Spelling suggestions: "subject:"equations aux dérivés"" "subject:"aquations aux dérivés""
1 |
Équations aux dérivées partielles stochastiques avec bruit de LévyNdongo, Cheikh Bécaye January 2016 (has links)
In this thesis, we develop a stochastic calculus for the space-time Lévy white noise introduced in [1] as an alternative for the Gaussian white noise perturbing an stochastic partial differential equation (SPDE). We give a new proof for the Itô formula for some integral processes related to this Lévy white noise. Then, we consider a general non-linear SPDE on R_+* R driven by this Lévy white noise and we show that this equation has a unique random-field solution. Using Rosenthal's inequality, we develop a maximal inequality for the moments of order p≥2 of the stochastic integral with respect to this noise. Based on this inequality, we show that the stochastic wave equation equation has a unique solution, which is weakly intermittent in the sense of [2, 3]. Finally, we develop a Malliavin calculus with respect to the compensated Poisson random measure associated to the Lévy white noise. Under certain conditions, we show that the solution is Malliavin differentiable and its Malliavin derivative satisfies an integral equation.
[1] Integration with respect to Lévy colored noise, with application to SPDEs: Stochastics An International Journal of Probability and Stochastic Processes , 87, 363-381.
[2] Intermittence and nonlinear parabolic stochastic partial differential equations. Electronic Journal of Probability. Vol 21, 548-568.
[3] Analysis of stochastic partial differential equations. CBMS Regional Conference Series in Mathematics, Vol 119. American Mathematical Society.
|
2 |
Etude de quelques problèmes d'interpolation.Ducateau, Charles-François 12 March 1971 (has links) (PDF)
.
|
3 |
Équations aux dérivées partielles et systèmes dynamiques appliqués à des problèmes issus de la physique et de la biologieBreden, Maxime 24 April 2018 (has links)
Cette thèse s’inscrit dans le vaste domaine des équations aux dérivées partielles et des systèmes dynamiques, et s’articule autour de deux sujets distincts. Le premier est relié à l’étude des équations de coagulation-fragmentation discrètes avec diffusion. En utilisant des lemmes de dualité, on établit de nouvelles estimations Lp pour des moments polynomiaux associés aux solutions, sous une hypothèse de convergence des coefficients de diffusion. Ces estimations sur les moments permettent ensuite d’obtenir de nouveaux résultats de régularité, et de démontrer qu’une fragmentation suffisamment forte peut empêcher la gelation dans le modèle incluant la diffusion. Le second sujet est celui des preuves assistées par ordinateur dans le domaine des systèmes dynamiques. On améliore et on applique une méthode basée sur le théorème du point fixe de Banach, permettant de valider a posteriori des solutions numériques. Plus précisément, on élargit le cadre d’application de cette méthode pour inclure des opérateurs avec un terme dominant linéaire tridiagonal, on perfectionne une technique permettant de calculer et de valider des variétés invariantes, et on introduit une nouvelle technique qui améliore de manière significative l’utilisation de l’interpolation polynomiale dans le cadre de ces méthodes de preuves assistées par ordinateur. Ensuite, on applique ces techniques pour démontrer l’existence d’ondes progressives pour l’équation du pont suspendu, et pour étudier les états stationnaires non homogènes d’un système de diffusion croisée. / This thesis falls within the broad framework of partial differential equations and dynamical systems, and focuses more specifically on two independent topics. The first one is the study of the discrete coagulation-fragmentation equations with diffusion. Using duality lemma we establish new Lp estimates for polynomial moments of the solutions, under an assumption of convergence of the diffusion coefficients. These moment estimates are then used to obtain new results of smoothness and to prove that strong enough fragmentation can prevent gelation even in the diffusive case. The second topic is the one of computer-assisted proofs for dynamical systems. We improve and apply a method enabling to a posteriori validate numerical solutions, which is based on Banach’s fixed point theorem. More precisely, we extend the range of applicability of the method to include operators with a dominant linear tridiagonal part, we improve an existing technique allowing to compute and validate invariant manifolds, and we introduce an new technique that significantly improves the usage of polynomial interpolation for a posteriori validation methods. Then, we apply those techniques to prove the existence of traveling waves for the suspended bridge equation, and to study inhomogeneous steady states of a cross-diffusion system.
