Spelling suggestions: "subject:"algebra."" "subject:"álgebra.""
371 |
Elementos de dinámica de iteración de funcionesVergaray Albujar, César Augusto 20 June 2016 (has links)
En este trabajo desarrollaremos dos aspectos de Dinámica: El primero que trata sobre la dinámica de funciones que van de un intervalo en si mismo, introduciremos las cadenas de Markov y algunos resultados previos para alcanzar al final el teorema de Sharkovsky demostrado con grafos, el cual lo haremos en la primera parte de este trabajo. La segunda parte de este trabajo
tratará sobre la teoría ergódica, nos enfocaremos en dos de los teoremas fundamentales que son el teorema de recurrencia de Poincaré y el teorema de Birkhoff. / Tesis
|
372 |
K teoría algebraica de anillos de grupos y sus aplicacionesHurtado Amaya, Carlos Arturo 11 November 2016 (has links)
La K teoría algebraica de anillos de grupo ha sido ampliamente tratada en los últimos 40 años. Esto se debe en parte a las aplicaciones existentes en topología, teoría de números y teoría de representaciones.
Se presenta los anillos de grupo y algunos problemas relacionados con estos, en particular, la conjetura de idempotencia de Kaplansky. Por otro lado, se introduce la K teoría algebraica de un anillo de grupo y se presenta una aplicación a la teoría de representaciones de grupos finitos. / Tesis
|
373 |
Representación y clasificación de productos tensoriales torcidosArce Flores, Jack Denne 25 January 2018 (has links)
Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de
espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B.
En primer lugar desarrollamos la teoría básica que se encuentra dispersa en varios artículos
de investigación y establecemos como primer resultado propio, la dualidad que existe entre las
aplicaciones de torcimiento de un producto tensorial torcido y su álgebra opuesta. Este resultado
parece haber sido conocido entre los expertos del área sin embargo no se encuentra ninguna
prueba en la literatura. Luego estudiamos el caso en que uno de los factores del producto tensorial torcido tiene dimensión finita. Por ejemplo si A tiene dimensión finita, se establece que bajo estas condiciones definir una aplicación de torcimiento de A con B es equivalente a definir un par de representaciones matriciales (p , ph), una de B y otra de Aop. La primera tiene coeficientes en A y la segunda tiene coeficientes en Endk(B). Además, obtenemos una representación matricial el del producto tensorial torcidos en Mn(B). Estas representaciones constituyen el resultado principal propio en el segundo capítulo. Como aplicación describimos los productos tensoriales torcidos estudiados por Cibils, Jara et al. y Guccione et al. en términos del par de representaciones (p , ph) y deducimos las condiciones que permiten a los autores en cada uno de los casos lograr una clasificación (parcial o total). A continuación nos enfocamos en las aplicaciones de torcimiento de Kn con Km. Establecemos una caracterización de estas aplicaciones de torcimiento en términos de matrices con coeficientes en K, la cual se debe a que ambas álgebras son conmutativas y de dimensión finita. Tal caracterización nos permite clasificar completamente las aplicaciones de torcimiento de rango reducido 1 que en nuestro lenguaje se ve muy diferente de la clasificación alcanzada por Jara et al.. Luego desarrollamos herramientas para el estudio de dos familias de productos tensoriales torcidos: las estándar y las casi-estándar. Estas herramientas permiten estudiar la relación entre las aplicaciones de torcimiento estándar, y casi-estándar, con las álgebras de camino de Quivers, y establecen una generalización del resultado obtenido por Cibils para n = 2. Para analizar utilizamos todos de los resultados obtenidos para clasificar los productos tensoriales torcidos en el caso de dimensiones bajas, incluyendo todas las aplicaciones de torcimiento de K3 con K3. / Tesis
|
374 |
A irracionalidade e transcendência do número e /Vasconcelos, Getulio de Assis. January 2013 (has links)
Orientador: Elíris Cristina Rizziolli / Banca: Aldicio José Miranda / Banca: Thiago de Melo / O PROFMAT - Programa de Mestrado Profissional em Matemática em Rede Nacional é coordenado pela Sociedade Brasileira de Matemática e realizado por uma rede de Instituições de Ensino Superior / Resumo: Quando John Napier desenvolveu seu estudo sobre logaritmo, ele com certeza não imaginou as implicações futuras de suas descobertas. O número e tem importância estratégica nas aplicações de várias áreas do conhecimento científico. Esse trabalho tem como objetivo apresentar o número e como limite in nito de uma sequência, demonstrar sua existência, irracionalidade e transcendência / Abstract: When John Napier developed his study of logarithm, he certainly did not imagine the future implications of their ndings. The number e has strategic importance in applications from various areas of scienti c knowledge. This work aims to present the number e as the limit of in nite sequence, demonstrating its existence, irrationality and transcendence / Mestre
|
375 |
Conocimiento didáctico matemático que deben manifestar profesores de secundaria en relación a tareas sobre ecuacionesPasapera Chuquiruna, Diana Teodora 19 July 2017 (has links)
El presente trabajo de investigación tiene como objetivo identificar el conocimiento didáctico
matemático que debe manifestar un profesor en la secundaria para reconocer la complejidad o la
progresión de características algebraicas en tareas sobre ecuaciones que se presentan en textos escolares.
