• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 22
  • 11
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 230
  • 148
  • 62
  • 47
  • 42
  • 36
  • 28
  • 28
  • 28
  • 26
  • 26
  • 24
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Propriedade de Specht e crescimento das identidades polinomiais graduadas de sl_2 / Specht property and growth of the graded polynomial identities of sl_2

Souza, Manuela da Silva, 1985- 22 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-22T00:36:15Z (GMT). No. of bitstreams: 1 Souza_ManueladaSilva_D.pdf: 983599 bytes, checksum: c9cf8976bde9d56083976fba17e385d9 (MD5) Previous issue date: 2013 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full electronic document / Doutorado / Matematica / Doutora em Matemática
92

Álgebras de Koszul e resoluções projetivas / Koszul algebras and projetive resolutions

Medeiros, Francisco Batista de 26 February 2009 (has links)
Neste trabalho estudamos algumas características das álgebras de Koszul, como por exemplo, a maneira como elas se relacionam com suas respectivas álgebras de Yoneda. Descrevemos a álgebra de Yoneda de uma álgebra monomial e como aplicação construímos uma família de álgebras: as chamadas homologicamente auto-duais. Uma álgebra de Koszul pode ser definida a partir da existência de resoluções lineares dos módulos simples. Por isso faz-se necessário a dedicação de parte de nossa atenção ao estudo destas resoluções. Além disso, achamos interessante estudar métodos para a construção de resoluções projetivas de módulos sobre quocientes de álgebras de caminhos. Para tal construção usamos essencialmente a teoria de bases de Gröbner não comutativas. Finalmente, para o caso de módulos lineares sobre álgebras de Koszul, veremos que é possível modicar essa construção de modo que a resolução resultante seja linear. / In this work we study some features of Koszul algebras as, for example, the way that they are related with their Yoneda algebras. We describe the Yoneda algebra of a monomial algebra and as an application we construct a family of algebras: the so called homologically self-dual algebras. A Koszul algebra can be dened as an algebra for which there are linear resolutions of their simple modules. Because of this we dedicate part of our attention to the study of projective resolutions. The study of methods for the construction of projectives resolutions of modules over quotients of path algebras, has an of interest its own. For the study of projective resolutions we used the theory of noncommutative, Gröbner bases. Finally, for the case of linear modules over Koszul algebras, we will see that it is possible to modify the general construction described here, so that the resulting resolution is linear.
93

Identidades polinomiais graduadas para álgebras de matrizes. / Graded polynomial identities for matrix algebras.

ALVES, Sirlene Trajano. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:16:57Z No. of bitstreams: 1 SIRLENE TRAJANO ALVES - DISSERTAÇÃO PPGMAT 2012..pdf: 543242 bytes, checksum: 8ace2f30dc5a59df9bafcf55b8e7147b (MD5) / Made available in DSpace on 2018-08-05T13:16:57Z (GMT). No. of bitstreams: 1 SIRLENE TRAJANO ALVES - DISSERTAÇÃO PPGMAT 2012..pdf: 543242 bytes, checksum: 8ace2f30dc5a59df9bafcf55b8e7147b (MD5) Previous issue date: 2012-03 / O tema central desta dissertação é a descrição das identidades polinomiais graduadas da álgebra Mn(K). Métodos diferentes são empregados conforme a característica do corpo: se Char K = 0, à descrição das identidades graduadas se reduz a descrição das identidades multilineares, o que foi feito no Capítulo 2, onde são descritas as identidade de Mn(K) com uma classe ampla de graduações elementares; se Char K =p>0 e K é in nito, a descrição das identidades graduadas é reduzida à descrição das identidades multi-homogêneas, que torna o problema mais difícil, e técnicas como a construção de álgebras genéricas são necessárias. No Capítulo 3 são descritas as identidades Z e Zn-graduadas de Mn(K) para um corpo in nito K. / The main theme of this dissertation is the description of the graded polynomial identities of the algebra Mn(K). Diferent methods are used depending on the characteristic of the field: if Char K = 0, the description of the graded identities is reduced to the description of the multilinear graded identities, what was done in Chapter 2, where the identities of Mn(K) are described for a wide class of elementary gradings; if Char K =p>0 and K is in nite, the description of the graded identities is reduced to the study of the multi-homogeneous identities, wich makes it harder, and techniques such as the construction of generic algebras are necessary. In Chapter 3 the Z and Zn-graded identities of Mn(K) are described for an infinite field K
94

Identidades polinomiais e polinômios centrais com involução. / Polynomial identities and involutional central polynomials.

