• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 78
  • 23
  • Tagged with
  • 257
  • 105
  • 52
  • 32
  • 31
  • 31
  • 30
  • 29
  • 25
  • 25
  • 21
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Model adaptation techniques in machine translation / Techniques d'adaptation en traduction automatique

Shah, Kashif 29 June 2012 (has links)
L’approche statistique pour la traduction automatique semble être aujourd’hui l’approche la plusprometteuse. Cette approche permet de développer rapidement un système de traduction pour unenouvelle paire de langue lorsque les données d'apprentissage disponibles sont suffisammentconséquentes.Les systèmes de traduction automatique statistique (Statistical Machine Translation (SMT)) utilisentdes textes parallèles, aussi appelés les bitextes, comme support d'apprentissage pour créer lesmodèles de traduction. Ils utilisent également des corpus monolingues afin de modéliser la langueciblée.Les performances d'un système de traduction automatique statistique dépendent essentiellement dela qualité et de la quantité des données disponibles. Pour l'apprentissage d'un modèle de traduction,les textes parallèles sont collectés depuis différentes sources, dans différents domaines. Ces corpussont habituellement concaténés et les phrases sont extraites suite à un processus d'alignement desmots.Néanmoins, les données parallèles sont assez hétérogènes et les performances des systèmes detraduction automatique dépendent généralement du contexte applicatif. Les performances varient laplupart du temps en fonction de la source de données d’apprentissage, de la qualité de l'alignementet de la cohérence des données avec la tâche. Les traductions, sélectionnées parmi différenteshypothèses, sont directement influencées par le domaine duquel sont récupérées les donnéesd'apprentissage. C'est en contradiction avec l'apprentissage des modèles de langage pour lesquelsdes techniques bien connues sont utilisées pour pondérer les différentes sources de données. Ilapparaît donc essentiel de pondérer les corpus d’apprentissage en fonction de leur importance dansle domaine de la tâche de traduction.Nous avons proposé de nouvelles méthodes permettant de pondérer automatiquement les donnéeshétérogènes afin d'adapter le modèle de traduction.Dans une première approche, cette pondération automatique est réalisée à l'aide d'une technique deré-échantillonnage. Un poids est assigné à chaque bitextes en fonction de la proportion de donnéesdu corpus. Les alignements de chaque bitextes sont par la suite ré-échantillonnés en fonction de cespoids. Le poids attribué aux corpus est optimisé sur les données de développement en utilisant uneméthode numérique. De plus, un score d'alignement relatif à chaque paire de phrase alignée estutilisé comme mesure de confiance.Dans un travail approfondi, nous pondérons en ré-échantillonnant des alignements, en utilisant despoids qui diminuent en fonction de la distance temporelle entre les bitextes et les données de test.Nous pouvons, de cette manière, utiliser tous les bitextes disponibles tout en mettant l'accent sur leplus récent.L'idée principale de notre approche est d'utiliser une forme paramétrique, ou des méta-poids, pourpondérer les différentes parties des bitextes. De cette manière, seuls quelques paramètres doiventêtre optimisés.Nous avons également proposé un cadre de travail générique qui, lors du calcul de la table detraduction, ne prend en compte que les corpus et les phrases réalisant les meilleurs scores. Cetteapproche permet une meilleure distribution des masses de probabilités sur les paires de phrasesindividuelles.Nous avons présenté les résultats de nos expériences dans différentes campagnes d'évaluationinternationales, telles que IWSLT, NIST, OpenMT et WMT, sur les paires de langues Anglais/Arabeet Fançais/Arabe. Nous avons ainsi montré une amélioration significative de la qualité destraductions proposées. / Nowadays several indicators suggest that the statistical approach to machinetranslation is the most promising. It allows fast development of systems for anylanguage pair provided that sufficient training data is available.Statistical Machine Translation (SMT) systems use parallel texts ‐ also called bitexts ‐ astraining material for creation of the translation model and monolingual corpora fortarget language modeling.The performance of an SMT system heavily depends upon the quality and quantity ofavailable data. In order to train the translation model, the parallel texts is collected fromvarious sources and domains. These corpora are usually concatenated, word alignmentsare calculated and phrases are extracted.However, parallel data is quite inhomogeneous in many practical applications withrespect to several factors like data source, alignment quality, appropriateness to thetask, etc. This means that the corpora are not weighted according to their importance tothe domain of the translation task. Therefore, it is the domain of the training resourcesthat influences the translations that are selected among several choices. This is incontrast to the training of the language model for which well‐known techniques areused to weight the various sources of texts.We have proposed novel methods to automatically weight the heterogeneous data toadapt the translation model.In a first approach, this is achieved with a resampling technique. A weight to eachbitexts is assigned to select the proportion of data from that corpus. The alignmentscoming from each bitexts are resampled based on these weights. The weights of thecorpora are directly optimized on the development data using a numerical method.Moreover, an alignment score of each aligned sentence pair is used as confidencemeasurement.In an extended work, we obtain such a weighting by resampling alignments usingweights that decrease with the temporal distance of bitexts to the test set. By thesemeans, we can use all the available bitexts and still put an emphasis on the most recentone. The main idea of our approach is to use a parametric form or meta‐weights for theweighting of the different parts of the bitexts. This ensures that our approach has onlyfew parameters to optimize.In another work, we have proposed a generic framework which takes into account thecorpus and sentence level "goodness scores" during the calculation of the phrase‐tablewhich results into better distribution of probability mass of the individual phrase pairs.
