• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 11
  • 6
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 45
  • 45
  • 27
  • 22
  • 20
  • 16
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Statistical Yield Analysis and Design for Nanometer VLSI

Jaffari, Javid January 2010 (has links)
Process variability is the pivotal factor impacting the design of high yield integrated circuits and systems in deep sub-micron CMOS technologies. The electrical and physical properties of transistors and interconnects, the building blocks of integrated circuits, are prone to significant variations that directly impact the performance and power consumption of the fabricated devices, severely impacting the manufacturing yield. However, the large number of the transistors on a single chip adds even more challenges for the analysis of the variation effects, a critical task in diagnosing the cause of failure and designing for yield. Reliable and efficient statistical analysis methodologies in various design phases are key to predict the yield before entering such an expensive fabrication process. In this thesis, the impacts of process variations are examined at three different levels: device, circuit, and micro-architecture. The variation models are provided for each level of abstraction, and new methodologies are proposed for efficient statistical analysis and design under variation. At the circuit level, the variability analysis of three crucial sub-blocks of today's system-on-chips, namely, digital circuits, memory cells, and analog blocks, are targeted. The accurate and efficient yield analysis of circuits is recognized as an extremely challenging task within the electronic design automation community. The large scale of the digital circuits, the extremely high yield requirement for memory cells, and the time-consuming analog circuit simulation are major concerns in the development of any statistical analysis technique. In this thesis, several sampling-based methods have been proposed for these three types of circuits to significantly improve the run-time of the traditional Monte Carlo method, without compromising accuracy. The proposed sampling-based yield analysis methods benefit from the very appealing feature of the MC method, that is, the capability to consider any complex circuit model. However, through the use and engineering of advanced variance reduction and sampling methods, ultra-fast yield estimation solutions are provided for different types of VLSI circuits. Such methods include control variate, importance sampling, correlation-controlled Latin Hypercube Sampling, and Quasi Monte Carlo. At the device level, a methodology is proposed which introduces a variation-aware design perspective for designing MOS devices in aggressively scaled geometries. The method introduces a yield measure at the device level which targets the saturation and leakage currents of an MOS transistor. A statistical method is developed to optimize the advanced doping profiles and geometry features of a device for achieving a maximum device-level yield. Finally, a statistical thermal analysis framework is proposed. It accounts for the process and thermal variations simultaneously, at the micro-architectural level. The analyzer is developed, based on the fact that the process variations lead to uncertain leakage power sources, so that the thermal profile, itself, would have a probabilistic nature. Therefore, by a co-process-thermal-leakage analysis, a more reliable full-chip statistical leakage power yield is calculated.
52

Monte Carlo dose calculations in advanced radiotherapy

Bush, Karl Kenneth 15 September 2009 (has links)
The remarkable accuracy of Monte Carlo (MC) dose calculation algorithms has led to the widely accepted view that these methods should and will play a central role in the radiotherapy treatment verification and planning of the future. The advantages of using MC clinically are particularly evident for radiation fields passing through inhomogeneities, such as lung and air cavities, and for small fields, including those used in today's advanced intensity modulated radiotherapy techniques. Many investigators have reported significant dosimetric differences between MC and conventional dose calculations in such complex situations, and have demonstrated experimentally the unmatched ability of MC calculations in modeling charged particle disequilibrium. The advantages of using MC dose calculations do come at a cost. The nature of MC dose calculations require a highly detailed, in-depth representation of the physical system (accelerator head geometry/composition, anatomical patient geometry/composition and particle interaction physics) to allow accurate modeling of external beam radiation therapy treatments. To perform such simulations is computationally demanding and has only recently become feasible within mainstream radiotherapy practices. In addition, the output of the accelerator head simulation can be highly sensitive to inaccuracies within a model that may not be known with sufficient detail. The goal of this dissertation is to both improve and advance the implementation of MC dose calculations in modern external beam radiotherapy. To begin, a novel method is proposed to fine-tune the output of an accelerator model to better represent the measured output. In this method an intensity distribution of the electron beam incident on the model is inferred by employing a simulated annealing algorithm. The method allows an investigation of arbitrary electron beam intensity distributions and is not restricted to the commonly assumed Gaussian intensity. In a second component of this dissertation the design, implementation and evaluation of a technique for reducing a latent variance inherent from the recycling of phase space particle tracks in a simulation is presented. In the technique a random azimuthal rotation about the beam's central axis is applied to each recycled particle, achieving a significant reduction of the latent variance. In a third component, the dissertation presents the first MC modeling of Varian's new RapidArc delivery system and a comparison of dose calculations with the Eclipse treatment planning system. A total of four arc plans are compared including an oropharynx patient phantom containing tissue inhomogeneities. Finally, in a step toward introducing MC dose calculation into the planning of treatments such as RapidArc, a technique is presented to feasibly generate and store a large set of MC calculated dose distributions. A novel 3-D dyadic multi-resolution (MR) decomposition algorithm is presented and the compressibility of the dose data using this algorithm is investigated. The presented MC beamlet generation method, in conjunction with the presented 3-D data MR decomposition, represents a viable means to introduce MC dose calculation in the planning and optimization stages of advanced radiotherapy.
53