|
4 |
Contributions à l'adaptation de maillage anisotrope sur base hiérarchiqueBriffard, Thomas 24 April 2018 (has links)
Cette thèse est la poursuite des travaux entrepris dans [13] pour le développement d’un nouvel estimateur d’erreur de type hiérarchique. Cet estimateur permet d’adapter un maillage et d’obtenir des solutions plus précises d’une équation aux dérivées partielles. La méthode est relativement générale et peut s’appliquer à une grande variété de problèmes, et permet théoriquement de traiter des approximations de n’importe quel degré. Elle mène, lorsque la solution le permet, à des maillages fortement anisotropes et se compare avantageusement aux méthodes basées sur la définition d’une métrique. Des améliorations substantielles à la méthode ont été apportées dans le cadre de ce travail. Les principaux objectifs étant de réduire fortement les coûts de calcul associés à la méthode et de la rendre beaucoup plus robuste de manière générale. Ainsi, on a revu et amélioré les algorithmes de reconstruction des gradients par un scaling approprié, de réinterpolation des champs en introduisant une méthode de krigeage. On a également introduit un algorithme de remaillage des coquilles à l’aide d’une méthode dite de «ear clipping» originale en 3D. L’algorithme de déplacement de sommets a également été revu. Enfin la gestion des frontières courbes est également considérée. De nombreux exemples bi et tridimensionnels sont présentés pour illustrer l’efficacité de l’estimateur. Des problèmes académiques sont d’abord considérés, y compris des problèmes singuliers où on montre que l’on obtient des taux de convergence optimaux (par rapport au nombre de degrés de liberté). Par la suite, on s’intéresse à différents domaines d’applications, notamment en mécanique des fluides et en neurosciences. Enfin, un algorithme général pour l’adaptation de maillage dans le cas instationnaire sera également décrit et testé. / This thesis is the continuation of the work undertaken in [13] for the development of a new a posteriori error estimator based on hierarchical basis. This estimator allows to adapt a finite element mesh and to obtain more accurate solutions of various partial differential equations. Most importantly, it leads, whenever possible, to strongly anisotropic meshes, and compares favorably with methods based on the definition of a metric. The method is fairly general and can be applied to approximations of any degree and to a wide variety of problems. In this work, several significant improvements have been added to the initial method. The objectives being to substantially reduce the calculation costs associated with the method and to make it much more robust. Many substantial contributions have been made to the various algorithms. Let’s mention the introduction of an appropriate scaling in the gradient recovery method, kriging for the reinterpolation of the different fields during adaptation, an original ear clipping method in 3D for local remeshing. A different approach for nodes displacement is also condirered. Finally we detailled how we take care of curved borders. Many bi and three-dimensional examples are presented to illustrate the efficiency of the estimator. Academic problems are first considered, including classical singular problems where optimal rates of convergence are observed (relative to the number of degrees of freedom). Applications in different fields such as fluid mechanics and neurosciences are then considered. Finally an algorithm for time-dependent problems is presented and tested.
