• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 21
  • 17
  • 8
  • 6
  • 3
  • 1
  • Tagged with
  • 103
  • 29
  • 25
  • 23
  • 21
  • 21
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Um estudo da formulação de modelos constitutivos viscoelásticos e elasto-viscoplásticos e do emprego de algoritmos implícitos e explícitos para a sua integração numérica / A study of viscoelastics and elastoviscoplastics constitutive modelling and the use of implicit numerical integration algorithms

Munaiar Neto, Jorge 03 July 1998 (has links)
O presente trabalho trata da formulação de modelos constitutivos viscoelásticos e elasto-viscoplásticos nos apectos relativos à verificação da consistência termodinâmica, pela aplicação do Método do Estado Local, e de verificação da resposta numérica decorrente da utilização de um procedimento implícito de integração. No contexto da verificação da consistência termodinâmica, são revistos alguns arranjos unidimensionais de elementos reológicos básicos, analisando-se, com maior destaque, um arranjo misto denominado modelo elasto-viscoplástico completo. Nas análises numéricas em campo unidimensional e multiaxial, realiza-se um confronto entre as respostas obtidas com procedimentos de integração Explícito e Implícito, bem como um estudo para a definição do passo de tempo, de modo a garantir precisão nas respostas. / The present work treats of the formulation of viscoelastics and elastoviscoplastics constitutive models, on the aspects related to verification of the thermodynamic consistency, by the Method of Local State, and of numerical responses of a implicit integration scheme. In the context of the thermodynamic consistency, some unidimensional arrangements of basics rheological elements are reviewed, where a named elasto-viscoplastic extended model is enhanced. On what concerns to unidimensional and multiaxial numerical analysis, confront is showed between the results obtained from the explicit and implicit integration algorithms, and a study for time step definition aiming a good precision of the responses is presented as well.
32

Stress Analysis of Embedded Devices Under Thermal Cycling

Radhakrishnan, Sadhana 16 January 2018 (has links)
Embedded active and passive devices has been increasingly used by in order to integrate more functions inside the same or smaller size device and to meet the need for better electrical performance of the component assemblies. Solder joints have been used in the electronic industry as both structural and electrical interconnections between electronic packages and printed circuit boards (PCB). When solder joints are under thermal cyclic loading, mismatch in coefficients of thermal expansion (CTE) between the printed circuit boards and the solder balls creates thermal strains and stresses on the joints, which may finally result in cracking. Consequently, the mechanical interconnection is lost, leading to electrical failures which in turn causes malfunction of the circuit or whole system. When a die is embedded into a substrate, Young's modulus of the die is larger than one of the core of the substrate and the CTEs of the die is smaller than those of the substrate. As a result, mismatch in coefficients of thermal expansions (CTE) between the substrate with the embedded device and the solder balls may increase. In the present study, finite element method (FEM) is employed to find out the stress and strain distribution of ball grid array(BGA) solders under thermal cycling. The ANAND model for viscoplasticity is employed for this purpose.
33

Thermomechanical behavior of a directionally solidified nickel-base superalloys in the aged state

Kirka, Michael 08 June 2015 (has links)
Understanding the effects of aged microstructures on the thermomechanical fatigue (TMF) properties of nickel-base (Ni-base) superalloys remains unclear. Few experimental results are currently available in this area, and of the limited results available, some promote aged microstructures as beneficial, while others as detri- mental. The importance of these aged structures arises from the fact that when components used in the hot sections of gas turbine engines remain in service for ex- tended periods of time, the local temperature and stress provides the catalyst for the evolution of the microstructure. An experimental assessment of a negative misfit directionally solidified (DS) Ni- base superalloy was undertaken to characterize the aging kinetics and understand the influence of the TMF cycle temperature extremum, temperature-load phasing, mean strain, creep-fatigue, orientation effects, and microstructure on TMF fatigue crack initiation. To determine the effects of aging on the TMF response, the as-heat- treated alloy was artificially aged to three unique microstructures identified in the aging kinetics study. The experiments revealed that not all aged microstructures are detrimental to the fatigue life behavior. Specifically, when the γ′ precipitates age in a manner to align themselves parallel to the axis of the applied stress, an increase in the fatigue life over that of the as-heat-treated microstructure is observed for out-of-phase TMF with dwells. To extend the experimental understanding of the aged microstructures into ser- vice component design and life analysis, a temperature-dependent crystal viscoplas- ticity (CVP) constitutive model is developed to capture the sensitivity of the aged microstructure through embedding additional variables associated with the current state of the γ′ particles. As a result of the adaptations, the CVP model has the ability to describe the long-term aging effects of directional coarsening relevant to the analysis industrial gas turbine hot section components.
34