Mathematical and algorithmic analysis of modified Langevin dynamics / L'analyse mathématique et algorithmique de la dynamique de Langevin modifié

Trstanova, Zofia 25 November 2016 (has links)
En physique statistique, l’information macroscopique d’intérêt pour les systèmes considérés peut être dé-duite à partir de moyennes sur des configurations microscopiques réparties selon des mesures de probabilitéµ caractérisant l’état thermodynamique du système. En raison de la haute dimensionnalité du système (quiest proportionnelle au nombre de particules), les configurations sont le plus souvent échantillonnées en util-isant des trajectoires d’équations différentielles stochastiques ou des chaînes de Markov ergodiques pourla mesure de Boltzmann-Gibbs µ, qui décrit un système à température constante. Un processus stochas-tique classique permettant d’échantillonner cette mesure est la dynamique de Langevin. En pratique, leséquations de la dynamique de Langevin ne peuvent pas être intégrées analytiquement, la solution est alorsapprochée par un schéma numérique. L’analyse numérique de ces schémas de discrétisation est maintenantbien maîtrisée pour l’énergie cinétique quadratique standard. Une limitation importante des estimateurs desmoyennes sontleurs éventuelles grandes erreurs statistiques.Sous certaines hypothèsessur lesénergies ciné-tique et potentielle, il peut être démontré qu’un théorème de limite central est vrai. La variance asymptotiquepeut être grande en raison de la métastabilité du processus de Langevin, qui se produit dès que la mesure deprobabilité µ est multimodale.Dans cette thèse, nous considérons la discrétisation de la dynamique de Langevin modifiée qui améliorel’échantillonnage de la distribution de Boltzmann-Gibbs en introduisant une fonction cinétique plus généraleà la place de la formulation quadratique standard. Nous avons en fait deux situations en tête : (a) La dy-namique de Langevin Adaptativement Restreinte, où l’énergie cinétique s’annule pour les faibles moments,et correspond à l’énergie cinétique standard pour les forts moments. L’intérêt de cette dynamique est que lesparticules avec une faible énergie sont restreintes. Le gain vient alors du fait que les interactions entre lesparticules restreintes ne doivent pas être mises à jour. En raison de la séparabilité des positions et des mo-ments marginaux de la distribution, les moyennes des observables qui dépendent de la variable de positionsont égales à celles calculées par la dynamique de Langevin standard. L’efficacité de cette méthode résidedans le compromis entre le gain de calcul et la variance asymptotique des moyennes ergodiques qui peutaugmenter par rapport à la dynamique standards car il existe a priori plus des corrélations dans le tempsen raison de particules restreintes. De plus, étant donné que l’énergie cinétique est nulle sur un ouvert, ladynamique de Langevin associé ne parvient pas à être hypoelliptique. La première tâche de cette thèse est deprouver que la dynamique de Langevin avec une telle énergie cinétique est ergodique. L’étape suivante con-siste à présenter une analyse mathématique de la variance asymptotique de la dynamique AR-Langevin. Afinde compléter l’analyse de ce procédé, on estime l’accélération algorithmique du coût d’une seule itération,en fonction des paramètres de la dynamique. (b) Nous considérons aussi la dynamique de Langevin avecdes énergies cinétiques dont la croissance est plus que quadratique à l’infini, dans une tentative de réduire lamétastabilité. La liberté supplémentaire fournie par le choix de l’énergie cinétique doit être utilisée afin deréduire la métastabilité de la dynamique. Dans cette thèse, nous explorons le choix de l’énergie cinétique etnous démontrons une convergence améliorée des moyennes ergodiques sur un exemple de faible dimension.Un des problèmes avec les situations que nous