Spelling suggestions: "subject:"électrophysiologie"" "subject:"electrophysiologie""
71 |
Propriétés spectrales et spatiales des neurones auditifs du noyau central du collicule inférieur du rat normal et énuclééPageau, Christine January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
72 |
Implication du système cannabinoïde dans un nouveau modèle de douleur neuropathique périphériqueWalczak, Jean-Sébastien January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
73 |
Microsonde optique et électrique pour l'enregistrement de neurones unitaires in vivoLeChasseur, Yoan 18 April 2018 (has links)
Le système nerveux central (SNC) est composé d'une population hétérogène de neurones. L'étude de leurs propriétés fonctionnelles à l'intérieur du SNC est indispensable afin de parvenir à comprendre leur rôle dans l'intégration du signal à l'intérieur d'un réseau. Pour accéder à ces informations, il est essentiel de pouvoir enregistrer de manière électrophysiologique des cellules identifiées dans le tissu intact. Ce type d'enregistrement ciblé est un défi, spécialement pour les circuits locaux de neurones. Pour prendre pleinement avantage des récentes techniques de marquages fluorescents, l'habilité à enregistrer des cellules individuelles électrophysiologiquement doit être combinée à un système de détection optique. Ce système doit être lui aussi capable de détecter les neurones sur une base individuelle profondément dans le SNC. Cette thèse fait la description d'une nouvelle microsonde optique et électrique basée sur une fibre optique à deux cœurs : un cœur optique permettant d'excitation local de la fluorescence de cellules marquées par un fluorophore et permettant aussi de collecter la fluorescence émise, et un cœur creux remplis d'électrolytes permettant l'enregistrement électrophysiologique unitaire de manière extracellulaire. Cette nouvelle approche permet la production de microsondes ayant suffisamment de résolution spatiale optique pour détecter une cellule unique : la microsonde peut être étirée pour obtenir un diamètre de pointe allant jusqu'à 6 µm, ce qui est plus petit que les corps cellulaires de la plupart des populations neuronales. La thèse présente l'évolution des différents designs de microsonde et du montage expérimental. Pour caractériser les propriétés optiques des sondes, une série d'expériences in vitro (sur des tranches cérébrales de rat) ont été réalisées ainsi qu'une série de simulations numériques. Par la suite, des expériences in vivo (sur le SNC de rat et souris) ont été faites pour identifier et enregistrer des neurones spinothalamique unitaires marqués au DiI ainsi que des neurones cérébraux de souris génétiquement modifiés pour exprimer de la GFP dans leurs cellules GABAergiques. Cette thèse présente aussi un critère spatial optique et électrophysiologique afin de confirmer la co-détection de cellules unitaire. Cette nouvelle microsonde ouvre de larges possibilités pour les enregistrements électrophysiologiques in vivo en donnant accès, en parallèle, aux signaux optiques unicellulaires. / The central nervous system is composed of heterogeneous populations of neurons. Studying their functional properties in the intact central nervous system (CNS) is key to be able to understand their respective role in signal processing within entire networks. To achieve this, it is essential to be able to record electrophysiologically from identified neurons in the intact tissue. Recording from identified cells types in vivo has remained a challenge, especially for local circuit neurons. Novel fluorescent labeling techniques open new possibilities on that front. To take full advantage of these recent developments, the ability to record electrophysiological signals from single neurons must be combined with optical detection of individual cells deep into CNS tissue. Here it describe the development of a novel microprobe based on a dual core optical fiber: an optical core that excites locally fluorescent labeled cells and collects back the fluorescence, and an electrolyte filled hollow core that performs classical extracellular single unit electrophysiological measurements. In contrast to previous solutions, this novel design allows production of microprobes with sufficient optical resolution for single cell detection: the microprobes could be pulled down to tips sizes of 6 µm, which is smaller than the cell body diameter of most neuron populations. It is presented the evolution of the microprobe design and the experimental setup. To characterize the optical properties of the probes, it is showed a series of in vitro experiments and numerical simulations. Then, it is presented in vivo experiment to identify and record single spinal neurons labeled retrogradely with fluorescent dyes as well as single GABAergic interneurons expressing GFP in the brain of transgenic mice. It's also established a spatial criterion to correlate optical and electrophysiological signals, confirming co-detection of single cells. This novel microprobe vastly expands possibilities for in vivo electrophysiological recording by providing parallel access to single cell optical monitoring.