|
5 |
Homogénéisation et correcteurs pour quelques problèmes hyperboliquesGaveau, Florian 08 December 2009 (has links) (PDF)
Les travaux présentés dans cette thèse concernent des résultats d'homogénéisation et de correcteur pour des problèmes hyperboliques dans des milieux hétérogènes avec des conditions aux bords mixtes. Les problèmes de ce type modélisent la propagation des ondes dans des milieux hétérogènes. Dans le premier chapitre on rappelle une partie de l'ensemble des outils permettant l'étude asymptotique de problèmes posés dans un milieu hétérogène. Le second chapitre est consacré à l'étude de l'équation des ondes dans un domaine perforé de façon non périodique. Pour cela, on effectue une hypothèse de H^0-convergence sur la partie elliptique de l'opérateur. Cette notion introduite par M. Briane, A. Damlamian et P. Donato généralise la notion de H-convergence introduite quelques années auparavant par F. Murat et L. Tartar pour des domaines perforés. On démontre deux résultats principaux, un résultat d'homogénéisation et un second de correcteur qui permet d'améliorer la convergence de la solution du problème sous des hypothèses légèrement plus fortes. Pour cela on reprend le correcteur de G. Cardone, P. Donato et A. Gaudiello et on explicite quelques unes de ces propriétés. Dans le troisième chapitre, on considère une équation des ondes non-linéaire posée dans un domaine périodiquement perforé dont la non-linéarité porte sur la dérivée en temps de la solution. On suppose que la non-linéarité est majorée par une fonction polynomiale monotone dont l'exposant permet d'avoir une injection de Sobolev convenable. On étudie d'abord l'existence et l'unicité de la solution de ce problème à l'aide d'une méthode de Galerkin, puis on montre un résultat d'homogénéisation de ce problème. Dans le quatrième chapitre, on étudie le problème de l'équation des ondes dans un domaine non perforé. Dans un premier temps, on retrouve le résultat classique d'homogénéisation en utilisant la méthode de l'éclatement périodique introduite par D. Cioranescu, A. Damlamian et G. Griso. Ensuite, sous des hypothèses un peu plus fortes des données initiales on montre un résultat de correcteur faisant intervenir l'opérateur de moyennisation qui est l'adjoint de l'opérateur d'éclatement.
|
6 |
Quelques problèmes d’écoulements multi-fluide : analyse mathématique, modélisation numérique et simulation / Multi-fluid flows : mathematical analysis, modelling and simulationBenjelloun, Saad 03 December 2012 (has links)
La présente thèse comporte trois parties indépendantes.<br>La première partie présente une preuve d'existence de solutions faibles globales pour un modèle de sprays de type Vlasov-Navier-Stokes-incompressible avec densité variable. Ce modèle est obtenu par une limite formelle à partir d'un modèle Vlasov-Navier-Stokes-incompressible avec fragmentation, où seules deux valeurs de rayons de particules sont considérées : un rayon r1 pour les particules avant fragmentation, et un rayon r2<<r1 pour les particules obtenues par fragmentation. Le modèle asymptotique est obtenu dans la limite r2 tendant vers zéro. La démonstration s'appuie sur des techniques de régularisation et de troncature en vitesse, sur le théorème de Schauder et enfin sur une méthode de compacité de Lions-Di-Perna pour l'élimination des régularisations introduites dans le système initial.La deuxième partie concerne la modélisation de l'impact d'une vague de liquide sur une paroi. L'objectif de cette partie est d'obtenir un modèle pour la fuite du gaz environnant sur les "côtés" de la vague. Un modèle numérique est réalisé en remplaçant la vague liquide par une masse solide indéformable et un schéma VFFC-ALE est conçu pour la simulation numérique du modèle. La mise sans dimension des équations permet de montrer les nombres sans dimension qui régissent le phénomène de fuite. La vitesse moyenne de fuite est comparée à la vitesse dans le cas d'un fluide incompressible (pour lequel on a une expression exacte). Enfin, via la simulation numérique, une étude paramétrique est réalisée en fonction des nombres sans dimensions.Dans la troisième partie on présente une méthode numérique pour la simulation d'un modèle Vlasov-Boltzmann-Euler pour les sprays. Cette méthode couple le schéma VFFC à la méthode PIC (Particle In