considérons est la stabilité des régimes discrétisés. Afind’obtenir une méthode de discrétisation faiblement cohérente d’ordre 2 (ce qui n’est plus trivial dans le casde l’énergie cinétique générale), nous nous reposons sur les schémas basés sur des méthodes de Metropolis. / In statistical physics, the macroscopic information of interest for the systems under consideration can beinferred from averages over microscopic configurations distributed according to probability measures µcharacterizing the thermodynamic state of the system. Due to the high dimensionality of the system (whichis proportional to the number of particles), these configurations are most often sampled using trajectories ofstochastic differential equations or Markov chains ergodic for the probability measure µ, which describesa system at constant temperature. One popular stochastic process allowing to sample this measure is theLangevin dynamics. In practice, the Langevin dynamics cannot be analytically integrated, its solution istherefore approximated with a numerical scheme. The numerical analysis of such discretization schemes isby now well-understood when the kinetic energy is the standard quadratic kinetic energy.One important limitation of the estimators of the ergodic averages are their possibly large statisticalerrors.Undercertainassumptionsonpotentialandkineticenergy,itcanbeshownthatacentrallimittheoremholds true. The asymptotic variance may be large due to the metastability of the Langevin process, whichoccurs as soon as the probability measure µ is multimodal.In this thesis, we consider the discretization of modified Langevin dynamics which improve the samplingof the Boltzmann–Gibbs distribution by introducing a more general kinetic energy function U instead of thestandard quadratic one. We have in fact two situations in mind:(a) Adaptively Restrained (AR) Langevin dynamics, where the kinetic energy vanishes for small momenta,while it agrees with the standard kinetic energy for large momenta. The interest of this dynamics isthat particles with low energy are restrained. The computational gain follows from the fact that theinteractions between restrained particles need not be updated. Due to the separability of the positionand momenta marginals of the distribution, the averages of observables which depend on the positionvariable are equal to the ones computed with the standard Langevin dynamics. The efficiency of thismethod lies in the trade-off between the computational gain and the asymptotic variance on ergodic av-erages which may increase compared to the standard dynamics since there are a priori more correlationsin time due to restrained particles. Moreover, since the kinetic energy vanishes on some open set, theassociated Langevin dynamics fails to be hypoelliptic. In fact, a first task of this thesis is to prove thatthe Langevin dynamics with such modified kinetic energy is ergodic. The next step is to present a math-ematical analysis of the asymptotic variance for the AR-Langevin dynamics. In order to complementthe analysis of this method, we estimate the algorithmic speed-up of the cost of a single iteration, as afunction of the parameters of the dynamics.(b) We also consider Langevin dynamics with kinetic energies growing more than quadratically at infinity,in an attempt to reduce metastability. The extra freedom provided by the choice of the kinetic energyshould be used in order to reduce the metastability of the dynamics. In this thesis, we explore thechoice of the kinetic energy and we demonstrate on a simple low-dimensional example an improvedconvergence of ergodic averages.An issue with the situations we consider is the stability of discretized schemes. In order to obtain aweakly consistent method of order 2 (which is no longer trivial for a general kinetic energy), we rely on therecently developped Metropolis schemes.
54