|
74 |
Interfaces neuronales CMOS haute résolution pour l'électrophysiologie et l'optogénétique en boucle ferméeGagnon-Turcotte, Gabriel 16 September 2019 (has links)
L’avenir de la recherche sur les maladies du cerveau repose sur le développement de nouvelles technologies qui permettront de comprendre comment cet organe si complexe traite, intègre et transfère l’information. Parmi celles-ci, l’optogénétique est une technologie révolutionnaire qui permet d’utiliser de la lumière afin d’activer sélectivement les neurones du cortex d’animaux transgéniques pour observer leur effet dans un vaste réseau biologique. Ce cadre expérimental repose typiquement sur l’observation de l’activité neuronale de souris transgéniques, car elles peuvent exprimer une grande variété de gènes et de maladies et qu’elles sont peu couteuses. Toutefois, la plupart des appareils de mesure ou de stimulation optogénétique disponible ne sont pas appropriés, car ils sont câblés, trop lourds et/ou trop simplistes. Malheureusement, peu de systèmes sans fil existent, et ces derniers sont grandement limités par la bande passante requise pour transmettre les données neuronales, et ils ne fournissent pas de stimulation optogénétique multicanal afin de stimuler et observer plusieurs régions du cerveau. Dans les dispositifs actuels, l’interprétation des données neuronales est effectuée ex situ, alors que la recherche bénéficierait grandement de systèmes sans fil assez intelligents pour interpréter et stimuler les neurones en boucle fermée, in situ. Le but de ce projet de recherche est de concevoir des circuits analogiques-numériques d’acquisition et de traitement des signaux neuronaux, des algorithmes d’analyse et de traitement de ces signaux et des systèmes electro-optiques miniatures et sans fil pour : i) Mener des expériences combinant l’enregistrement neuronal et l’optogénétique multicanal haute résolution avec des animaux libres de leurs mouvements. ii) Mener des expériences optogénétiques synchronisées avec l’observation, c.-à-d. en boucle fermée, chez des animaux libres de leurs mouvements. iii) Réduire la taille, le poids et la consommation énergétique des systèmes optogénétiques sans fil afin de minimiser l’impact de la recherche chez de petits animaux. Ce projet est en 3 phases, et ses principales contributions ont été rapportées dans dix conférences internationales (ISSCC, ISCAS, EMBC, etc.) et quatre articles de journaux publiés ou soumis, ainsi que dans un brevet et deux divulgations. La conception d’un système optogénétique haute résolution pose plusieurs défis importants. Notamment, puisque les signaux neuronaux ont un contenu fréquentiel élevé (_10 kHz), le nombre de canaux sous observation est limité par la bande passante des transmetteurs sans fil (2-4 canaux en général). Ainsi, la première phase du projet a visé le développement d’algorithmes de compression des signaux neuronaux et leur intégration dans un système optogénétique sans fil miniature et léger (2.8 g) haute résolution possédant 32 canaux d’acquisition et 32 canaux de stimulation optique. Le système détecte, compresse et transmet les formes d’onde des potentiels d’action (PA) produits par les neurones avec un field programmable gate array (FPGA) embarqué à faible consommation énergétique. Ce processeur implémente un algorithme de détection des PAs basé sur un seuillage adaptatif, ce qui permet de compresser les signaux en transmettant seulement les formes détectées. Chaque PA est davantage compressé par une transformée en ondelette discrète (DWT) de type Symmlet-2 suivie d’une technique de discrimination et de requantification dynamique des coefficients. Les résultats obtenus démontrent que cet algorithme est plus robuste que les méthodes existantes tout en permettant de reconstruire les signaux compressés avec une meilleure qualité (SNDR moyen de 25 dB _ 5% pour un taux de compression (CR) de 4.2). Avec la détection, des CR supérieurs à 500 sont rapportés lors de la validation in vivo. L’utilisation de composantes commerciales dans des systèmes optogénétiques sans fil augmente / la taille et la consommation énergétique, en plus de ne pas être optimisée pour cette application. La seconde phase du projet a permis de concevoir un système sur puce (SoC) complementary metal oxide semiconductor (CMOS) pour faire de l’enregistrement neuronal et de optogénétique multicanal, permettant de réduire significativement la taille et la consommation énergétique comparativement aux alternatives commerciales. Ceci est une contribution importante, car c’est la première puce à être doté de ces deux fonctionnalités. Le SoC possède 10 canaux d’enregistrement et 4 canaux de stimulation optogénétique. La conception du bioamplificateur inclut une bande passante programmable (0.5 Hz - 7 kHz) et un faible bruit referré à l’entré (IRN de 3.2 μVrms), ce qui permet de cibler différents types de signaux biologiques (PA, LFP, etc.). Le