release from the AgNPs surface, and consequently improving the AgNPs antimicrobial activity. The results showed that the conversion degree and the polymerization rate (Rp) values decreased with the addition of AgNPs (5 and 10% v/v). The conversion degree changed from 61%, in the absence of AgNPs/Clay, to 53% in the presence of the AgNPs/Clay. The presence of silver nanoparticles can be responsible for less light penetration into system. Therefore, the photolysis of the photoinitiator can be less efficient.

Page generated in 0.0663 seconds