Pricing methods for Asian options

Mudzimbabwe, Walter January 2010 (has links)
>Magister Scientiae - MSc / We present various methods of pricing Asian options. The methods include Monte Carlo simulations designed using control and antithetic variates, numerical solution of partial differential equation and using lower bounds.The price of the Asian option is known to be a certain risk-neutral expectation. Using the Feynman-Kac theorem, we deduce that the problem of determining the expectation implies solving a linear parabolic partial differential equation. This partial differential equation does not admit explicit solutions due to the fact that the distribution of a sum of lognormal variables is not explicit. We then solve the partial differential equation numerically using finite difference and Monte Carlo methods.Our Monte Carlo approach is based on the pseudo random numbers and not deterministic sequence of numbers on which Quasi-Monte Carlo methods are designed. To make the Monte Carlo method more effective, two variance reduction techniques are discussed.Under the finite difference method, we consider explicit and the Crank-Nicholson’s schemes. We demonstrate that the explicit method gives rise to extraneous solutions because the stability conditions are difficult to satisfy. On the other hand, the Crank-Nicholson method is unconditionally stable and provides correct solutions. Finally, we apply the pricing methods to a similar problem of determining the price of a European-style arithmetic basket option under the Black-Scholes framework. We find the optimal lower bound, calculate it numerically and compare this with those obtained by the Monte Carlo and Moment Matching methods.Our presentation here includes some of the most recent advances on Asian options, and we contribute in particular by adding detail to the proofs and explanations. We also contribute some novel numerical methods. Most significantly, we include an original contribution on the use of very sharp lower bounds towards pricing European basket options.
55

Analyse mathématique de méthodes numériques stochastiques en dynamique moléculaire / Mathematical analysis of stochastic numerical methods in molecular dynamics

Alrachid, Houssam 05 November 2015 (has links)
En physique statistique computationnelle, de bonnes techniques d'échantillonnage sont nécessaires pour obtenir des propriétés macroscopiques à travers des moyennes sur les états microscopiques. La principale difficulté est que ces états microscopiques sont généralement regroupés autour de configurations typiques, et un échantillonnage complet de l'espace configurationnel est donc typiquement très complexe à réaliser. Des techniques ont été proposées pour échantillonner efficacement les états microscopiques dans l'ensemble canonique. Un exemple important de quantités d'intérêt dans un tel cas est l'énergie libre. Le calcul d'énergie libre est très important dans les calculs de dynamique moléculaire, afin d'obtenir une description réduite d'un système physique complexe de grande dimension. La première partie de cette thèse est consacrée à une extension de la méthode adaptative de force biaisante classique (ABF), qui est utilisée pour calculer l'énergie libre associée à la mesure de Boltzmann-Gibbs et une coordonnée de réaction. Le problème de cette méthode est que le gradient approché de l'énergie libre, dit force moyenne, n'est pas un gradient en général. La contribution à ce domaine, présentée dans le chapitre 2, est de projeter la force moyenne estimée sur un gradient en utilisant la décomposition de Helmholtz. Dans la pratique, la nouvelle force gradient est obtenue à partir de la solution d'un problème de Poisson. En utilisant des techniques d'entropie, on étudie le comportement à la limite de l'équation de Fokker-Planck non linéaire associée au processus stochastique. On montre la convergence exponentielle vers l'équilibre de l'énergie libre estimée, avec un taux précis de convergence en fonction des constantes de l'inégalité de Sobolev logarithmiques des mesures canoniques conditionnelles à la coordonnée de réaction. L'intérêt de la méthode d'ABF projetée par rapport à l'approche originale ABF est que la variance de la nouvelle force moyenne est plus petite. On observe que cela implique une convergence plus rapide vers l'équilibre. En outre, la méthode permet d'avoir accès à une estimation de l'énergie libre en tout temps. La deuxième partie (voir le chapitre 3) est consacrée à étudier l'existence locale et globale, l'unicité et la régularité des solutions d'une équation non linéaire de Fokker-Planck associée à la méthode adaptative de force biaisante. Il s'agit d'un problème parabolique semilinéaire avec une non-linéarité non locale. L'équation de Fokker-Planck décrit l'évolution de la densité d'un processus stochastique associé à la méthode adaptative de force biaisante. Le terme non linéaire est non local et est utilisé lors de la simulation afin d'éliminer les caractéristiques métastables de la dynamique. Il est lié à une espérance conditionnelle qui définit la force biaisante. La preuve est basée sur des techniques de semi-groupe pour l'existence locale en temps, ainsi que sur une estimée a priori utilisant une sursolution pour montrer l'existence globale / In computational statistical physics, good sampling techniques are required to obtain macroscopic properties through averages over microscopic states. The main difficulty is that these microscopic states are typically clustered around typical configurations, and a complete sampling of the configurational space is thus in general very complex to achieve. Techniques have been proposed to efficiently sample the microscopic states in the canonical ensemble. An important example of quantities of interest in such a case is the free energy. Free energy computation techniques are very important in molecular dynamics computations, in order to obtain a coarse-grained description of a high-dimensional complex physical system. The first part of this thesis is dedicated to explore an extension of the classical adaptive biasing force (ABF) technique, which is used to compute the free energy associated to the Boltzmann-Gibbs measure and a reaction coordinate function. The problem of this method is that the approximated gradient of the free energy, called biasing force, is not a gradient. The contribution to this field, presented in Chapter 2, is to project the estimated biasing force on a gradient using the Helmholtz decomposition. In practice, the new gradient force is obtained by solving Poisson problem. Using entropy techniques, we study the longtime behavior of the nonlinear Fokker-Planck equation associated with the ABF process. We prove exponential convergence to equilibrium of the estimated free energy, with a precise rate of convergence in terms of the Logarithmic Sobolev inequality constants of the canonical measure conditioned to fixed values of the reaction coordinate. The interest of this projected ABF method compared to the original ABF approach is that the variance of the new biasing force is smaller, which yields quicker convergence to equilibrium. The second part, presented in Chapter 3, is dedicated to study local and global existence, uniqueness and regularity of the mild, Lp and classical solution of a nonlinear Fokker-Planck equation, arising in an adaptive biasing force method for molecular dynamics calculations. The partial differential equation is a semilinear parabolic initial boundary value problem with a nonlocal nonlinearity and periodic boundary conditions on the torus of dimension n, as presented in Chapter 3. The Fokker-Planck equation rules the evolution of the density of a given stochastic process that is a solution to Adaptive biasing force method. The nonlinear term is non local and is used during the simulation in order to remove the metastable features of the dynamics
56