convertisseur analogique numérique (ADC) de type Delta- Sigma (DS) MASH 1-1-1 est conçu pour fonctionner de faibles taux de sur-échantillonnage (OSR _50) pour réduire sa consommation et possède une résolution programmable (ENOB de 9.75 Bits avec un OSR de 25). Cet ADC exploite une nouvelle technique réduisant la taille du circuit en soustrayant la sortie de chaque branche du DS dans le domaine numérique, comparativement à la méthode analogique classique. La consommation totale d’un canal d’enregistrement est de 11.2 μW. Le SoC implémente un nouveau circuit de stimulation optique basé sur une source de courant de type cascode avec rétroaction, ce qui permet d’accommoder une large gamme de LED et de tensions de batterie comparativement aux circuits existants. Le SoC est intégré dans un système optogénétique sans fil et validé in vivo. À ce jour et en excluant ce projet, aucun système sans-fil ne fait de l’optogénétique en boucle fermée simultanément au suivi temps réel de l’activité neuronale. Une contribution importante de ce travail est d’avoir développé le premier système optogénétique multicanal qui est capable de fonctionner en boucle fermée et le premier à être validé lors d’expériences in vivo impliquant des animaux libres de leurs mouvements. Pour ce faire, la troisième phase du projet a visé la conception d’un SoC CMOS numérique, appelé neural decoder integrated circuit (ND-IC). Le ND-IC et le SoC développé lors de la phase 2 ont été intégrés dans un système optogénétique sans fil. Le ND-IC possède 3 modules : 1) le détecteur de PA adaptatif, 2) le module de compression possédant un nouvel arbre de tri pour discriminer les coefficients, et 3) le module de classement automatique des PA qui réutilise les données générées par le module de détection et de compression pour réduire sa complexité. Un lien entre un canal d’enregistrement et un canal de stimulation est établi selon l’association de chaque PA à un neurone, grâce à la classification, et selon l’activité de ce neurone dans le temps. Le ND-IC consomme 56.9 μW et occupe 0.08 mm2 par canal. Le système pèse 1.05 g, occupe un volume de 1.12 cm3, possède une autonomie de 3h, et est validé in vivo. / The future of brain research lies in the development of new technologies that will help understand how this complex organ processes, integrates and transfers information. Among these, optogenetics is a recent technology that allows the use of light to selectively activate neurons in the cortex of transgenic animals to observe their effect in a large biological network. This experimental setting is typically based on observing the neuronal activity of transgenic mice, as they express a wide variety of genes and diseases, while being inexpensive. However, most available neural recording or optogenetic devices are not suitable, because they are hard-wired, too heavy and/or too simplistic. Unfortunately, few wireless systems exist, and they are greatly limited by the required bandwidth to transmit neural data, while not providing simultaneous multi-channel neural recording and optogenetic, a must for stimulating and observing several areas of the brain. In current devices, the analysis of the neuronal data is performed ex situ, while the research would greatly benefit from wireless systems that are smart enough to interpret and stimulate the neurons in closed-loop, in situ. The goal of this project is to design analog-digital circuits for acquisition and processing of neural signals, algorithms for analysis and processing of these signals and miniature electrooptical wireless systems for: i) Conducting experiments combining high-resolution multi-channel neuronal recording and high-resolution multi-channel optogenetics with freely-moving animals. ii) Conduct optogenetic experiments synchronized with the neural recording, i.e. in closed loop, with freely-moving animals. iii) Increase the resolution while reducing the size, weight and energy consumption of the wireless optogenetic systems to minimize the impact of research with small animals. This project is in 3 phases, and its main contributions have been reported in ten conferences (ISSCC, ISCAS, EMBC, etc.) and four published journal papers, or submitted, as well as in a patent and two disclosures. The design of a high resolution optogenetic system poses several challenges. In particular, since the neuronal signals have a high frequency content (10 kHz), the number of chanv nels under observation is limited by the bandwidth of the wireless transmitters (2-4 channels in general). Thus, the first phase of the project focused on the development of neural signal compression algorithms and their integration into a high-resolution miniature and lightweight wireless optogenetics system (2.8g), having 32 recording channels and 32 optical stimulation channels. This system detects, compresses and transmits the waveforms of the signals produced