112

Optimisation de la chaîne de numérisation 3D : de la surface au maillage semi-régulier / 3D digitization optimization : from surface to semi-regular mesh

Peyrot, Jean-Luc 12 December 2014 (has links)
La numérisation 3D permet de générer des représentations numériques très réalistes et fidèles géométriquement aux surfaces réelles. Cependant, cette fidélité géométrique, obtenue à l'aide d'un sur-échantillonnage de surfaces, augmente considérablement le volume de données générées. Les maillages ainsi produits sont donc très denses, et peu adaptés aux différents supports de visualisation, de transfert, de stockage, etc. La représentation semi-régulière des surfaces permet de diminuer le volume nécessaire à la représentation de ces maillages denses, et possède des qualités bien connues en matière de représentations multi-échelles et de compression. Cette thèse a pour objectif d'optimiser la chaîne de numérisation 3D classique en améliorant l'échantillonnage des surfaces tout en conservant la fidélité géométrique, et en court-circuitant les étapes fastidieuses qui conduisent à une représentation semi-régulière. Pour cela, nous avons intégré dans un système stéréoscopique, l'échantillonnage en disques de Poisson qui, grâce à ses propriétés de bruit bleu, réalise un bon compromis entre sous- et sur-échantillonnage. Ensuite, nous avons généré un mailleur semi-régulier, qui travaille directement sur les images stéréoscopiques, et non sur une version remaillée des nuages de points habituellement générés par ces systèmes. Les résultats expérimentaux montrent que ces deux contributions génèrent de façon efficace des représentations semi-régulières, qui sont géométriquement fidèles aux surfaces réelles, tout en réduisant le volume de données générées. / Nowadays, 3D digitization systems generate numeric representations that are both realistic and of high geometric accuracy with respect to real surfaces. However, this geometric accuracy, obtained by oversampling surfaces, increases significantly the generated amount of data. Consequently, the resulting meshes are very dense, and not suitable to be visualized, transmitted or even stored efficiently. Nevertheless, the semi-regular representation due to its scalable and compact representation, overcomes this problem. This thesis aims at optimizing the classic 3D digitization chain, by first improving the sampling of surfaces while preserving geometric features, and secondly shortening the number of required treatments to obtain such semi-regular meshes. To achieve this goal, we integrated in a stereoscopic system the Poisson-disk sampling that realizes a good tradeoff between undersampling and oversampling, thanks to its blue noise properties. Then, we produced a semi-regular meshing technique that directly works on the stereoscopic images, and not on a meshed version of point clouds, which are usually generated by such 3D scanners. Experimental results prove that our contributions efficiently generate semi-regular representations, which are accurate with respect to real surfaces, while reducing the generated amount of data.
