• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 13
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 33
  • 25
  • 18
  • 13
  • 12
  • 12
  • 12
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Simulace I-U charakteristik fotovoltaických modulů / Simulation of I-V characteristic on photovoltaic modules

Jiřík, Jan January 2010 (has links)
Tato práce se zabývá slunečním zářením, které je jedním z možných zdrojů obnovitelné energie. Hlavnímy body práce je seznámit se s problematikou fotovoltaiky. Sestrojení poloautomatizovaného měřícího pracoviště díky němuž obdržíme reálné I-U a P-U charakteristiky solárního panelu. Dalším bodem je sestrojení programu v programu Vee Pro 8.0, který tyto charakteristiky simuluje v programu. Cílem je zjistit charakteristické konstanty pro daný solární panel.
22

Sun Watch - System för att se produktion och förbrukning av el från solceller

Johansson, Sofia, Rees, Bruno, Sundberg, Martin, Wallentin, Karl January 2020 (has links)
Anyone who has thought about installing their own solar panels has been faced with one of the biggest obstacles, price or location. The startup company Watt-s aims to solve this problem by offering to sell smaller parts of already existing solar power plants. We have developed the system Sun Watch which uses smart plugs to measure the power consumption of household devices. How much a user's measured consumption is compensated for by their solar panels is then presented in a web application. Sun Watch is the foundation of a system that will take Watt-s a step further, making it more desirable to invest in solar energy. Before a system building upon Sun Watch can be deployed, further improvement to security, scalability and the user interface is required. The tests from the evaluation, where smart plugs from two different companies were used, show that the system has the potential to work well with the correct hardware. The results were different for each smart plug model, one of which does not fulfil the requirements on the system. The tests showing the current power consumption in real-time and the comparison between production and consumption failed in half of the attempts. The conclusion from this is uncertain, either an API is reporting incorrect information or one of the tested smart plugs is not functioning correctly. / Alla som förespråkar solenergi har inte möjlighet att sätta upp egna solceller, och därför erbjuder Watt-s möjligheten att köpa en andel av en redan befintlig solcellsanläggning. Vi har utvecklat systemet Sun Watch som använder smart plugs för att mäta energiförbrukning av hushållsapparater. I en webbapplikation presenteras hur stor del av en användares uppmätta förbrukning som kompenseras av de inköpta solcellerna. Sun Watch är grunden till ett system som ska ta Watt-s produkt ett steg längre och på så sätt göra det mer attraktivt att investera i solceller. För att kunna lansera en tjänst som bygger på Sun Watch behöver säkerheten, skalbarheten och användargränsnittet förbättras. Testerna från utvärderingen, där smart plugs från två olika företag användes, tyder på att systemet har potential att bli bra med rätt hårdvara. Resultaten för utvärderingen blev annorlunda för dessa två smart plugs, varav en inte uppfyllde kraven för systemet. Både testerna för att visa pågående förbrukning i realtid och jämförelse av produktion och förbrukning misslyckades i hälften av försöken. Detta tyder antingen på ett fel med ett av API:en eller att en modell av de smart plugs som testades inte fungerar som den ska.
23

Design and Implementation of an Integrated Solar Panel Antenna for Small Satellites

Davids, Vernon Pete January 2019 (has links)
Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2019 / This dissertation presents a concept for a compact, low-profile, integrated solar panel antenna for use on small satellites in low Earth orbit. To date, the integrated solar panel antenna design approach has primarily been, patch (transparent or non-transparent) and slot radiators. The design approach presented here is proposed as an alternative to existing designs. A prototype, comprising of an optically transparent rectangular dielectric resonator was constructed and can be mounted on top of a solar panel of a Cube Satellite. The ceramic glass, LASF35 is characterised by its excellent transmittance and was used to realise an antenna which does not compete with solar panels for surface area. Currently, no closed-form solution for the resonant frequency and Q-factor of a rectangular dielectric resonator antenna exists and as a first-order solution the dielectric waveguide model was used to derive the geometrical dimensions of the dielectric resonator antenna. The result obtained with the dielectric waveguide model is compared with several numerical methods such as the method of moments, finite integration technique, radar cross-section technique, characteristic mode analysis and finally with measurements. This verification approach was taken to give insight into the resonant modes and modal behaviour of the antenna. The interaction between antenna and a triple-junction gallium arsenide solar cell is presented demonstrating a loss in solar efficiency of 15.3%. A single rectangular dielectric resonator antenna mounted on a ground plane demonstrated a gain of 4.2 dBi and 5.7 dBi with and without the solar cell respectively. A dielectric resonator antenna array with a back-to-back Yagi-Uda topology is proposed, designed and evaluated. The main beam of this array can be steered can steer its beam ensuring a constant flux density at a satellite ground station. This isoflux gain profile is formed by the envelope of the steered beams which are controlled using a single digital phase shifter. The array achieved a beam-steering limit of ±66° with a measured maximum gain of 11.4 dBi. The outcome of this research is to realise a single component with dual functionality satisfying the cost, size and weight requirements of small satellites by optimally utilising the surface area of the solar panels.
24