Cell). Les résultats présentés concernent l'écoulement d'un spray dans un pipeline courbe qu'on modélise par un système Vlasov-Boltzmann-Euler quasi-1D. / This thesis contains three independent parts.The first part presents a proof of existence of weak global solutions to a Vlasov-incompressible-Navier-Stokes system with variable density. This system is obtained formally from a classical Vlasov-incompressible-Navier-Stokes model with fragmentation for which only two values for the particules radii are considered: a radius r1 for non fragmented particules and a radius r2<<r1 for particules created by fragmentation. The asymptotic model is obtained in the limit r2 vanishing.The second part deals with the modeling of a wave impact on a rigid wall. The purpose of our work is to study and model the escape of the gas between the liquid and the wall. In the numerical model we have replaced the liquid wave with a solid mass, and developed an ALE-VFFC code for the numerical simulation of the system. Scaling the system of equations allows us to obtain the dimensionless numbers governing the escape phenomena. The mean escape velocity is compared to the velocity in the case of incompressible gas. Finally, a parametric study with respect to the dimensionless numbers is carried out.We present in the third part the principles of the coupling between an efficient numerical method for hyperbolic systems (and non conservative equations arising in multiphase flows), namely the FVCF scheme, on the one hand; and a particle method for the Vlasov-Boltzmann equation (of PIC-DSMC type), on the other hand. Numerical results illustrating this coupling are shown for a problem involving a spray (droplets inside an underlying gas) in a pipe which is mcdeled by a 1D fluid-kinetic system.
|
7 |
Observateurs en dimension infinie. Application à l'étude de quelques problèmes inverses / Infinite-dimensional observers. Application to the study of some inverse problemsHaine, Ghislain 22 October 2012 (has links)
Dans un grand nombre d'applications modernes, on est amené à estimer l'état initial (ou final) d'un système infini-dimensionnel (typiquement un système gouverné par une Équation aux Dérivées Partielles (EDP) d'évolution) à partir de la connaissance partielle du système sur un intervalle de temps limité. Un champ d'applications dans lequel apparaît fréquemment ce type de problème d'identification est celui de la médecine. Ainsi, la détection de tumeurs par tomographie thermo-acoustique peut se ramener à des problèmes de reconstruction de données initiales. D'autres méthodes nécessitent l'identification d'un terme source, qui, sous certaines hypothèses, peut également se réécrire sous la forme d'un problème de reconstruction de données initiales. On s'intéresse dans cette thèse à la reconstruction de la donnée initiale d'un système d'évolution, en travaillant autant que possible sur le système infini-dimensionnel, à l'aide du nouvel algorithme développé par Ramdani, Tucsnak et Weiss (Automatica 2010). Nous abordons en particulier l'analyse numérique de l'algorithme dans le cadre des équations de Schrödinger et des ondes avec observation interne. Nous étudions les espaces fonctionnels adéquats pour son utilisation dans les équations de Maxwell, avec observations interne et frontière. Enfin, nous tentons d'étendre le cadre d'application de cet algorithme lorsque le système initial est perturbé ou que le problème inverse n'est plus bien posé, avec application à la tomographie thermo-acoustique / In a large class of modern applications, we have to estimate the initial (or final) state of an infinite-dimensional system (typically a system governed by a Partial Differential Equation) from its partial measurement over some finite time interval. This kind of identification problems arises in medical imaging. For instance, the detection of sick cells (tumor) by thermoacoustic tomography can be viewed as an initial data reconstruction problem. Some other methods need the identification of a source term, which can be rewritten, under some assumptions, under the form of an initial data reconstruction problem. In this thesis, we are dealing with the reconstruction of the initial state of a system of evolution, working as much as possible on the infinite-dimensional system, using the new algorithm developed by Ramdani, Tucsnak and Weiss (Automatica 2010). We perform in particular the numerical analysis of the algorithm in the case of Schrödinger and wave equations, with internal observation. We study the suitable functional spaces for its use in Maxwell?s equations, with internal and boundary observation. In the last chapter, we try to extend the framework of this algorithm when the initial system is perturbed or when the inverse problem is ill-posed, with application to thermoacoustic tomography