by the neurons, i.e. action potentials (AP), in real time, via an embedded low-power field programmable gate array (FPGA). This processor implements an AP detector algorithm based on adaptive thresholding, which allows to compress the signals by transmitting only the detected waveforms. Each AP is further compressed by a Symmlet-2 discrete wavelet transform (DWT) followed dynamic discrimination and requantification of the DWT coefficients, making it possible to achieve high compression ratios with a good reconstruction quality. Results demonstrate that this algorithm is more robust than existing approach, while allowing to reconstruct the compressed signals with better quality (average SNDR of 25 dB 5% for a compression ratio (CR) of 4.2). With detection, CRs greater than 500 are reported during the in vivo validation. The use of commercial components in wireless optogenetic systems increases the size and power consumption, while not being optimized for this application. The second phase of the project consisted in designing a complementary metal oxide semiconductor (CMOS) system-on-chip (SoC) for neural recording and multi-channel optogenetics, which significantly reduces the size and energy consumption compared to commercial alternatives. This is important contribution, since it’s the first chip to integrate both features. This SoC has 10 recording channels and 4 optogenetic stimulation channels. The bioamplifier design includes a programmable bandwidth (0.5 Hz -7 kHz) and a low input-referred noise (IRN of 3.2 μVrms), which allows targeting different biological signals (AP, LFP, etc.). The Delta-Sigma (DS) MASH 1-1-1 low-power analog-to-digital converter (ADC) is designed to work with low OSR (50), as to reduce its power consumption, and has a programmable resolution (ENOB of 9.75 bits with an OSR of 25). This ADC uses a new technique to reduce its circuit size by subtracting the output of each DS branch in the digital domain, rather than in the analog domain, as done conventionally. A recording channel, including the bioamplifier, the DS and the decimation filter, consumes 11.2 μW. Optical stimulation is performed with an on-chip LED driver using a regulated cascode current source with feedback, which accommodates a wide range of LED parameters and battery voltages. The SoC is integrated into a wireless optogenetic platform and validated in vivo. / To date and excluding this project, no wireless system is making closed-loop optogenetics simultaneously to real-time monitoring of neuronal activity. An important contribution of this work is to have developed the first multi-channel optogenetic system that is able to work in closed-loop, and the first to be validated during in vivo experiments involving freely-moving animals. To do so, the third phase of the project aimed to design a digital CMOS chip, called neural decoder integrated circuit (ND-IC). The ND-IC and the SoC developed in Phase 2 are integrated within a wireless optogenetic system. The ND-IC has 3 main cores: 1) the adaptive AP detector core, 2) the compression core with a new sorting tree for discriminating the DWT coefficients, and 3 ) the AP automatic classification core that reuses the data generated by the detection and compression cores to reduce its complexity. A link between a recording channel and a stimulation channel is established according to the association of each AP with a neuron, thanks to the classification, and according to the bursting activity of this neuron. The ND-IC consumes 56.9 μW and occupies 0.08 mm2 per channel. The system weighs 1.05 g, occupies a volume of 1.12 cm3, has an autonomy of 3h, and is validated in vivo.
|
75 |
Mesures électrophysiologiques : indicateurs d'exposition aux microblessures anatomiques à risque de troubles musculo-squelettiquesYouta Momene, Ulrich 04 December 2018 (has links)
Les troubles musculo-squelettiques (TMS) réfèrent à un ensemble de symptômes du système musculo-squelettique comme la douleur, la faiblesse musculaire, les gestes inappropriés, etc. Les TMS dans nos travaux de recherche, sont liés au travail et sont attribuables, entre autres, à des mouvements répétitifs ou à des cadences élevées, aux postures contraignantes ou prolongées, exposant les tissus anatomiques à une sur-sollicitation mécanique. Les TMS sont fréquemment observés chez les travailleurs manuels selon les rangs de « Prévention index ». Toutefois, sur un poste similaire, le rationnel du développement d’un TMS chez une personne et l’absence de TMS chez une autre personne demeure incertain. L’objectif du présent travail est d’identifier les paramètres musculaires (mesurables par un EMG) et d’activation cérébrale (mesurables par un EEG) pouvant constituer des déterminants personnels d’exposition aux microblessures musculaires. Notre hypothèse est que la sur-sollicitation tissulaire engendre des microblessures pouvant entraîner des TMS et que