BEZERRA JÚNIOR, Claudemir Fidelis. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T16:56:07Z No. of bitstreams: 1 CLAUDEMIR FIDELIS BEZERRA JÚNIOR - DISSERTAÇÃO PPGMAT 2014..pdf: 825308 bytes, checksum: d7bd377c69f618ba4b331c4575210512 (MD5) / Made available in DSpace on 2018-08-09T16:56:07Z (GMT). No. of bitstreams: 1 CLAUDEMIR FIDELIS BEZERRA JÚNIOR - DISSERTAÇÃO PPGMAT 2014..pdf: 825308 bytes, checksum: d7bd377c69f618ba4b331c4575210512 (MD5) Previous issue date: 2014-02 / Capes / Nesta dissertação são descritas bases para as identidades polinomiais e os polinômios centrais com involução para a álgebra das matrizes 2 × 2 sobre um corpo in nito K de característica p 6= 2, considerando-se a involução transposta, denotada por t, e também a involução simplética, denotada por s. É conhecido que, como o corpo K é in nito, se ∗ é uma involução em M2(K), então o ideal de identidades (M2(K), ∗) coincide com (M2(K), t) ou com (M2(K), s). Consideramos também as álgebras Mn(E), Mk,l(E) e M1,1(E) sobre corpos de característica 0. Para as álgebras Mn(E) e Mk,l(E), provamos que para uma classe ampla de involuções as identidades polinomiais com involução coincidem com as identidades ordinárias, e para a álgebra M1,1(E) com a involução ∗ induzida pela superinvolução transposta na superálgebra M1,1(K), exibimos uma base nita para as ∗-identidades polinomiais. / In this dissertation we describe basis for the polynomial identities and central polynomials with involution for the algebra of 2 × 2 matrices over an infinite field K of characteristic p 6= 2 considering the transpose involution, denoted by t, and also the symplectic involution, denoted by s. It is known that, since the field K is infinite, if ∗ is an involution on M2(K), then the ideal of identities (M2(K), ∗) coincides with (M2(K), t) or with (M2(K), s). We also consider the algebras Mn(E), Mk,l(E) and M1,1(E) over fields of characteristic 0. For the algebras Mn(E) and Mk,l(E) we prove that for a large class of involutions the polynomial identities with involution coincide with the ordinary identities, and for the algebra M1,1(E) with the involution ∗ induced by the transposition superinvolution of the superalgebra M1,1(K) we exhibit nite basis for the ∗-polynomial identities.
95

Álgebras de Koszul e resoluções projetivas / Koszul algebras and projetive resolutions

Francisco Batista de Medeiros 26 February 2009 (has links)
Neste trabalho estudamos algumas características das álgebras de Koszul, como por exemplo, a maneira como elas se relacionam com suas respectivas álgebras de Yoneda. Descrevemos a álgebra de Yoneda de uma álgebra monomial e como aplicação construímos uma família de álgebras: as chamadas homologicamente auto-duais. Uma álgebra de Koszul pode ser definida a partir da existência de resoluções lineares dos módulos simples. Por isso faz-se necessário a dedicação de parte de nossa atenção ao estudo destas resoluções. Além disso, achamos interessante estudar métodos para a construção de resoluções projetivas de módulos sobre quocientes de álgebras de caminhos. Para tal construção usamos essencialmente a teoria de bases de Gröbner não comutativas. Finalmente, para o caso de módulos lineares sobre álgebras de Koszul, veremos que é possível modicar essa construção de modo que a resolução resultante seja linear. / In this work we study some features of Koszul algebras as, for example, the way that they are related with their Yoneda algebras. We describe the Yoneda algebra of a monomial algebra and as an application we construct a family of algebras: the so called homologically self-dual algebras. A Koszul algebra can be dened as an algebra for which there are linear resolutions of their simple modules. Because of this we dedicate part of our attention to the study of projective resolutions. The study of methods for the construction of projectives resolutions of modules over quotients of path algebras, has an of interest its own. For the study of projective resolutions we used the theory of noncommutative, Gröbner bases. Finally, for the case of linear modules over Koszul algebras, we will see that it is possible to modify the general construction described here, so that the resulting resolution is linear.
96