Para ello, señalaremos cuáles son los conocimientos matemáticos referidos a cada objeto primario
asociado a las ecuaciones de primer y segundo grado que emergen de las prácticas matemáticas, en una
propuesta para el significado institucional de referencia de las ecuaciones.
A partir de dicha propuesta y de las consignas que se describen para la faceta epistémica y ecológica
del Modelo del Conocimiento Didáctico Matemático propuesto por Godino (2009), hemos llegado a
determinar que un profesor debe ser capaz de identificar los conocimientos que se requieren para abordar
un contenido, así como los lenguajes, conceptos, tipos de situaciones, diferentes procedimientos y
propiedades que se ponen en juego para el estudio de las ecuaciones. También las conexiones de las
ecuaciones de primer y segundo grado con temas y tópicos más avanzados según el currículo nacional.
Además, debe identificar los conocimientos que marquen la evolución del razonamiento algebraico
elemental, tales como el reconocimiento de los procesos algebraicos de generalización, unitarización,
simbolización que son rasgos característicos de los niveles de algebrización (0, 1, 2 y 3) que se definen
desde el enfoque ontosemiótico de la cognición e instrucción matemática (EOS) para que genere o
modifique tareas en mejora de su práctica profesional.
Finalmente, en nuestras consideraciones finales, destacamos que con la identificación de estos
conocimientos y el insumo del significado institucional de referencia será posible dar cuentas en futuras
investigaciones de las ausencias, presencias, debilidades y fortalezas de nuestro diseño curricular; así
como de implementar una propuesta para formación de profesores. / The present research aims to identify the mathematical didactic knowledge that must be demonstrated
by a teacher in the secondary to recognize the complexity or progression of algebraic characteristics in
tasks on equations that are presented in school texts. To do this, we will point out the mathematical
knowledge related to each primary object associated to the first and second degree equations that emerge
from the mathematical practices, in a proposal for the institutional meaning of reference of the equations.
Based on this proposal and the slogans that are described for the epistemic and ecological facet of the
Mathematical Didactic Knowledge Model proposed by Godino (2009), we have come to determine that
a teacher must be able to identify the knowledge required to approach A content, as well as the
languages, concepts, types of situations, different procedures and properties that are put into play for the
study of the equations. Also the connections of the first and second degree equations with topics and
more advanced topics according to the national curriculum.
In addition, it must identify the knowledge that marks the evolution of elementary algebraic reasoning,
such as the recognition of the algebraic processes of generalization, unitarization, symbolization that are
characteristic features of algebrization levels (0, 1, 2 and 3) that are defined from the ontosemiotic
approach of cognition and mathematical instruction (EOS) to generate or modify tasks in improving
their professional practice.
Finally, in our final considerations, we emphasize that with the identification of this knowledge and the
input of the institutional meaning of reference, it will be possible to account for future investigations of
the absences, presences, weaknesses and strengths of our curricular design; As well as to implement a
proposal for teacher training. / Tesis
|
376 |
Configuración epistémica e identificación de niveles de algebrización en tareas estructurales de los textos oficiales del V ciclo de educación primariaJulian Trujillo, Edwin Cristian 04 September 2017 (has links)
El presente trabajo emplea algunas herramientas teóricas y metodológicas del Enfoque
Ontosemiótico de la Cognición e Instrucción Matemática (EOS), para identificar los
diferentes significados asociados a la tareas estructurales, es decir, aquellas tareas que
involucran las operaciones y propiedades de las estructuras numéricas de los números
naturales , fraccionarios y decimales positivos . Para ello, se han analizado algunos textos
de matemática superior, textos didácticos e investigaciones que son un referente
importante en el estudio de las tareas estructurales. La noción de significado se concretiza
haciendo uso de la herramienta configuración epistémica que brinda el EOS. Permite
reconocer las definiciones y propiedades, mientras se resuelven problemas con
procedimientos y argumentos que los justifican. Por otro lado, los niveles de
algebrización permiten otorgar grado según sean los procesos de generalización
desarrollados en la soluciones de las tareas. Se han identificado significados como:
comparación, cambio, igualación, combinación, proporcionalidad simple, producto de
medidas, densidad orden, producto y conjeturas validación.