Quelques problèmes liés à l'erreur statistique en homogénéisation stochastique / Some problems related to statistical error in stochastic homogenization

Minvielle, William 25 September 2015 (has links)
Le travail de cette thèse a porté sur le développement de techniques numériques pour l'homogénéisation d'équations dont les coefficients présentent des hétérogénéités aléatoires à petite échelle. Les difficultés liées à la résolution de telles équations aux dérivées partielles peuvent être résolues grâce à la théorie de l'homogénéisation stochastique. On substitue alors la résolution d'une équation dont les coefficients sont aléatoires et oscillants à l'échelle la plus fine du problème par la résolution d'une équation à coefficients constants. Cependant, une difficulté subsiste : le calcul de ces coefficients dits homogénéisés sont définis par une moyenne ergodique, que l'on ne peut atteindre en pratique. Seuls des approximations aléatoires de ces quantités déterministes sont calculables, et l'erreur commise lors de l'approximation est importante. Ces questions sont développées en détail dans le Chapitre 1 qui tient lieu d'introduction. L'objet du Chapitre 2 de cette thèse est de réduire l'erreur de cette approximation dans un cas nonlinéaire, en réduisant la variance de l'estimateur par la méthode des variables antithétiques. Dans le Chapitre 3, on montre comment obtenir une meilleure réduction de variance par la méthode des vari- ables de contrôle. Cette approche repose sur un modèle approché, disponible dans le cas étudié. Elle est plus invasive et moins générique, on l'étudie dans un cas linéaire. Dans le Chapitre 4, à nouveau dans un cas linéaire, on introduit une méthode de sélection pour réduire l'erreur commise. Enfin, le Chapitre 5 porte sur l'analyse d'un problème in- verse, où l'on recherche des paramètres à l'échelle la plus fine, ne connaissant que quelques quantités macroscopiques, par exemple les coefficients homogénéisés du modèle / In this thesis, we design numerical techniques to address the homogenization of equations the coefficients of which exhibit small scale random heterogeneities. Solving such elliptic partial differential equations is prohibitively expensive. One may use stochastic homogenization theory to reduce the complexity of this task. We then substitute the random, fine scale oscillating coefficients of the equation with constant homogenized coefficients. These coefficients are defined through an ergodic average inaccessible to practical computation. Only random approximations thereof are available. The error committed in this approximation is significant. These issues are detailed in the introductory Chapter 1. In Chapter 2, we show how to reduce the error in this approximation, in a nonlinear case, by using an antithetic variable estimator that has a smaller variance than the standard Monte Carlo estimator. In Chapter 3, in a linear case, we show how to obtain an even better variance reduction with the control variate method. Such a method is based on a surrogate model. In Chapter 4, we use a selection method to reduce the global error. Chapter 5 is devoted to the analysis of an inverse problem, wherein we seek parameters at the fine scale whilst only being provided with a handful of macroscopic quantities, among which the homogenized coefficients
57