Álgebras Deformadas no Modelo NJL: Quebra e Restauração da Simetria Quiral / Deformed Algebras in NJL model: breaking and restoration of chiral symmetry

Timóteo, Varese Salvador 17 February 2000 (has links)
Este trabalho é resultado de uma série de estudos feitos com o objetivo de investigar a influ- ência de uma álgebra fermiônica deformada nos mecanismos de quebra e restauração da si- metria quiral no modelo de Nambu-Jona-Lasinio. Esse modelo foi escolhido pois é um modelo efetivo para a QCD que mostra com razoável facilidade uma de suas principais características, a quebra dinâmica da simetria quiral e a geração de uma massa dinâmica para os quarks. O trabalho pode ser dividido essencialmente em três partes. A primeira consiste em um estudo inicial onde a deformação foi implementada diretamente na equação de gap do modelo NJL através de um cálculo deformado do condensado. Na segunda parte, o mesmo procedimento de deformação foi aplicado na Hamiltoniana do modelo permitindo que seus efeitos se propagem nos cálculos até uma nova equação de gap. Uma extensão natural do trabalho e um estudo do modelo deformado a temperatura finita, onde a coexistência da temperatura e da deformação algébrica pode ser investigada. Esse estudo e a terceira parte do trabalho / This work is a result of a serie of studies where the aim is to investigate the influence of a de- formed fermionic algebra in the mechanisms of breaking and restoration of chiral symmetry in the Nambu-Jona-Lasinio model. This model was chosen because it is an effective model for QCD which shows with reasonable facility one of its main features, the dynamical breaking of chiral symmetry and the generation of a dynamical mass for the quarks. The work can be divided essentialy in three parts. The first consists in a initial study where the deformation was implemented directly in the gap equation of the NJL model through a defor- med calculation of the condensates. In second part, the same deformation procedure was applied in the Hamiltonian of the model allowing their effects to be propagated in the calcula- tions till a new gap equation. A natural extension of the work is a study of the deformed model at finite temperature, where the coexistence of temperature and algebric deformation can be investigated. This study is the third part of the work.
97

Correspondência do tipo Galois para ações de álgebras de Hopf em álgebras primas / Galois-type correspondence for prime algebras acted upon by Hopf algebras

Ferreira Neto, Octávio Bernardes 03 October 2008 (has links)
Demonstramos um teorema da correspondência do tipo Galois para ações de álgebras de Hopf pontuais de dimensão finita em álgebras primas. A correspondência acontece entre subálgebras racionalmente completas e comódulo subálgebras. As subálgebras racionalmente completas são subálgebras da álgebra prima, enquanto os comódulo subálgebras são comódulo subálgebras do produto smash entre o centralizador da álgebra prima em sua álgebra de quocientes de Martindale simétrica e a álgebra de Hopf. / A Galois-type correspondence theorem for prime algebras acted upon by a finite dimensional pointed Hopf algebra is proved. The correspondence involves rationally complete subalgebras and comodule subalgebras. The rationally complete subalgebras are subalgebras of the prime algebra, while the comodule subalgebras are comodule subalgebras of the smash product between the centralizer of the prime algebra in its symmetric Martindale quotient algebra and the Hopf algebra.
98

Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild / Aplications of the Groebner Basis theory to the computation of the Hochschild Cohomology