113

Interface Radio SDR pour récepteur GNSS multi constellations pour la continuité de positionnement entre l’intérieur et l’extérieur / SDR Radio Interface for GNSS multi constellation receiver for positioning continuity between indoor and outdoor

Mehrez, Hanen 08 July 2019 (has links)
Dans le but d’améliorer la disponibilité des services fournis par un récepteur, la conception d’un récepteur GNSS permettant de recevoir plusieurs signaux de toutes les bandes simultanément semble être la solution. Une architecture à sous échantillonnage RF optimisée de type SDR (Software Defined Radio) comportant un étage RF intégrable et reconfigurable et un étage de traitement numérique avec une implémentation logicielle du traitement en bande de base est défini pour ce récepteur GNSS, tout en répondant aux exigences des spécifications des standards GNSS : des réseaux radio cellulaires : GPS, Glonass, Galileo, Beidou. Un choix des composants discrets suite au dimensionnement system est effectué et ceci pour installer un prototype de validation expérimental. Ensuite nous nous s’intéressons à la caractérisation de la chaine RF afin d’étudier les limitations causés par la non linéarité et d’étudier la stabilité du prototype proposé. Un étage de traitement numérique des signaux IF, capturés à la sortie de l’ADC, est implémenté sous Matlab. L’acquisition de ces données permet la détermination des satellites visible à un instant donné qui nous permet éventuellement la détermination d’une position / In order to improve the availability of services provided by a receiver, designing a GNSS receiver to collect multiple signals from all bands simultaneously seems to be the solution. An optimized software-defined RF (SDR) sub-sampling architecture with an integral and reconfigurable RF stage and a digital processing stage with a software implementation of the baseband processing is defined for this GNSS receiver, while meeting the requirements GNSS standards specifications: cellular radio networks: GPS, Glonass, Galileo, Beidou. Many discrete components are selected after system dimensioning. Thus, experimental validation prototype is installed. Then we are interested in the characterization of the RF front-end in order to determine the limitations caused by the nonlinearity and to study the stability of the proposed prototype. A stage of digital processing of the IF signals, captured at the ADC output, is implemented under Matlab software. The acquisition of these data allows the determination of satellites visible at a given instant that allows us to determine a position
114

Precise localization in 3D prior map for autonomous driving / Localisation d'un véhicule autonome à partir d'une carte a priori de points 3D

Tazir, Mohamed Lamine 17 December 2018 (has links)
Les véhicules autonomes, qualifiés aussi de véhicules sans conducteur, deviennent dans certains contextes une réalité tangible et partageront très bientôt nos routes avec d’autres véhicules classiques. Pour qu’un véhicule autonome se déplace de manière sécurisée, il doit savoir où il se trouve et ce qui l’entoure dans l’environnement. Pour la première tâche, pour déterminer sa position dans l’environnement, il doit se localiser selon six degrés de liberté (position et angles de rotation). Alors que pour la deuxième tâche, une bonne connaissance de cet environnement « proche » est nécessaire, ce qui donne lieu à une solution sous forme de cartographie. Par conséquent, pour atteindre le niveau de sécurité souhaité des véhicules autonomes, une localisation précise est primordiale. Cette localisation précise permet au véhicule non seulement de se positionner avec précision, mais également de trouver sa trajectoire optimale et d’éviter efficacement les collisions avec des objets statiques et dynamiques sur son trajet. Actuellement, la solution la plus répandue est le système de positionnement (GPS). Ce système ne permet qu’une précision limitée (de l’ordre de plusieurs mètres) et bien que les systèmes RTK (RealTime Kinematic) et DGPS (Differential GPS) aient atteint une précision bien plus satisfaisante, ces systèmes restent sensibles au masquage des signaux, et aux réflexions multiples, en particulier dans les zones urbaines denses. Toutes ces déficiences rendent ces systèmes inadaptés pour traiter des tâches critiques telles que l’évitement des collisions. Une alternative qui a récemment attiré l’attention des experts (chercheurs et industriels), consiste à utiliser une carte à priori pour localiser la voiture de l’intérieur de celui-ci. En effet, les cartes facilitent le processus de navigation et ajoutent une couche supplémentaire de sécurité et de compréhension. Le véhicule utilise ses capteurs embarqués pour comparer ce qu’il perçoit à un moment donné avec ce qui est stocké dans sa mémoire. Les cartes à priori permettent donc au véhicule de mieux se localiser dans son environnement en lui permettant de focaliser ses capteurs et la puissance de calcul uniquement sur les objets en mouvement. De cette façon, le véhicule peut prédire ce qui devrait arriver et voir ensuite ce qui se passe réellement en temps réel, et donc peut prendre une décision sur ce qu’il faut faire.Cette thèse vise donc à développer des outils permettant