Cold X-ray Effects on Satellite Solar Panels in Orbit

Fogleman, Myles 01 January 2019 (has links)
An exo-atmospheric nuclear detonation releases up to 80 percent of its’ energy as X-rays. Satellite’s solar cells and their protective coatings are vulnerable to low energy X-ray radiation. Cold X-rays (~1-1.5 keV) are absorbed close to the surface of materials causing the blow-off and rapid formation of Warm Dense Plasmas (WDPs), particularly in a gap between the unshielded active elements of solar cells. To understand how WDPs are created, it is necessary to investigate the power density distribution produced by cold X-rays for typical solar panel surface materials. The Monte Carlo stepping model implemented in the GEANT4 software toolkit is utilized to determine the power density created by cold X-rays in a multi-layered target composed of a layer of an active cell shielded by layers of cover glass and anti-reflective coating. The power density generated by cold X-rays in the unshielded semiconductor layer at different incidence angles is also investigated in order to account for different orientations of the satellite’s solar panels with respect to the point of nuclear detonation. The flux spectrum of X-rays originating from a nuclear blast is described by the Planck's blackbody function with the temperature from 0.1 keV to 10 keV. The secondary radiation (photo-electrons, fluorescence photons, Auger- and Compton-electrons) resulting from absorption and scattering of primary X-rays is taken into account in the redistribution of energy deposition within slabs. The profiles of power density within the slab system produced by primary cold X-rays, secondary photons and electrons are calculated as a function of depth. The discontinuity in power density profiles is observed at the interfaces of slabs due to discrete changes in stopping power between slab materials. The power density is found to be higher in slab materials with higher mass density. The power density profiles are then used in the atomistic Momentum Scaling Model (MSM) coupled with the Molecular Dynamics (MD) method (MSM-MD) to predict the spatiotemporal evolution of WDP in vacuum. The spatial and temporal distribution of density and temperature fields of expanding WDP is evaluated from the MSM-MD simulations. These modeling results provide insights into the underlining physics of the formation and spatiotemporal evolution of WDPs induced by cold X-rays.
25

Sun Tracking System

Dandu, Sai Charan Reddy, Sarla, Anish January 2022 (has links)
Solar energy is a clean energy source which has a minimal impact on the environment than other forms of energy. Solar energy is now widely used in a variety of applications. Although solar energy is widely used, the efficiency of converting solar energy into electricity is insufficient since most solar panels are installed at a fixed angle and the fixed solar panels do not aim directly towards the sun due to the earth’s constant motion. Solar panels are very expensive for families or businesses that consume more energy than usual, as they require several solar panels to generate enough power. The main objective of this project is to build a working model so that to increase the efficiency of power output taken from solar panel by continuously tracking the sun’s rays through out the day and aligns the solar panel orthogonal to the sun. To develop a model that benefits people by producing more solar energy with fewer solar panels. In order to overcome this problem we come up with a solution through Arduino Uno system which consists of four LDR sensors which are responsible for the detection of the light intensity of the sun’s rays. Two micro servo motors are used for movement of the solar panel in azimuth and elevation direction since it is a dual axis tracking system. A solar panel is the core part we use in this model for the conversion of solar energy into electrical energy. The LCD displays shows the power output of the solar panel. The proposed system is a dual axis tracking system that actively tracks solar radiation and adjusts the panel so that the sun’s rays are perpendicular to it, maximizing the solar panel’s power output. The LCD display shows the power output of the solar panel. By this project, we can say that dual axis tracking system we built can track the sun’s rays and increases the power output of solar panel. The manual effort for changing the solar panel according to the sun position can be avoided.
26