Amaya, Ana Melisa Paiba 24 October 2018 (has links)
A Cohomologia de Hochschild é um invariante associado a álgebras o qual pode nos fornecer propiedades homologicas das álgebras e suas categorias de módulos. Além disso tem aplicações em Geometria Algébrica e Teoria de Representações, entre outras áreas. Para álgebras A sobre um corpo, o i-ésimo grupo de cohomologia de Hochschild HH^i(A,M) de A, com coeficientes no bimódulo M, coincide com Ext^i_{A^e}(A,M). Logo, este pode ser calculado usando uma resolução projetiva da álgebra como A-bimódulo. Diferentes autores como Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell e Andrea Solotar desenvolveram ferramentas para a construção destas resoluções em casos específicos. Um resultado recente e muito importante é apresentado por Andrea Solotar e Sergio Chohuy, onde se mostra a construção de uma resolução projetiva de bimódulos para álgebras associativas generalizando o resultado para álgebras monomiais feito por Bardzell. Nesta dissertação pretendemos introduzir ao leitor no conceito de Cohomologia de Hochschild mostrando a importância da mesma mediante resultados conhecidos para álgebras de dimensão finita. Além disso, apresentamos os conceitos e resultados do trabalho de Chohuy e Solotar mencionado acima. No decorrer deste trabalho complementamos algumas demonstrações dos resultados enunciados com o fim de propiciar uma ferramenta para o melhor entendimento dos tópicos trabalhados aqui. / The Hochschild Cohomology is an invariant attached to associative algebras which may provide us some homological aspects of the algebras and its category of modules. Moreover, it has applications to Algebraic Geometry and Representation Theory, among others areas. For algebras A over a field the Hochschild cohomology group HH^i(A,M) of A with coeficients in a bimodule M coincides with Ext^i_{A^e}(A,M). So it can be computed using a projective resolution of the algebra, as a bimodule over itself. Therefore different authors like Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell, Sergio Chohuy and Andrea Solotar developed tools for the construction of these resolutions in particular cases. A recent and very important result was introduced by Andrea Solotar and Sergio Chohuy, where they show a construction of a projective bimodule resolution for associative algebras generalizing the result for monomial algebras made by Bardzell. In this dissertation we intend to introduce the reader in the cohomology Hochschild concept, showing its importance through known results for finite dimensional algebras. Besides, we exhibit the concepts and results of Chohuy and Solotar mentioned before. During this text, we complement some demonstrations with the purpose of giving a tool for the a better understanding.
99

As 2-álgebras de Lie simples de posto toral 3 / Simple Lie 2-algebras of toral rank 3

Guevara, Carlos Rafael Payares 05 December 2016 (has links)
Neste trabalho estudamos as 2-álgebras de Lie simples, de dimensão finita e de posto toral 3, sobre um corpo algebricamente fechado de característica 2. Nós conjecturamos que a única 2-álgebra de Lie simples de este tipo é W(1, 3). Assim, nosso principal objetivo é verificar a veracidade desta conjectura para estas álgebras de pequenas dimensões. Como resultados, provamos que esta conjectura é certa para todas estes álgebras de dimensão menor ou igual a 16, e também em alguns casos especiais quando a dimensão é 17. / In this work we study the simple Lie 2-algebras of finite dimension, and toral rank 3 over an algebraically closed field characteristic 2. We surmise that the only simple Lie 2-algebra of this type is W(1, 3). So, our main objective is to study the truthful of this conjecture for these algebras of small dimensions. As a result, we prove that this conjecture is true for all these algebras less than or equal to 16 dimension, and also in some special cases when the dimension is 17.
100

Extensões cindidas por ideais nilpotentes / split-by-nilpotent extension

Wagner, Heily 18 April 2008 (has links)
Consideremos A e B duas álgebras de Artin tais que é uma extensão cindida de A pelo ideal Q, onde é um ideal nilpotente de B. Estudamos algumas propriedades homológicas das categorias modA e modB, tais como dimensão projetiva e injetiva. A partir disso mostramos que se B pertence a uma das seguintes classes: hereditária, laura, fracamente shod, shod, quase inclinada, colada à esquerda, colada à direita ou disfarçada; então A pertence a mesma classe. Além disso, restringindo nosso estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado, comparamos as respectivas aljavas ordinárias, bem como suas apresentações. Finalmente, após caracterizarmos o ideal Q, exibimos alguns exemplos de extensões no contexto de álgebras de caminhos com relações, que mostram que A pode ser de uma das classes citadas sem que B o seja / Let A and B be two Artin algebras such that B is a split-by-nilpotent extension of A by Q, were Q is a nilpotent ideal of B. We study some homological properties of the categories mod A and mod B such that the projetive and the injetive dimensions of their objects. Using this we show that if B belongs to one of this classes: hereditary, laura, weakly shod, shod, quasi-tilted, left glued, right glued or concealed; then A belongs to same class. Moreover restricting our study to finite dimensional algebras over algebraically closed fields, we compare the ordinary quivers and presentations of the corresponding algebras. Finally, after giving a characterization of ideal Q as above, we exhibit some exemples of split extensions in the context of path algebras bounded by relations, which shows that A can be one of the above cited algebras without B so

Page generated in 0.0348 seconds