Effect of electro-mechanical loading in metallic conductors

Gallo, Federico Guido 09 February 2011 (has links)
The development of high powered electro-magnetic devices has generated interest in the effect of combined electromagnetic and mechanical loading of such structures. Materials used in high-current applications – aluminum alloys and copper – are subjected to heat pulses of short duration (in the range of a few hundred microseconds to a few milliseconds); immediately following or along with such heat pulses, these materials are also subjected to large mechanical forces. In previous work reported in the literature, ejection of material from the vicinity of preexisting defects such as cracks, notches or discontinuities have been observed resulting from short-duration high-intensity current pulses; after a series of pulses, permanent deformation and weakening of intact material has also been reported. But a lack of complete understanding of the effects of short duration current pulses hinders the assessment of the reliability of such conductors in high energy applications. Therefore, an investigation was undertaken to examine the behavior of electromagnetically and mechanically loaded conductors. This work investigates the effects of short-duration, high-current-density pulses in combination with viii mechanical loading. The aim is to develop a theoretical model to describe the resulting mechanical response. The model is to provide a characterization of the possible effects of thermally-induced plastic strains on metals loaded beyond or just below their yield strength or below the critical stress intensity factor. In the experiments reported here, two types of specimens, undamaged and damaged, were subjected to combined electromechanical loads. Undamaged specimens were used to observe thermally-induced plastic strains - strains not caused by an increase in mechanical loading, but rather resulting from the reduction of yield strength and post-yield stiffness due to the increase in temperature. The experiments were conducted such that it would be possible to develop a model that would conclusively account for the observed material behavior. The second sets of specimens were weakened a priori by the introduction of a crack in order to study the influence of such crack-like defects on the electrical and mechanical fields, and to produce a safe design envelope with respect to the loading conditions. Failure was found to occur due to melting triggered by joule heating; a quantitative criterion based on current concentration and heat accumulation near the crack tip has been developed based on these experimental results. / text
35

Understanding the effects of temperature on the behaviour of clay

Kurz, David 22 April 2014 (has links)
There is a growing need to better understand the relationship between time, strain rate, and temperature on the load-deformation behaviour of clay soils in engineering applications. These applications may include: infrastructure constructed in northern regions where climate change is a growing concern; disposal of nuclear waste; and, industrial structures, such as furnaces, foundries, and refrigeration plants. Temperature variations may induce changes in internal pressure in the soil, swelling and shrinkage, and affect the mechanical properties of the soil. This thesis presents thermal numerical modeling for two instrumented field sites in northern Manitoba. Thermal conductivity testing on samples from these sites and field data are used to calibrate these thermal numerical models. Various boundary conditions are examined. The capabilities of the models are evaluated to determine if the models adequately simulate and predict changes in temperature in geotechnical structures. A discussion is presented on the strengths and weaknesses in the models and the predictive capabilities of the models. The thesis then shifts into understanding the concepts of thermoplasticity and viscoplasticity and the mathematics relating these concepts. Mathematical models that describe these concepts are examined and compared with traditional soil mechanics approaches. The concepts of thermoplasticity and viscoplasticity are combined in an encompassing elastic thermo-viscoplastic (ETVP) model using a semi-empirical framework. A sensitivity analysis is used to evaluate quantitatively the response of the model. The model is then validated qualitatively against published laboratory data. Applications of the ETVP model are discussed.
36

Thermo-Viscoelastic-Viscoplastic-Viscodamage-Healing Modeling of Bituminous Materials: Theory and Computation