certaines personnes sont plus susceptibles aux microblessures, et donc plus à risque de développer un TMS. Pour ce faire, des données physiologiques (EEG, EMG) ont été collectées sur 12 participants jeunes adultes (26,83± 4,13 ans donc 2 femmes) en bonne santé opérants deux tâches simulées en posture debout dans deux situations de mesure : A) avec faible risque d’exposition aux microblessures (tâche servant de référence) et B) avec un risque plus prononcé exposition aux microblessures (tâche d’évaluation). Nous avons calculé la densité spectrale de puissance (DSP) des signaux à partir des signaux normalisés aussi bien pour l’EEG (ERD/ERS exprimé en %) que pour l’EMG (DSP exprimé en μv2). Une analyse de variance (ANOVA à mesures répétées) à trois facteurs a été conduite pour déterminer s’il y a des différences au travers des conditions expérimentales. Nos résultats montrent l’existence d’une différence significative au niveau des signaux physiologiques durant l’exécution des deux tâches. En particulier, il y a des déterminants personnels à l’origine de ces différences : une augmentation significative de la désynchronisation (ERD) des ondes bêta sur l’électrode temporale gauche durant la tâche à risque élevé (B) par rapport à la tâche à faible risque (A) de microblessures a été observée. De plus, une baisse non significative de la densité spectrale de puissance (DSP), de l’activité musculaire sur deltoïde droit a été observée dans les mêmes conditions. Ce travail pilote contribue à l’avancement d’une nouvelle approche de caractérisation des indicateurs d’exposition aux microblessures, basée sur les signaux physiologiques. / Musculoskeletal disorders (MSDs) refer to a set of symptoms of the musculoskeletal system such as pain, muscle weakness, inappropriate gestures, etc. The MSDs in this research works are work-related and are attributable, among other things, to repetitive or high-speed movements, to constraining or prolonged postures, exposing anatomical tissues to mechanical overstretching. According to the ranks of "Prevention Index", among the top 20 sub-sectors at risk of MSD, almost all are found among manual workers. However, it is unclear why on a similar workstation, one person develops a TMS while another is free. The goal is to identify muscle parameters (EMG) and brain activation (EEG) that may be personal determinants of muscle micro-injury exposure. Our hypothesis is that tissue overload causes micro-injuries that can result in TMS and that some people are more susceptible to micro-injury; and therefore more at risk of developing a TMS. To do this, physiological data (EEG, EMG) were collected on 12 participants young adults (26,83 ± 4,13 years, two women) in good health during two simulated tasks in standing posture including operations A) with a low risk of exposure to micro-injuries (reference task) and B) with a greater risk of micro-injury exposure (evaluation task). We calculated the power spectral density (DSP) of the signals from the normalized signals for EEG (ERD / ERS expressed in%) as well as for EMG (DSP expressed in μv2) An analysis of variance (ANOVA to repeated measurements) to three factors was conducted to determine the differences across each experimental condition. Our results show the existence of a significant difference in physiological signals during the execution of two tasks. In particular, on the personal determinants at the origin of the differences, we see a significant increase in the desynchronization (ERD) of the beta waves on the left temporal electrode during the task at high-level risk (B) compared to the low-level risk task (A) of micro-injury. In addition, a nonsignificant decrease in power spectral density (DSP), muscle activity on the right deltoid was observed under the same conditions. Although our work is exploratory in nature, it contributes to the advancement of a new approach to characterization of exposure indicators to micro injuries based on physiological signals
|
76 |
Détection des potentiels d'action par la fluorescence calcique chez le poisson zèbreRondy-Turcotte, Jean-Christophe 02 February 2024 (has links)
L'utilisation de fluorofores sensibles au calcium permet de mesurer de manière non invasive l'activité des neurones. En effet, les potentiels d'actions font augmenter la concentration de calcium à l'intérieur d'une cellule, ce qui à son tour fait augmenter la fluorescence. Un dé important est de retrouver la séquence de potentiels d'actions à partir d'une mesure de fluorescence. Dans ce mémoire, nous verrons comment utiliser la fluorescence calcique pour déterminer une séquence de potentiels d'actions. Nous appliquons un algorithme basé sur l'algorithme de Viterbi et les chaînes de Markov à états cachés, développés par Deneux et al. À l'aide de cet algorithme, nous estimons les trains de potentiels d'actions ayant lieu dans un ensemble de neurones de poisson zèbres in vivo.