Development of an adaptive variance reduction technique for Monte Carlo particle transport / Développement d'une méthode de réduction de variance adaptative pour le transport Monte Carlo de particules

Louvin, Henri 12 October 2017 (has links)
L’algorithme Adaptive Multilevel Splitting (AMS) a récemment fait son apparition dans la littérature de mathématiques appliquées, en tant que méthode de réduction de variance pour la simulation Monte Carlo de chaı̂nes de Markov. Ce travail de thèse se propose d’implémenter cette méthode de réduction de variance adaptative dans le code Monte-Carlo de transport de particules TRIPOLI-4,dédié entre autres aux études de radioprotection et d’instrumentation nucléaire. Caractérisées par de fortes atténuations des rayonnements dans la matière, ces études entrent dans la problématique du traitement d’évènements rares. Outre son implémentation inédite dans ce domaine d’application, deux nouvelles fonctionnalités ont été développées pour l’AMS, testées puis validées. La première est une procédure d’encaissement au vol permettant d’optimiser plusieurs scores en une seule simulation AMS. La seconde est une extension de l’AMS aux processus branchants, courants dans les simulations de radioprotection, par exemple lors du transport couplé de neutrons et des photons induits par ces derniers. L’efficacité et la robustesse de l’AMS dans ce nouveau cadre applicatif ont été démontrées dans des configurations physiquement très sévères (atténuations du flux de particules de plus de 10 ordres de grandeur), mettant ainsi en évidence les avantages prometteurs de l’AMS par rapport aux méthodes de réduction de variance existantes. / The Adaptive Multilevel Splitting algorithm (AMS) has recently been introduced to the field of applied mathematics as a variance reduction scheme for Monte Carlo Markov chains simulation. This Ph.D. work intends to implement this adaptative variance reduction method in the particle transport Monte Carlo code TRIPOLI-4, dedicated among others to radiation shielding and nuclear instrumentation studies. Those studies are characterized by strong radiation attenuation in matter, so that they fall within the scope of rare events analysis. In addition to its unprecedented implementation in the field of particle transport, two new features were developed for the AMS. The first is an on-the-fly scoring procedure, designed to optimize the estimation of multiple scores in a single AMS simulation. The second is an extension of the AMS to branching processes, which are common in radiation shielding simulations. For example, in coupled neutron-photon simulations, the neutrons have to be transported alongside the photons they produce. The efficiency and robustness of AMS in this new framework have been demonstrated in physically challenging configurations (particle flux attenuations larger than 10 orders of magnitude), which highlights the promising advantages of the AMS algorithm over existing variance reduction techniques.
58

Efficacité de l’algorithme EM en ligne pour des modèles statistiques complexes dans le contexte des données massives