Darabi Konartakhteh, Masoud 2011 August 1900 (has links)
Time- and rate-dependent materials such as polymers, bituminous materials, and soft materials clearly display all four fundamental responses (i.e. viscoelasticity, viscoplasticity, viscodamage, and healing) where contribution of each response strongly depends on the temperature and loading conditions. This study proposes a new general thermodynamic-based framework to specifically derive thermo-viscoelastic, thermo-viscoplastic, thermo-viscodamage, and micro-damage healing constitutive models for bituminous materials and asphalt mixes. The developed thermodynamic-based framework is general and can be applied for constitutive modeling of different materials such as bituminous materials, soft materials, polymers, and biomaterials. This framework is build on the basis of assuming a form for the Helmohelotz free energy function (i.e. knowing how the material stores energy) and a form for the rate of entropy production (i.e. knowing how the material dissipates energy). However, the focus in this work is placed on constitutive modeling of bituminous materials and asphalt mixes. A viscoplastic softening model is proposed to model the distinct viscoplastic softening response of asphalt mixes subjected to cyclic loading conditions. A systematic procedure for identification of the constitutive model parameters based on optimized experimental effort is proposed. It is shown that this procedure is simple and straightforward and yields unique values for the model material parameters. Subsequently, the proposed model is validated against an extensive experimental data including creep, creep-recovery, repeated creep-recovery, dynamic modulus, constant strain rate, cyclic stress controlled, and cyclic strain controlled tests in both tension and compression and over a wide range of temperatures, stress levels, strain rates, loading/unloading periods, loading frequencies, and confinement levels. It is shown that the model is capable of predicting time-, rate-, and temperature-dependent of asphalt mixes subjected to different loading conditions.
37

Charakterisierung und Modellierung viskoelastischer Eigenschaften von kurzglasfaserverstärkten Thermoplasten mit Faser-Matrix Interphase / Étude expérimentale et modélisation micromécanique du comportement viscoélastique des polymères renforcés par fibres courtes avec interphases

Schöneich, Marc 16 December 2016 (has links)
L’influence des propriétés microscopiques de l’interphase entre la matrice et les fibres sur le comportement mécanique macroscopique n’est pas suffisamment connue dans le domaine des polymères renforcés par fibres courtes. Dans le cadre de cette thèse, une étude systématique des propriétés géométriques et mécaniques de l’interphase est réalisée concernant la description des effets sur la réponse viscoélastique linéaire du composite. Dans ce contexte, les résultats présentés mettent l’accent sur l’interaction entre la modélisation micromécanique et la caractérisation expérimentale. D’une part, un nouveau modèle micromécanique en deux étapes est développé pour la description d’un composite anisotrope à trois phases avec interphases. D’autre part, les paramètres du matériau utilisés pour la modélisation micromécanique sont identifiés avec des méthodes expérimentales aux échelles micro- et macroscopiques. En comparaison des résultats expérimentaux avec les propriétés effectives calculées de matériau composite, une inférence peut être faite sur les propriétés mécaniques du composite à partir de celles de l’interphase. Par conséquent, une méthode inverse est proposée offrant un accès aux propriétés inconnues de l’interphase. Enfin, la combinaison de la modélisation micromécanique et des résultats expérimentaux permet une meilleure compréhension des propriétés mécaniques de l’interphase, qui n’étaient auparavant pas accessibles au moyen de seules approches expérimentales / In order to improve the mechanical properties of short fiber composites, the fiber-matrix adhesion is decisive and depends strongly on the intersection region between the fiber and the matrix material. However, no perspicuous information about the influence or mechanical properties of the fiber-matrix interphase in short fiber reinforced thermoplastic composites is available. Thus, the present thesis aims for a systematic identification of the geometrical and mechanical impacts of an interphase on the linear-viscoelastic behavior in short glass fiber reinforced thermoplastics. Thereby, the performed investigations are focused on the interaction between micromechanical material modeling and experimental testing. On the one hand, a two-step modeling approach is developed for the realistic description of an entire three phase composite with interphase including anisotropic and linear-viscoelastic effects. On the other hand, the input of this model is provided by different experimental testing methods ranging from the micro- to the macroscale characterization of the composite and matrix material. By comparing these experimental results with the linear-viscoelastic modeling output, the impact of the interphase on the mechanical properties of the composite is accessible. Thus, it is shown that a realistic material modeling and experimental investigations are closely interlinked
38

Um modelo tridimensional de elementos finitos para túneis com revestimento em concreto projetado e pré-moldado / Tridimensional numerical finite element model to simulate deep tunnels with shotcrete and precast concrete