|
77 |
Effets modulateurs du diabète, de l'obésité et de la génétique sur l'électrophysiologie des médicaments prolongeant l'intervalle QTCaillier, Bertrand 18 April 2018 (has links)
Le cycle régulier des contractions des oreillettes, suivi par des contractions ventriculaires, pompe le sang de manière efficace à travers le coeur. Par contre, lorsque le fin équilibre qui régule le mécanisme est débalancé, les arythmies peuvent s'installer. Parmi les multiples facteurs qui peuvent affecter l'équilibre électrophysiologique cardiaque, il faut noter une maladie métabolique dont la prévalence ne cesse d'augmenter dans la population mondiale : le diabète de type 2. En effet, cette maladie augmente les risques de souffrir d'arythmie. Nous avons d'abord développé un modèle de cobaye diabétique de type 2 par une alimentation avec une diète spéciale sur une période de 200 jours. Ces animaux nous ont permis d'obtenir nos résultats dans des conditions ex- et in-vivo. Par la suite, nous avons évalué une hypothèse selon laquelle, en présence de diabète, l'ajout d'un bloquant d'IcaL évite la prolongation excessive du QT et la pro-arythmie, lorsque d'autres médicaments prolongeant le QT sont utilisés de manière concomitante. Nous avons quantifié l'effet de l'amlodipine (Norvasc®), un médicament bloquant d'IcaL et du dofétilide (Tikosyn®), un médicament bloquant d'iKr- Les résultats obtenus ont montré que l'amlodipine renverse partiellement l'effet pro-arythmique du dofétilide et protège contre la prolongation excessive de l'intervalle QT et la pro-arythmie médicamenteuse, particulièrement en présence de diabète de type 2. En parallèle, nous avons qualifié et quantifié l'effet pro-arythmique du bupropion (Wellbutrin®, Zyban®), un antidépresseur et adjuvant à la cessation tabagique. Des élargissements du QRS avaient été rapportés lors de surdosages de bupropion. Nous avons voulu vérifier l'hypothèse selon laquelle le bupropion affecte la conduction cardiaque par un bloc des jonctions gap. À l'aide des résultats obtenus, nous avons pu dire que, contrairement aux anti-arythmiques de classe I, le bupropion n'élargit pas le QRS en bloquant IN3, mais plutôt en inhibant les jonctions gap. C'est une propriété pharmacologique exceptionnelle observée chez aucun autre médicament actuellement disponible sur le marché. L'élargissement du QRS et les troubles de conduction cardiaques s'observent à des concentrations de bupropion facilement atteignables en clinique.
|
78 |
Couplage entre les régions IIS4S5 et IIIS6 lors de l’activation du canal calcique CaV3.2Demers Giroux, Pierre-Olivier 11 1900 (has links)
Le canal calcique dépendant du voltage de type-T CaV3.2 joue un rôle important dans l’excitabilité neuronale et dans la perception de la douleur. Le canal CaV3.2 partage une grande homologie structurale et fonctionnelle avec les canaux NaV. Ces deux types de canaux sont activés par de faibles dépolarisations membranaires et possèdent des cinétiques de temps d’activation et d’inactivation plus rapides que les canaux CaV de type-L. Les structures cristallines à haute résolution des canaux bactériens NaVAb (Payandeh et al. 2011; Payandeh et al. 2012) et NaVRh (Zhang et al. 2012) suggèrent que l’hélice amphiphile S4S5 du domaine II peut être couplée avec les résidus de l’hélice S6 dans le domaine II ainsi qu’avec des résidus de l’hélice homologue dans le domaine adjacent, soit le domaine III, et ce, durant l’activation du canal. Pour déterminer les résidus fonctionnellement couplés, durant l’activation du canal CaV3.2, une analyse cyclique de doubles mutants a été effectuée par substitution en glycine et alanine des résidus clés entre l’hélice S4S5 du domaine II et le segment S6 des domaines II et III. Les propriétés biophysiques ont été mesurées à l’aide de la technique de « cut-open » sur les ovocytes. Les énergies d’activation ont été mesurées pour 47 mutations ponctuelles et pour 14 paires de mutants. De grandes énergies de couplage (ΔΔGinteract > 2 kcal mol-1) ont été observées pour 3 paires de mutants introduites dans les IIS4S5/IIS6 et IIS4S5/IIIS6. Aucun couplage significatif n’a été observé entre le IIS4S5 et le IVS6. Nos résultats semblent démontrer que les hélices S4S5 et S6 provenant de deux domaines voisins sont couplées durant l’activation du canal calcique de type-T CaV3.2. / Voltage-activated T-type calcium channel CaV3.2 plays an important role in neuronal excitability and in pain perception. CaV3.2 channel bears a strong structural and functional homology with voltage-dependent NaV channels. In particular, these channels are activated by relatively small depolarization and display faster activation and inactivation kinetics than the L-type CaV channel. High-resolution crystal structures of bacterial NaVAb (Payandeh et al. 2011; Payandeh et al. 2012) and NaVRh (Zhang et al. 2012) suggest that the amphiphilic helix S4S5 in Domain II may be coupled with S6 residues both in Domain II and in the adjacent Domain III during channel activation.To determine whether residues in the S4S5 helix of Domain II are functionally coupled with residues in the S6 helix in Domain II and Domain III during the voltage-dependent activation of CaV3.2, a double mutant cycle analysis was performed by introducing pairs of glycine and alanine residues in the S4S5 helix of Domain II and the S6 region of Domains II and III. Biophysical properties were measured with the cut-open oocyte technique. Activation gating was measured for 47 single mutants and 14 pairs of mutants. Strong coupling energies (ΔΔGinteract > 2 kcal mol-1) were reported for 3 pairs of mutants introduced in IIS4S5/IIS6 and IIS4S5/IIIS6. No significant coupling was observed between IIS4S5 and IVS6. Altogether, our results demonstrate that the S4S5 and S6 helices from neighboring domains are energetically coupled during the activation of the low voltage-gated T-type CaV3.2 channel.