une localisation précise d’un véhicule autonome dans un environnement connu à priori. Cette localisation est déterminée par appariement (Map-matching) entre une carte de l’environnement disponible a priori et les données collectées au fur et à mesure que le véhicule se déplace. Pour ce faire, deux phases distinctes sont déployées. La première permet la construction de la carte, avec une précision centimétrique en utilisant des techniques de construction de cartes statiques ou dynamiques. La seconde correspond à la capacité de localiser le véhicule dans cette carte 3D en l’absence d’infrastructures dédiées comprenant le système GPS, les mesures inertielles (IMU) ou des balises.Au cours de ce travail, différentes techniques sont développées pour permettre la réalisation des deux phases mentionnées ci-dessus. Ainsi, la phase de construction de cartes, qui consiste à recaler des nuages de points capturés pour construire une représentation unique et unifiée de l’environnement, correspond au problème de la localisation et de la cartographie simultanée (SLAM). Afin de faire face à ce problème, nous avons testé et comparé différentes méthodes de recalage. Cependant, l’obtention de cartes précises nécessite des nuages de points très denses, ce qui les rend inefficaces pour une utilisation en temps réel. Dans ce contexte, une nouvelle méthode de réduction des points est proposée. (...) / The concept of self-driving vehicles is becoming a happening reality and will soon share our roads with other vehicles –autonomous or not-. For a self-driving car to move around in its environment in a securely, it needs to sense to its immediate environment and most importantly localize itself to be able to plan a safe trajectory to follow. Therefore, to perform tasks suchas trajectory planning and navigation, a precise localization is of upmost importance. This would further allow the vehicle toconstantly plan and predict an optimal path in order to weave through cluttered spaces by avoiding collisions with other agentssharing the same space as the latter. For years, the Global Positioning System (GPS) has been a widespread complementary solution for navigation. The latter allows only a limited precision (range of several meters). Although the Differential GPSand the Real Time Kinematic (RTK) systems have reached considerable accuracy, these systems remain sensitive to signal masking and multiple reflections, offering poor reliability in dense urban areas. All these deficiencies make these systems simply unsuitable to handle hard real time constraints such as collision avoidance. A prevailing alternative that has attracted interest recently, is to use upload a prior map in the system so that the agent can have a reliable support to lean on. Indeed,maps facilitate the navigation process and add an extra layer of security and other dimensions of semantic understanding. The vehicle uses its onboard sensors to compare what it perceives at a given instant to what is stored in the backend memory ofthe system. In this way, the autonomous vehicle can actually anticipate and predict its actions accordingly.The purpose of this thesis is to develop tools allowing an accurate localization task in order to deal with some complex navigation tasks outlined above. Localization is mainly performed by matching a 3D prior map with incoming point cloudstructures as the vehicle moves. Three main objectives are set out leading with two distinct phases deployed (the map building and the localization). The first allows the construction of the map, with centimeter accuracy using static or dynamic laser surveying technique. Explicit details about the experimental setup and data acquisition campaigns thoroughly carried outduring the course of this work are given. The idea is to construct efficient maps liable to be updated in the long run so thatthe environment representation contained in the 3D models are compact and robust. Moreover, map-building invariant on any dedicated infrastructure is of the paramount importance of this work in order to rhyme with the concept of flexible mapping and localization. In order to build maps incrementally, we rely on a self-implementation of state of the art iterative closest point (ICP) algorithm, which is then upgraded with new variants and compared to other implemented versions available inthe literature. However, obtaining accurate maps requires very dense point clouds, which make them inefficient for real-time use. Inthis context, the second objective deals with points cloud reduction. The proposed approach is based on the use of both colorinformation and the geometry of the scene. It aims to find sets of 3D points with the same color in a very small region and replacing each set with one point. As a result, the volume of the map will be significantly reduced, while the proprieties of this map such as the shape and color of scanned objects remain preserved.The third objective resort to efficient, precise and reliable localization once the maps are built and treated. For this purpose, the online data should be accurate, fast with low computational effort whilst maintaining a coherent model of the explored space. To this end, the Velodyne HDL-32 comes into play. (...)