Fiore, Paola María Camila Villalba January 2015 (has links)
Em túneis, a deformação do maciço e a pressão do solo no revestimento dependem das tensões e características do maciço, das tensões do maciço, da geometria, da rigidez, do instante da colocação do revestimento. A variação das tensões no revestimento e as deformações são causadas pelo avanço da escavação e as propriedades dependentes do tempo do maciço rochoso e revestimento. O objetivo desta dissertação é apresentar um modelo numérico para a análise tridimensional de túneis em maciços rochosos no programa ANSYS. Ele constitui uma ferramenta para calcular um túnel, revestido de concreto em diferentes situações de rigidez do revestimento, processo construtivo e características do maciço. O processo de escavação e colocação do revestimento é simulado pelo método da ativação/desativação de elementos em etapas sequenciais. O maciço apresenta comportamento elástico na primeira parte, e posteriormente uma lei viscoplástica. O concreto projetado e o concreto pré-moldado do revestimento são modelados como elásticos na primeira parte, e posteriormente, como materiais viscoelásticos utilizando o modelo da cadeia de Maxwell e de Kelvin, propostos por Bazant. Ambos os modelos foram calibrados por comparação com o Código Modelo fib 2010. A simulação do túnel é realizada através da incorporação de sub-rotinas para o concreto viscoelástico no programa ANSYS. Para validar o modelo são feitas comparações dos resultados obtidos no programa ANSYS com a solução analítica, com o programa GEOMEC91 e com o Novo Método Implícito, dependendo do caso. Um estudo paramétrico em elasticidade é realizado com o código ANSYS variando alguns parâmetros relevantes. Na segunda parte, o mesmo túnel revestido é modelado com dois diferentes tipos de revestimento e os dois modelos de cadeia citados. Finalmente, é comparado o comportamento com o túnel experimental Kielder, do qual se tem dados disponíveis da instrumentação. A comparação destes dados com os resultados do programa ANSYS mostra uma aproximação muito boa. / Stabilizing underground openings such as tunnels excavated in rock mass remain a major concern of geotechnical engineers dealing with this kind of structures. In tunnels, the rock mass strain and the ground pressure on lining depend on the stress and characteristics of the rock mass as well as of the geometry, the stiffness and the moment of the lining installation. Pressure variation on lining and strain are caused by the advance of excavation and the time-dependent properties of the rock mass and lining. This dissertation describes the numerical implementation of constitutive laws in the numerical code ANSYS. It is performed a numerical simulation with 3D finite elements of a tunnel. The rock mass presents elastic behavior in the first part and then a viscoplastic law. The shotcrete and precast concrete are modeled as elastic in the first part and then viscoelastic material with the constitutive laws of the Maxwell and the Kelvin chain model, proposed by Bazant. So the characteristics of the viscoelastic concrete changes with time until the stabilization. Both chain models had to be calibrated by comparing with de fib Model Code 2010. The finite elements simulation is performed by incorporating subroutines for the viscoelastic concrete model in the ANSYS code. The method to simulate the tunnel excavations is by activating and deactivating elements in sequential steps. In the first part of the dissertation two validations are performed. The analytical solution and the deformation achieved on the stabilization in the ANSYS code are compared for the validation of an unlined tunnel. For a lined tunnel, with an elastic and viscoplastic rock mass and elastic lining, validation is performed by comparing the results of the GEOMEC91 code with the ANSYS code. The results show a very good approximation in viscoplasticity and agree perfectly in elasticity. Also a parametric study is undertaken with the ANSYS code varying some relevant parameters. In the second part, it is compared the same tunnel with the two different concrete lining and the two chain models. Finally, it is compared with the Kielder experimental tunnel, which in situ measured data is available. The comparison of this data with the results from the ANSYS code shows a very good approximation.
39

Implementação e avaliação de modelos constitutivos viscoplásticos em pequenas e grandes deformações utilizando o MEF