Techno-economic assessment of hybrid solar energy for residential application in Mozambique

Tamele, Victor Jaime January 2015 (has links)
I Mozambique many areas are not connected to the national grid because of financial reasons. The renewable energy technology is adequate as a solution for this problem because it would avoid the environmental impact and the increase of air pollution. Hence, the techno-economic assessment of hybrid solar energy was performed for residential application considering a small community of 50 households, each consuming about 1 kWhe and 3 kWhth per day. HOMER, the energy modeling software for hybrid renewable energy system (HRES), was used for reaching this objective. The techno economic study of a domestic hot water system was performed using RETscreen as HOMER could not be used since it does not model solar collectors. To model the PV system using HOMER software, the load and the solar resource were assessed, considering the economics, system components, optimization and sensitivity analysis, which enabled the determination of the optimal system configuration and evaluation of how the system is sensitive with different values of primary load, global solar, interest rate and project lifetime. As a result, the maximum power of the collector was found to be 1.93 kW, hot water storage volume of 138.1 l and 3.05 m2  flat plate collectors. The pre-tax IRR - assets is of 14.5 %, the simple payback period is of 8.6 years to return the investment and the 7.4 years of equity payback. The PV system with the optimal system configuration consisting of a 0.3 kW PV array, 4 HI-Fase 200 Ah batteries and a 0.5 kW converter. The initial capital for PV system is of $3.945, operating cost of $82 per year, levelized COE of $1.604/kWh and the total NPC is $4.591. The sensitivity analysis for PV system has shown that the best estimate scenario with a primary load of 1 kWh/d, global solar of 4.5 kWh/m2/d, interest rate of 11 % and 25 years project lifetime is 0.4 kW PV, 4 HI-Fase 200 Ah batteries and 0.5 kW converter.
27

Web rozhraní malé sluneční elektrárny / Solar Powerstation Web Interface

Škvařil, Radek January 2008 (has links)
This thesis is focused on practical usage of solar energy in photovoltaic systems and on the Fronius product portfolio. It is also focused on implementation of web interface for modular solar photovoltaic Fronius powerstations system. It is purposed on displaying statistic data, drawing charts and solar system monitoring. This system is desired to act autonomic and self-configurable. System will be implemented using the PHP5, MySQL4 technologies and object oriented programming technique.
28

A Look at the Optimum Slope of a Fixed Solar Panel for Maximum Energy Collection for a One Year Time Frame

Alhaidari, Salah January 2017 (has links)
No description available.
29

Numerical Analysis and Wind Tunnel Validation of Wind Deflectors for Rooftop Solar Panel Racks

Yatsco, Michael P. 20 July 2011 (has links)
No description available.
30

Automated Solar Panel Shield : An IoT Approach

Rangannagari, Raghu Vamsi Sai, Deverakonda, Sri Phani January 2022 (has links)
Context: Solar panels are exposed to different weather conditions and get damaged. Sand storms and hail storms could cause serious damage. However, they need to be used for human survival in almost every harsh condition possible. Objectives: Our goal is to design and create a working prototype of an automated solar panel shield. The meteorological conditions around the solar panels should be monitored, including wind speed, air quality, rain, and humidity. The shield automatically protects the solar panel based on the sensor data. The solar shield should even protect panels from harm from small animals. Methods: A microcontroller Arduino Uno is used. Various sensors are used to monitor multiple weather conditions, including an ultrasonic sensor, a rain sensor, a smoke sensor, and a custom-built anemometer. Based on daylight status, the stepper motor is activated to roll up the protective cover over the solar panel. Results: The output from all the sensors and actuators is verified. The values of the sensors are updated in the web application, the user can use that. The web application is used to monitor the weather conditions around solar panels. Conclusions: An working model of the shield is made, in addition, a cleaning system is made. A bird deterring system is also included. All the additional sensors for monitoring can be used for performance automation.

Page generated in 0.0459 seconds