115

Analyse spatiale et spectrale des motifs d'échantillonnage pour l'intégration Monte Carlo / Spatial and spectral analysis of sampling patterns for Monte Carlo integration

Pilleboue, Adrien 19 November 2015 (has links)
L’échantillonnage est une étape clé dans le rendu graphique. Il permet d’intégrer la lumière arrivant en un point de la scène pour en calculer sa couleur. Généralement, la méthode utilisée est l’intégration Monte Carlo qui approxime cette intégrale en choisissant un nombre fini d’échantillons. La réduction du biais et de la variance de l’intégration Monte Carlo est devenue une des grandes problématiques en rendu réaliste. Les techniques trouvées consistent à placer les points d’échantillonnage avec intelligence de façon à rendre la distribution la plus uniforme possible tout en évitant les régularités. Les années 80 ont été de ce point de vue un tournant dans ce domaine, avec l’apparition de nouvelles méthodes stochastiques. Ces méthodes ont, grâce à une meilleure compréhension des liens entre intégration Monte Carlo et échantillonnage, permis de réduire le bruit et la variance des images générées, et donc d’améliorer leur qualité. En parallèle, la complexité des méthodes d’échantillonnage s’est considérablement améliorée, permettant d’obtenir des méthodes à la fois rapides et efficaces en termes de qualité. Cependant, ces avancées ont jusqu’à là été faites par tâtonnement et se sont axées sur deux points majeurs : l’amélioration de l’uniformité du motif d’échantillonnage et la suppression des régularités. Bien que des théories permettant de borner l’erreur d’intégration existent, elles sont souvent limitées, voire inapplicables dans le domaine de l’informatique graphique. Cette thèse propose de rassembler les outils d’analyse des motifs d’échantillonnages et de les mettre en relation. Ces outils peuvent caractériser des propriétés spatiales, comme la distribution des distances entre points, ou bien spectrales à l’aide de la transformée de Fourier. Nous avons ensuite utilisé ces outils afin de donner une expression simple de la variance et du biais dans l’intégration Monte Carlo, en utilisant des prérequis compatibles avec le rendu d’image. Finalement, nous présentons une boite à outils théorique permettant de déterminer la vitesse de convergence d’une méthode d’échantillonnage à partir de son profil spectral. Cette boite à outils est notamment utilisée afin de classifier les méthodes d’échantillonnage existantes, mais aussi pour donner des indications sur les principes fondamentaux nécessaires à la conception de nouveaux algorithmes d’échantillonnage / Sampling is a key step in rendering pipeline. It allows the integration of light arriving to a point of the scene in order to calculate its color. Monte Carlo integration is generally the most used method to approximate that integral by choosing a finite number of samples. Reducing the bias and the variance of Monte Carlo integration has become one of the most important issues in realistic rendering. The solutions found are based on smartly positioning the samples points in a way that maximizes the uniformity of the distribution while avoiding the regularities. From this point of view, the 80s were a turning point in this domain, as new stochastic methods appeared. With a better comprehension of links between Monte Carlo integration and sampling, these methods allow the reduction of noise and of variance in rendered images. In parallel, the complexity of sampling methods has considerably enhanced, enabling to have fast as well as good quality methods. However, these improvements have been done by trial and error focusing on two major points : the improvement of sampling pattern uniformity, and the suppression of regularities. Even though there exists some theories allowing to bound the error of the integration, they are usually limited, and even inapplicable in computer graphics. This thesis proposes to gather the analysis tools of sampling patterns and to connect them together. These tools can characterize spatial properties such as the distribution of distances between points, as well as spectral properties via Fourier transformation. Secondly, we have used these tools in order to give a simple expression of the bias and the variance for Monte Carlo integration ; this is done by using prerequisites compatible with image rendering. Finally, we present a theoretical toolbox allowing to determine the convergence speed of a sampling method from its spectral profile. This toolbox is used specifically to give indications about the design principles necessary for new sampling algorithms
116

Performances et méthodes pour l'échantillonnage comprimé : Robustesse à la méconnaissance du dictionnaire et optimisation du noyau d'échantillonnage. / Performance and methods for sparse sampling : robustness to basis mismatch and kernel optimization

Bernhardt, Stéphanie 05 December 2016 (has links)