Santos, Tiago dos January 2012 (has links)
No presente trabalho é descrita uma formulação para modelos constitutivos elastoviscoplásticos, considerando deformações infinitesimais e finitas. Os modelos são formulados em um contexto da termodinâmica de variáveis internas usando fundamentos de análise convexa. As equações de evolução são obtidas a partir do princípio da máxima dissipação, o qual desempenha um importante papel na abordagem adotada, a qual consiste na generalização do modelo reológico de Bingham. O problema constitutivo de valor inicial local é solucionado por um esquema de integração implícita combinado a um algoritmo de mapeamento de retorno. O problema de valor no contorno e inicial global, considerando casos quasi-estáticos, é solucionado por meio do método dos elementos finitos (MEF) empregando também um método de integração implícita. Esta estratégia é implementada empregando os modelos constitutivos viscoplásticos linear e não linear de Perzyna e o modelo de Perié. A implementação computacional é avaliada por meio da comparação dos resultados numéricos a soluções analíticas e também a problemas padrões disponíveis na literatura. Os resultados obtidos são importantes para avaliar o comportamento e as características dos modelos viscoplásticos na análise dos fenômenos de dependência da taxa de deformação e de relaxação de tensão. Embora os três modelos se mostrem adequados à captura destes fenômenos, uma atenção especial deve ser dada ao modelo não linear de Perzyna, pois este não recupera o modelo invíscido como um caso limite, além disso, apresenta mal condicionamento no algoritmo de mapeamento de retorno. / In this work an elastic-viscoplastic constitutive formulation is described, considering infinitesimal and finite deformations. The models are formulated inside a thermodynamic with internal variables framework using fundamentais from convex analysis. The evolution equations are obtained from the maximum dissipation principie, which plays an important role on the approach adopted, which is the generalization of the Bingham rheological model. The local initial value problem is solved by an implicit integration scheme with a return mapping algorithm. The global initial boundary value problem is solved by the finite element method (FEM) also employing an implicit integration method. The strategy is implemented employing the linear and nonlinear Perzyna and the Perié viscoplastic models. The computational implementation is evaluated by comparing the numerical results with analytical solutions and with benchmarks available in the literature. The results obtained are important to evaluate the behavior and the characteristics of the models on the analysis of rate-dependency and stress relaxation. The three models were suitable to predict these phenomena. However, a special attention is needed on the nonlinear Perzyna model, because it does not recover the inviscid model as a limit case. Further, it presents ill-conditioning in the return mapping algorithm.
40

Implementação e avaliação de modelos constitutivos viscoplásticos em pequenas e grandes deformações utilizando o MEF

Santos, Tiago dos January 2012 (has links)
No presente trabalho é descrita uma formulação para modelos constitutivos elastoviscoplásticos, considerando deformações infinitesimais e finitas. Os modelos são formulados em um contexto da termodinâmica de variáveis internas usando fundamentos de análise convexa. As equações de evolução são obtidas a partir do princípio da máxima dissipação, o qual desempenha um importante papel na abordagem adotada, a qual consiste na generalização do modelo reológico de Bingham. O problema constitutivo de valor inicial local é solucionado por um esquema de integração implícita combinado a um algoritmo de mapeamento de retorno. O problema de valor no contorno e inicial global, considerando casos quasi-estáticos, é solucionado por meio do método dos elementos finitos (MEF) empregando também um método de integração implícita. Esta estratégia é implementada empregando os modelos constitutivos viscoplásticos linear e não linear de Perzyna e o modelo de Perié. A implementação computacional é avaliada por meio da comparação dos resultados numéricos a soluções analíticas e também a problemas padrões disponíveis na literatura. Os resultados obtidos são importantes para avaliar o comportamento e as características dos modelos viscoplásticos na análise dos fenômenos de dependência da taxa de deformação e de relaxação de tensão. Embora os três modelos se mostrem adequados à captura destes fenômenos, uma atenção especial deve ser dada ao modelo não linear de Perzyna, pois este não recupera o modelo invíscido como um caso limite, além disso, apresenta mal condicionamento no algoritmo de mapeamento de retorno. / In this work an elastic-viscoplastic constitutive formulation is described, considering infinitesimal and finite deformations. The models are formulated inside a thermodynamic with internal variables framework using fundamentais from convex analysis. The evolution equations are obtained from the maximum dissipation principie, which plays an important role on the approach adopted, which is the generalization of the Bingham rheological model. The local initial value problem is solved by an implicit integration scheme with a return mapping algorithm. The global initial boundary value problem is solved by the finite element method (FEM) also employing an implicit integration method. The strategy is implemented employing the linear and nonlinear Perzyna and the Perié viscoplastic models. The computational implementation is evaluated by comparing the numerical results with analytical solutions and with benchmarks available in the literature. The results obtained are important to evaluate the behavior and the characteristics of the models on the analysis of rate-dependency and stress relaxation. The three models were suitable to predict these phenomena. However, a special attention is needed on the nonlinear Perzyna model, because it does not recover the inviscid model as a limit case. Further, it presents ill-conditioning in the return mapping algorithm.

Page generated in 0.0509 seconds