A continuación, se ha analizado los libros de texto del V ciclo de educación primaria del
Perú, los cuales comprenden los grados de 5to y 6to, realizando un análisis epistémico de
las tareas estructurales e identificando los niveles de algebrización. Encontrándose que
predomina el lenguaje verbal y simbólico, se enfatiza en el uso de propiedades y
operaciones fundamentales de los números naturales, fracciones y decimales positivos.
Además, se consideran situaciones en su gran mayoría extramatemáticas, esto es,
situaciones relacionadas con el mundo real, aunque no se establecen conexiones con otras
áreas de conocimiento; esto ocurre pese a que el currículo nacional en la educación
primaria establece que las áreas deben propiciar la integración de diversos campos del
conocimiento, acorde con las etapas del desarrollo del estudiante. Por otro lado, podemos
resaltar que los argumentos empleados corresponden al método deductivo y empírico.
Finalmente, con respecto a los niveles de algebrización la solución de solo una tarea
corresponde a un nivel 2, es decir, se plantea una ecuación de primer grado y se entiende
la división como operación inversa de la multiplicación. / Tesis
|
377 |
Espinores clássicos, algébricos e conjugação de carga no formalismo das álgebras de CliffordCavalcanti, Rogério Teixeira January 2013 (has links)
Orientador: Roldão da Rocha Junior / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Matemática, 2013
|
378 |
Grupo topológico /Dutra, Aline Cristina Bertoncelo. January 2011 (has links)
Orientador: Elíris Cristina Rizziolli / Banca: Edivaldo Lopes da Silva / Banca: João Peres Vieira / Resumo: Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico / Abstract: In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space / Mestre
|
379 |
Logaritmos e aplicações /Pecorari, Mariana. January 2013 (has links)
Orientador: Marta Cilene Gadotti / Banca: Wladimir Seixas / Banca: Eliris Cristina Rizziolli / Resumo: Logaritmos constituem um assunto desafiador a ser ministrado aos alunos do Ensino Médio, sendo que a maioria destes apresenta grande dificuldade de compreensão e resolução dos exercícios propostos. O objetivo do presente trabalho foi o de apresentar aos docentes uma forma diferente e mais acessível de ensinar logaritmos aos seus alunos, constituindo-se uma interessante alternativa à forma que é comumente utilizada nas escolas em geral. O logaritmo apresenta-se como ferramenta matemática aplicável em inúmeras utilizações, sendo que estas podem ser inseridas nas explicações dadas em ambiente educacional e servir como motivação ao estudo de suas propriedades. A introdução e apresentação da teoria dos logaritmos foram realizadas segundo Lima, 2010. A explicação a ser explorada no Ensino Médio utilizou o conceito de área aproximada abaixo da hipérbole y = 1=x. No entanto, aos professores foi também apresentada a definição do logaritmo natural por meio de uma integral de Riemann / Abstract: Logarithms are a challenging topic taught to high school students, and most of these had difficulties to understanding and resolution of proposed exercises. The objective of this study was to present to teachers a different and more accessible form to teach logarithms to their students, becoming an interesting alternative to the form that is commonly used in schools in general. The logarithm is presented as mathematical tool applicable in many situations, and these situations can be inserted in the explanations given in classrooms and serve as motivation for the study of their properties. The introduction and presentation of the theory of logarithms were performed according to Lima, 2010. The explanation to be explored in high school used the concept of approximate area under the hyperbola y = 1=x. However, the teacher also has the definition given by the natural logarithm of a Riemann integral / Mestre
|
380 |
Superfícies quádricas. Transformação das coordenadas /Correia, Juliana Mauri. January 2010 (has links)
Orientador: Jõao Peres Vieira / Banca: Wladimir Seixas / Banca: Rita de Cássia Pavani Lamas / Resumo: O objetivo desta dissertação é sugerir duas formas de apresentação do estudo da equação geral de uma quádrica. Uma delas, quando seu público alvo é formado por alunos ingressantes (do primeiro ano de um curso da Área de Ciências Exatas e da Terra) e a outra quando seu público alvo tem noções de Álgebra Linear / Abstract: In this work we present two ways to study the general equation of a quadric. One of them when the public is formed by beginners students and the other one when the public is formed by students with notions of Linear Algebra / Mestre
|
Page generated in 0.0323 seconds