Dans cette thèse, nous nous intéressons à deux méthodes permettant de reconstruire un signal parcimonieux largement sous-échantillonné : l’échantillonnage de signaux à taux d’innovation fini et l’acquisition comprimée.Il a été montré récemment qu’en utilisant un noyau de pré-filtrage adapté, les signaux impulsionnels peuvent être parfaitement reconstruits bien qu’ils soient à bande non-limitée. En présence de bruit, la reconstruction est réalisée par une procédure d’estimation de tous les paramètres du signal d’intérêt. Dans cette thèse, nous considérons premièrement l’estimation des amplitudes et retards paramétrisant une somme finie d'impulsions de Dirac filtrée par un noyau quelconque et deuxièmement l’estimation d’une somme d’impulsions de forme quelconque filtrée par un noyau en somme de sinus cardinaux (SoS). Le noyau SoS est intéressant car il est paramétrable par un jeu de paramètres à valeurs complexes et vérifie les conditions nécessaires à la reconstruction. En se basant sur l’information de Fisher Bayésienne relative aux paramètres d’amplitudes et de retards et sur des outils d’optimisation convexe, nous proposons un nouveau noyau d’échantillonnage.L’acquisition comprimée permet d’échantillonner un signal en-dessous de la fréquence d’échantillonnage de Shannon, si le vecteur à échantillonner peut être approximé comme une combinaison linéaire d’un nombre réduit de vecteurs extraits d’un dictionnaire sur-complet. Malheureusement, dans des conditions réalistes, le dictionnaire (ou base) n’est souvent pas parfaitement connu, et est donc entaché d’une erreur (DB). L’estimation par dictionnaire, se basant sur les mêmes principes, permet d’estimer des paramètres à valeurs continues en les associant selon une grille partitionnant l’espace des paramètres. Généralement, les paramètres ne se trouvent pas sur la grille, ce qui induit un erreur d’estimation même à haut rapport signal sur bruit (RSB). C’est le problème de l’erreur de grille (EG). Dans cette thèse nous étudions les conséquences des modèles d’erreur DB et EG en terme de performances bayésiennes et montrons qu’un biais est introduit même avec une estimation parfaite du support et à haut RSB. La BCRB est dérivée pour les modèles DB et EG non structurés, qui bien qu’ils soient très proches, ne sont pas équivalents en terme de performances. Nous donnons également la borne de Cramér-Rao moyennée (BCRM) dans le cas d’une petite erreur de grille et étudions l’expression analytique de l’erreur quadratique moyenne bayésienne (BEQM) sur l’estimation de l’erreur de grille à haut RSB. Cette dernière est confirmée en pratique dans le contexte de l’estimation de fréquence pour différents algorithmes de reconstruction parcimonieuse.Nous proposons deux nouveaux estimateurs : le Bias-Correction Estimator (BiCE) et l’Off-Grid Error Correction (OGEC) permettant de corriger l'erreur de modèle induite par les erreurs DB et EG, respectivement. Ces deux estimateurs principalement basés sur une projection oblique des mesures sont conçus comme des post-traitements, destinés à réduire le biais d’estimation suite à une pré-estimation effectuée par n’importe quel algorithme de reconstruction parcimonieuse. Les biais et variances théoriques du BiCE et du OGEC sont dérivés afin de caractériser leurs efficacités statistiques.Nous montrons, dans le contexte difficile de l’échantillonnage des signaux impulsionnels à bande non-limitée que ces deux estimateurs permettent de réduire considérablement l’effet de l'erreur de modèle sur les performances d’estimation. Les estimateurs BiCE et OGEC sont tout deux des schémas (i) génériques, car ils peuvent être associés à tout estimateur parcimonieux de la littérature, (ii) rapides, car leur coût de calcul reste faible comparativement au coût des estimateurs parcimonieux, et (iii) ont de bonnes propriétés statistiques. / In this thesis, we are interested in two different low rate sampling schemes that challenge Shannon’s theory: the sampling of finite rate of innovation signals and compressed sensing.Recently it has been shown that using appropriate sampling kernel, finite rate of innovation signals can be perfectly sampled even though they are non-bandlimited. In the presence of noise, reconstruction is achieved by a model-based estimation procedure. In this thesis, we consider the estimation of the amplitudes and delays of a finite stream of Dirac pulses using an arbitrary kernel and the estimation of a finite stream of arbitrary pulses using the Sum of Sincs (SoS) kernel. In both scenarios, we derive the Bayesian Cramér-Rao Bound (BCRB) for the parameters of interest. The SoS kernel is an interesting kernel since it is totally configurable by a vector of weights. In the first scenario, based on convex optimization tools, we propose a new kernel minimizing the BCRB on the delays, while in the second scenario we propose a family of kernels which maximizes the Bayesian Fisher Information, i.e., the total amount of information about each of the parameter in the measures. The advantage of the proposed family is that it can be user-adjusted to favor either of the estimated