|
79 |
Adult congenital heart disease : long-term survival, arrhytmias, and emerging therapyKhairy, Paul January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
80 |
Encodage des forces tactiles dans le cortex somatosensoriel primaireFortier-Poisson, Pascal 07 1900 (has links)
Les deux fonctions principales de la main sont la manipulation d’objet et l’exploration tactile. La détection du glissement, rapportée par les mécanorécepteurs de la peau glabre, est essentielle pour l’exécution de ces deux fonctions. Durant la manipulation d’objet, la détection rapide du micro-glissement (incipient slip) amène la main à augmenter la force de pince pour éviter que l’objet ne tombe. À l’opposé, le glissement est un aspect essentiel à l’exploration tactile puisqu’il favorise une plus grande acuité tactile. Pour ces deux actions, les forces normale et tangentielle exercées sur la peau permettent de décrire le glissement mais également ce qui arrive juste avant qu’il y ait glissement. Toutefois, on ignore comment ces forces contrôlées par le sujet pourraient être encodées au niveau cortical. C’est pourquoi nous avons enregistré l’activité unitaire des neurones du cortex somatosensoriel primaire (S1) durant l’exécution de deux tâches haptiques chez les primates.
Dans la première tâche, deux singes devaient saisir une pastille de métal fixe et y exercer des forces de cisaillement sans glissement dans une de quatre directions orthogonales. Des 144 neurones enregistrés, 111 (77%) étaient modulés à la direction de la force de cisaillement. L’ensemble de ces vecteurs préférés s’étendait dans toutes les directions avec un arc variant de 50° à 170°. Plus de 21 de ces neurones (19%) étaient également modulés à l’intensité de la force de cisaillement. Bien que 66 neurones (59%) montraient clairement une réponse à adaptation lente et 45 autres (41%) une réponse à adaptation rapide, cette classification ne semblait pas expliquer la modulation à l’intensité et à la direction de la force de cisaillement. Ces résultats montrent que les neurones de S1 encodent simultanément la direction et l’intensité des forces même en l’absence de glissement.
Dans la seconde tâche, deux singes ont parcouru différentes surfaces avec le bout des doigts à la recherche d’une cible tactile, sans feedback visuel. Durant l’exploration, les singes, comme les humains, contrôlaient les forces et la vitesse de leurs doigts dans une plage de valeurs réduite. Les surfaces à haut coefficient de friction offraient une plus grande résistance tangentielle à la peau et amenaient les singes à alléger la force de contact, normale à la peau. Par conséquent, la somme scalaire des composantes normale et tangentielle demeurait constante entre les surfaces. Ces observations démontrent que les singes contrôlent les forces normale et tangentielle qu’ils appliquent durant l’exploration tactile. Celles-ci sont également ajustées selon les propriétés de surfaces telles que la texture et la friction.
Des 230 neurones enregistrés durant la tâche d’exploration tactile, 96 (42%) ont montré une fréquence de décharge instantanée reliée aux forces exercées par les doigts sur la surface. De ces neurones, 52 (54%) étaient modulés avec la force normale ou la force tangentielle bien que l’autre composante orthogonale avait peu ou pas d’influence sur la fréquence de décharge. Une autre sous-population de 44 (46%) neurones répondait au ratio entre la force normale et la force tangentielle indépendamment de l’intensité. Plus précisément, 29 (30%) neurones augmentaient et 15 (16%) autres diminuaient leur fréquence de décharge en relation avec ce ratio. Par ailleurs, environ la moitié de tous les neurones (112) étaient significativement modulés à la direction de la force tangentielle. De ces neurones, 59 (53%) répondaient à la fois à la direction et à l’intensité des forces. L’exploration de trois ou quatre différentes surfaces a permis d’évaluer l’impact du coefficient de friction sur la modulation de 102 neurones de S1. En fait, 17 (17%) neurones ont montré une augmentation de leur fréquence de décharge avec l’augmentation du coefficient de friction alors que 8 (8%) autres ont montré le comportement inverse. Par contre, 37 (36%) neurones présentaient une décharge maximale sur une surface en particulier, sans relation linéaire avec le coefficient de friction des surfaces. La classification d’adaptation rapide ou lente des neurones de S1 n’a pu être mise en relation avec la modulation aux forces et à la friction. Ces résultats montrent que la fréquence de décharge des neurones de S1 encode l’intensité des forces normale et tangentielle, le ratio entre les deux composantes et la direction du mouvement.