Martel, Yannick 11 1900 (has links)
L’algorithme EM (Dempster et al., 1977) permet de construire une séquence d’estimateurs qui converge vers l’estimateur de vraisemblance maximale pour des modèles à données manquantes pour lesquels l’estimateur du maximum de vraisemblance n’est pas calculable. Cet algorithme est remarquable compte tenu de ses nombreuses applications en apprentissage statistique. Toutefois, il peut avoir un lourd coût computationnel. Les auteurs Cappé et Moulines (2009) ont proposé une version en ligne de cet algorithme pour les modèles appartenant à la famille exponentielle qui permet de faire des gains d’efficacité computationnelle importants en présence de grands jeux de données. Cependant, le calcul de l’espérance a posteriori de la statistique exhaustive, qui est nécessaire dans la version de Cappé et Moulines (2009), est rarement possible pour des modèles complexes et/ou lorsque la dimension des données manquantes est grande. On doit alors la remplacer par un estimateur. Plusieurs questions se présentent naturellement : les résultats de convergence de l’algorithme initial restent-ils valides lorsqu’on remplace l’espérance par un estimateur ? En particulier, que dire de la normalité asymptotique de la séquence des estimateurs ainsi créés, de la variance asymptotique et de la vitesse de convergence ? Comment la variance de l’estimateur de l’espérance se reflète-t-elle sur la variance asymptotique de l’estimateur EM? Peut-on travailler avec des estimateurs de type Monte-Carlo ou MCMC? Peut-on emprunter des outils populaires de réduction de variance comme les variables de contrôle ? Ces questions seront étudiées à l’aide d’exemples de modèles à variables latentes. Les contributions principales de ce mémoire sont une présentation unifiée des algorithmes EM d’approximation stochastique, une illustration de l’impact au niveau de la variance lorsque l’espérance a posteriori est estimée dans les algorithmes EM en ligne et l’introduction d’algorithmes EM en ligne permettant de réduire la variance supplémentaire occasionnée par l’estimation de l’espérance a posteriori. / The EM algorithm Dempster et al. (1977) yields a sequence of estimators that converges to the maximum likelihood estimator for missing data models whose maximum likelihood estimator is not directly tractable. The EM algorithm is remarkable given its numerous applications in statistical learning. However, it may suffer from its computational cost. Cappé and Moulines (2009) proposed an online version of the algorithm in models whose likelihood belongs to the exponential family that provides an upgrade in computational efficiency in large data sets. However, the conditional expected value of the sufficient statistic is often intractable for complex models and/or when the missing data is of a high dimension. In those cases, it is replaced by an estimator. Many questions then arise naturally: do the convergence results pertaining to the initial estimator hold when the expected value is substituted by an estimator? In particular, does the asymptotic normality property remain in this case? How does the variance of the estimator of the expected value affect the asymptotic variance of the EM estimator? Are Monte-Carlo and MCMC estimators suitable in this situation? Could variance reduction tools such as control variates provide variance relief? These questions will be tackled by the means of examples containing latent data models. This master’s thesis’ main contributions are the presentation of a unified framework for stochastic approximation EM algorithms, an illustration of the impact that the estimation of the conditional expected value has on the variance and the introduction of online EM algorithms which reduce the additional variance stemming from the estimation of the conditional expected value.
59

Accelerating Monte Carlo particle transport with adaptively generated importance maps / Accélération de simulations Monte Carlo de transport de particules par génération adaptative de cartes d’importance