parameters.Compressed sensing is a promising emerging domain which outperforms the classical limit of the Shannon sampling theory if the measurement vector can be approximated as the linear combination of few basis vectors extracted from a redundant dictionary matrix. Unfortunately, in realistic scenario, the knowledge of this basis or equivalently of the entire dictionary is often uncertain, i.e. corrupted by a Basis Mismatch (BM) error. The related estimation problem is based on the matching of continuous parameters of interest to a discretized parameter set over a regular grid. Generally, the parameters of interest do not lie in this grid and there exists an estimation error even at high Signal to Noise Ratio (SNR). This is the off-grid (OG) problem. The consequence of the BM and the OG mismatch problems is that the estimation accuracy in terms of Bayesian Mean Square Error (BMSE) of popular sparse-based estimators collapses even if the support is perfectly estimated and in the high Signal to Noise Ratio (SNR) regime. This saturation effect considerably limits the effective viability of these estimation schemes.In this thesis, the BCRB is derived for CS model with unstructured BM and OG. We show that even though both problems share a very close formalism, they lead to different performances. In the biased dictionary based estimation context, we propose and study analytical expressions of the Bayesian Mean Square Error (BMSE) on the estimation of the grid error at high SNR. We also show that this class of estimators is efficient and thus reaches the Bayesian Cramér-Rao Bound (BCRB) at high SNR. The proposed results are illustrated in the context of line spectra analysis for several popular sparse estimator. We also study the Expected Cramér-Rao Bound (ECRB) on the estimation of the amplitude for a small OG error and show that it follows well the behavior of practical estimators in a wide SNR range.In the context of BM and OG errors, we propose two new estimation schemes called Bias-Correction Estimator (BiCE) and Off-Grid Error Correction (OGEC) respectively and study their statistical properties in terms of theoretical bias and variances. Both estimators are essentially based on an oblique projection of the measurement vector and act as a post-processing estimation layer for any sparse-based estimator and mitigate considerably the BM (OG respectively) degradation. The proposed estimators are generic since they can be associated to any sparse-based estimator, fast, and have good statistical properties. To illustrate our results and propositions, they are applied in the challenging context of the compressive sampling of finite rate of innovation signals.
117

Multi-dimensional probing for RNA secondary structure(s) prediction / Analyse différentielle de données de sondage pour la prédiction des structures d'acides ribonucléiques

Saaidi, Afaf 01 October 2018 (has links)
En bioinformatique structurale, la prédiction de la (des) structure(s) secondaire(s) des acides ribonucléiques (ARNs) constitue une direction de recherche majeure pour comprendre les mécanismes cellulaires. Une approche classique pour la prédiction de la structure postule qu'à l'équilibre thermodynamique, l'ARN adopte plusieurs conformations, caractérisées par leur énergie libre, dans l’ensemble de Boltzmann. Les approches modernes privilégient donc une considération des conformations dominantes. Ces approches voient leur précision limitées par l'imprécision des modèles d'énergie et les restrictions topologiques pesant sur les espaces de conformations.Les données expérimentales peuvent être utilisées pour pallier aux lacunes des méthodes de prédiction. Différents protocoles permettent ainsi la révélation d'informations structurales partielles via une exposition à un réactif chimique/enzymatique, dont l'effet dépend, et est donc révélateur, de la (les) structure(s) adoptée(s). Les données de sondage mono-réactif sont utilisées pour valider et complémenter les modèles d’énergie libre, permettant ainsi d’améliorer la précision des prédictions. En pratique, cependant, les praticiens basent leur modélisation sur des données de sondage produites dans diverses conditions expérimentales, utilisant différents réactifs ou associées à une collection de séquences mutées. Une telle approche intégrative est répandue mais reste manuelle, onéreuse et subjective. Au cours de cette thèse, nous avons développé des méthodes in silico pour une modélisation automatisée de la structure à partir de plusieurs sources de données de sondage.En premier lieu, nous avons établi des pipelines d’analyse automatisés pour l'acquisition de profils de réactivité à partir de données brutes produites à travers une série de protocoles. Nous avons ensuite conçu et implémenté une nouvelle méthode qui permet l'intégration simultanée de plusieurs profils de sondage. Basée sur une combinaison d'échantillonnage de l'ensemble de Boltzmann et de clustering structurel, notre méthode produit des conformations dominantes, stables