Ces résultats montrent que le comportement d’une importante sous-population des neurones de S1 est déterminé par les forces normale et tangentielle sur la peau. La modulation aux forces présentée ici fait le pont entre les travaux évaluant les propriétés de surfaces telles que la rugosité et les études touchant à la manipulation d’objets. Ce système de référence s’applique en présence ou en absence de glissement entre la peau et la surface. Nos résultats quant à la modulation des neurones à adaptation rapide ou lente nous amènent à suggérer que cette classification découle de la manière que la peau est stimulée. Nous discuterons aussi de la possibilité que l’activité des neurones de S1 puisse inclure une composante motrice durant ces tâches sensorimotrices. Finalement, un nouveau cadre de référence tridimensionnel sera proposé pour décrire et rassembler, dans un même continuum, les différentes modulations aux forces normale et tangentielle observées dans S1 durant l’exploration tactile. / The two most important functions of the hand are object manipulation and tactile exploration. The detection of slip provided by specialized mechanoreceptors in the glabrous skin is essential for the execution of both these functions. During object manipulation, the early detection of incipient slip leads to a grip force increase in order to prevent dropping an object. Slip is also an important aspect of tactile exploration because it greatly increases the acuity of touch perception. In both actions, normal and tangential forces on the skin can describe slip itself but also what occurs just before slip. However, little is known about how these self-generated forces are encoded at the cortical level. To better understand this encoding, we recorded from single neurons in primary somatosensory cortex (S1) as monkeys executed two haptic tasks.
In the first task, two monkeys grasped a stationary metal tab with a key grip and exerted shear forces, without slip, in one of four orthogonal directions. Of 144 recorded neurons, 111 (77%) had activity modulated with shear force directions. These preferred shear force vectors were distributed in every direction with tuning arcs varying from 50° to 170°. Also, more than 21 (19%) of these neurons had a firing rate correlated with shear force magnitude. Even if 66 (59%) modulated neurons showed clear slowly adapting response and 45 (41%) other neurons a rapidly adapting response, this classification failed to explain the modulation to force direction and magnitude. These results show that S1 neurons encode force direction and magnitude simultaneously even in the absence of slip.
In the second task, two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces and speeds. High friction surfaces offered greater tangential shear force resistance to the skin that was associated with decrease of the normal contact forces. Furthermore, the scalar sum of the normal and tangential forces remained constant. These observations demonstrate that monkeys control the applied normal and tangential finger forces within a narrow range which is adjusted according to surface properties such as texture and friction.
Of the 230 recorded neurons during tactile exploration, 96 (42%) showed instantaneous frequency changes in relation to finger forces. Of these, 52 (54%) were correlated with either the normal or tangential force magnitude with little or no influence from the other orthogonal force component. Another subset of 44 neurons (46%) responded to the ratio between normal and tangential forces regardless of magnitude. Namely, 29 neurons (30%) increased and 15 (16%) others decreased their discharge frequency related to this ratio, which corresponds to the coefficient of friction. Tangential force direction significantly modulated about half the recorded neurons (112). Of these, 59 (53%) responded to both direction and force magnitude. Of the 102 neurons recorded during exploration of three or more surfaces, 17 (17%) showed increased firing rate with increased surface friction and 8 (8%) presented the opposite behavior. However, 37 (36%) neurons seemed to discharge optimally for one of the surfaces without any linear relation to the surfaces’ coefficient of friction. The classification of rapidly and slowly adaptation for neuronal responses in S1 could not be associated with the modulation to forces or direction. These results show that the firing rates of S1 neurons reflect the tangential and normal force magnitude, the ratio of the two forces and the direction of finger movement.
These results show that the activity of a significant subpopulation of S1 neurons is represented by normal and tangential forces on the skin. This force modulation uses a frame of reference that can be applied with or without slip. This aspect provides a link between investigations of the cortical representation of surface properties and studies on object manipulation. Our results regarding the distinction between rapidly and slowly adapting neurons leads us to suggest that this difference is a consequence of the manner in which the skin was stimulated. A potential motor component in the modulation of S1 neurons during these sensorimotor tasks is also discussed. Finally, a novel three-dimensional reference frame is proposed to describe, as a single continuum, the different modulations to forces observed in S1 during tactile exploration.
|
Page generated in 0.0506 seconds