|
8 |
Imprévus et pièges des cordes vibrantes chez D'Alembert (1755-1783).<br />Doutes et certitudes sur les équations aux dérivées partielles, les séries et les fonctionsJouve, Guillaume 10 July 2007 (has links) (PDF)
Cette thèse se situe dans le cadre de l'entreprise de longue haleine d'édition critique et commentée des Oeuvres complètes de D'Alembert. Ce savant est indiscutablement le pionnier des équations aux dérivées partielles et de leur application aux sciences physiques. Toutefois, seule une partie de ses écrits sur le sujet a vraiment été examinée jusqu'ici par les historiens des sciences. Une étude approfondie de ses mémoires tardifs permet de modifier de nombreuses perspectives, notamment sur les points suivants: intégration et résolution des équations avec ou sans ce que nous appellerions des "conditions aux limites", problèmes de définition et de régularité des fonctions, convergence et divergence des séries, développement des fonctions en séries entières ou trigonométriques. Nous montrons ici la pertinence et le fécondité des résultats de D'Alembert, mais aussi de ses doutes et des pistes qu'il propose pour les éclairer.
|
9 |
Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisationRiviere, Olivier 13 December 2005 (has links) (PDF)
Ce travail de thèse porte sur les équations différentielles stochastiques progressives rétrogrades, en particulier celles dont le coefficient de diffusion progressif dépend de toutes les inconnues. Nous proposons une manière originale d'aborder le problème, nous permettant de retrouver des résultats classiques d'existence et d'unicité de Pardoux-Tang ou Yong. Nous obtenons de surcroît, en adoptant l'approche Pardoux-Tang en solutions de viscosité, des représentations probabilistes de toute une nouvelle classe d'EDP paraboliques dont les coefficients de dérivation d'ordre 2 dépendent du gradient de la solution. Nous proposons également un schéma de discrétisation itératif dont nous prouvons la convergence et évaluons l'erreur sur un exemple bien particulier.
|
10 |
Recalage de structures légères aléatoires en vue de leur contrôle actifGouttebroze, Camille 10 February 2010 (has links) (PDF)
Le contrôle actif nécessite un modèle numérique représentatif de la structure réelle dont on souhaite diminuer les vibrations. Les méthodes de recalage sont les plus efficaces pour obtenir ce modèle. Les plus répandues se basent sur la minimisation d'une fonction objectif construite à partir de la solution d'Équations aux Dérivées Partielles (EDP) paramétrées. Le coût d'évaluation de cette fonction peut vite exploser lorsque les modèles sont trop complexes ou trop nombreux, ce qui arrive quand on souhaite une grande famille de structures similaires ou une structure dont le comportement varie à cause d'un vieillissement ou de phénomènes aléatoires. On parle alors de recalage multimodèle. Afin de construire une approximation de la fonction coût, nous introduisons une nouvelle méthode de résolution des EDP paramétrées, la Méthode Éléments Finis sur Algèbre Polynomiale (MÉFAP). Elle présente l'avantage d'introduire les variabilités paramétriques dans le modèle numérique sans changer la base éléments finis. Ceci est réalisé grâce à un anneau de polynômes multivariable. Nous mettons en œuvre la MÉFAP afin d'obtenir une approximation de l'erreur en relation de comportement modifiée, qui est un estimateur de la qualité d'un modèle numérique vis-à-vis de résultats expérimentaux. Nous traitons des cas de recalage simple puis du recalage multimodèle. Les exemples présentés sont représentatifs d'un ensembles de cartes électroniques. Ils comprennent des cas 1D ou 2D, piézoélectriques ou purement mécaniques, des structures virtuelles ou réelles, des modèles déterministes ou stochastiques.
|
Page generated in 0.0892 seconds