Nowak, Michel 12 October 2018 (has links)
Les simulations Monte Carlo de transport de particules sont un outil incontournable pour l'étude de problèmes de radioprotection. Leur utilisation implique l'échantillonnage d'événements rares grâce à des méthode de réduction de variance qui reposent sur l'estimation de la contribution d'une particule au détecteur. On construit cette estimation sous forme d'une carte d'importance.L’objet de cette étude est de proposer une stratégie qui permette de générer de manière adaptative des cartes d'importance durant la simulation Monte Carlo elle-même. Le travail a été réalisé dans le code de transport des particules TRIPOLI-4®, développé à la Direction de l’énergie nucléaire du CEA (Salay, France).Le cœur du travail a consisté à estimer le flux adjoint à partir des trajectoires simulées avec l'Adaptive Multilevel Splitting, une méthode de réduction de variance robuste. Ce développement a été validé à l'aide de l'intégration d'un module déterministe dans TRIPOLI-4®.Trois stratégies sont proposés pour la réutilisation de ce score en tant que carte d'importance dans la simulation Monte Carlo. Deux d'entre elles proposent d'estimer la convergence du score adjoint lors de phases d'exploitation.Ce travail conclut sur le lissage du score adjoint avec des méthodes d'apprentissage automatique, en se concentrant plus particulièrement sur les estimateurs de densité à noyaux. / Monte Carlo methods are a reference asset for the study of radiation transport in shielding problems. Their use naturally implies the sampling of rare events and needs to be tackled with variance reduction methods. These methods require the definition of an importance function/map. The aim of this study is to propose an adaptivestrategy for the generation of such importance maps during the Montne Carlo simulation. The work was performed within TRIPOLI-4®, a Monte Carlo transport code developped at the nuclear energy division of CEA in Saclay, France. The core of this PhD thesis is the implementation of a forward-weighted adjoint score that relies on the trajectories sampled with Adaptive Multilevel Splitting, a robust variance reduction method. It was validated with the integration of a deterministic module in TRIPOLI-4®. Three strategies were proposed for the reintegrationof this score as an importance map and accelerations were observed. Two of these strategies assess the convergence of the adjoint score during exploitation phases by evalutating the figure of merit yielded by the use of the current adjoint score. Finally, the smoothing of the importance map with machine learning algorithms concludes this work with a special focus on Kernel Density Estimators.
60

Asymptotique suramortie de la dynamique de Langevin et réduction de variance par repondération / Weak over-damped asymptotic and variance reduction

Xu, Yushun 18 February 2019 (has links)
Cette thèse est consacrée à l’étude de deux problèmes différents : l’asymptotique suramortie de la dynamique de Langevin d’une part, et l’étude d’une technique de réduction de variance dans une méthode de Monte Carlo par une repondération optimale des échantillons, d’autre part. Dans le premier problème, on montre la convergence en distribution de processus de Langevin dans l’asymptotique sur-amortie. La preuve repose sur la méthode classique des “fonctions test perturbées”, qui est utilisée pour montrer la tension dans l’espace des chemins, puis pour identifier la limite comme solution d’un problème de martingale. L’originalité du résultat tient aux hypothèses très faibles faites sur la régularité de l’énergie potentielle. Dans le deuxième problème, nous concevons des méthodes de réduction de la variance pour l’estimation de Monte Carlo d’une espérance de type E[φ(X, Y )], lorsque la distribution de X est exactement connue. L’idée générale est de donner à chaque échantillon un poids, de sorte que la distribution empirique pondérée qui en résulterait une marginale par rapport à la variable X aussi proche que possible de sa cible. Nous prouvons plusieurs résultats théoriques sur la méthode, en identifiant des régimes où la réduction de la variance est garantie. Nous montrons l’efficacité de la méthode en pratique, par des tests numériques qui comparent diverses variantes de notre méthode avec la méthode naïve et des techniques de variable de contrôle. La méthode est également illustrée pour une simulation d’équation différentielle stochastique de Langevin / This dissertation is devoted to studying two different problems: the over-damped asymp- totics of Langevin dynamics and a new variance reduction technique based on an optimal reweighting of samples.In the first problem, the convergence in distribution of Langevin processes in the over- damped asymptotic is proven. The proof relies on the classical perturbed test function (or corrector) method, which is used (i) to show tightness in path space, and (ii) to identify the extracted limit with a martingale problem. The result holds assuming the continuity of the gradient of the potential energy, and a mild control of the initial kinetic energy. In the second problem, we devise methods of variance reduction for the Monte Carlo estimation of an expectation of the type E [φ(X, Y )], when the distribution of X is exactly known. The key general idea is to give each individual sample a weight, so that the resulting weighted empirical distribution has a marginal with respect to the variable X as close as possible to its target. We prove several theoretical results on the method, identifying settings where the variance reduction is guaranteed, and also illustrate the use of the weighting method in Langevin stochastic differential equation. We perform numerical tests comparing the methods and demonstrating their efficiency

Page generated in 0.0534 seconds