et compatible avec les données de sondage. En favorisant les structures récurrentes, notre méthode permet d’exploiter la complémentarité entre plusieurs données de sondage. Ses performances dans le cas mono-sondage sont comparables ou meilleures que celles des méthodes prédictives de pointe.Cette méthode a permis de proposer des modèles pour les régions structurées des virus. En collaboration avec des expérimentalistes, nous avons suggéré une structure raffinée de l'IRES du VIH-1 Gag, compatible avec les données de sondage chimiques et enzymatiques, qui nous a permis d’identifier des sites d'interactions putatifs avec le ribosome. Nous avons également modélisé la structure des régions non traduites d'Ebola. Cohérents avec les données de sondage SHAPE et les données de covariation, nos modèles montrent l’existence d'une tige-boucle conservée et stable à l'extrémité 5', une structure typiquement présente dans les génomes viraux pour protéger l'ARN de la dégradation par les nucléases.L’extension de notre méthode pour l’analyse simultanée de variants, appliquée dans un premier temps sur des mutants produits par le protocole Mutate-and-Map et sondés par le DMS, a permis d'enregistrer une amélioration en précision de prédiction. Pour éviter la production systématique de mutants ponctuels et exploiter le protocole récent SHAPEMap, nous avons conçu un protocole expérimental basé sur une mutagenèse non dirigé et le séquençage, où plusieurs ARN mutés sont produits et simultanément sondés. Nous avons traité l’affectation des reads aux mutants de références à l'aide d'une instance de l'algorithme "Expectation-Maximization" dont les résultats préliminaires, sur un échantillon de reads réduit/simulé, ont montré un faible taux d’erreurs d'assignation par rapport à une affectation classique des reads aux séquences d'ARN de référence. / In structural bioinformatics, predicting the secondary structure(s) of ribonucleic acids (RNAs) represents a major direction of research to understand cellular mechanisms. A classic approach for structure postulates that, at the thermodynamic equilibrium, RNA adopts its various conformations according to a Boltzmann distribution based on its free energy. Modern approaches, therefore, favor the consideration of the dominant conformations. Such approaches are limited in accuracy due to the imprecision of the energy model and the structure topology restrictions.Experimental data can be used to circumvent the shortcomings of predictive computational methods. RNA probing encompasses a wide array of experimental protocols dedicated to revealing partial structural information through exposure to a chemical or enzymatic reagent, whose effect depends on, and thus reveals, features of its adopted structure(s). Accordingly, single-reagent probing data is used to supplement free-energy models within computational methods, leading to significant gains in prediction accuracy. In practice, however, structural biologists integrate probing data produced in various experimental conditions, using different reagents or over a collection of mutated sequences, to model RNA structure(s). This integrative approach remains manual, time-consuming and arguably subjective in its modeling principles. In this Ph.D., we contributed in silico methods for an automated modeling of RNA structure(s) from multiple sources of probing data.We have first established automated pipelines for the acquisition of reactivity profiles from primary data produced through a variety of protocols (SHAPE, DMS using Capillary Electrophoresis, SHAPE-Map/Ion Torrent). We have designed and implemented a new, versatile, method that simultaneously integrates multiple probing profiles. Based on a combination of Boltzmann sampling and structural clustering, it produces alternative stable conformations jointly supported by a set of probing experiments. As it favors recurrent structures, our method allows exploiting the complementarity of several probing assays. The quality of predictions produced using our method compared favorably against state-of-the-art computational predictive methods on single-probing assays.Our method was used to identify models for structured regions in RNA viruses. In collaboration with experimental partners, we suggested a refined structure of the HIV-1 Gag IRES, showing a good compatibility with chemical and enzymatic probing data. The predicted structure allowed us to build hypotheses on binding sites that are functionally relevant to the translation. We also proposed conserved structures in Ebola Untranslated regions, showing a high consistency with both SHAPE probing and evolutionary data. Our modeling allows us to detect conserved and stable stem-loop at the 5’end of each UTR, a typical structure found in viral genomes to protect the RNA from being degraded by nucleases.Our method was extended to the analysis of sequence variants. We analyzed a collection of DMS probed mutants, produced by the Mutate-and-Map protocol, leading to better structural models for the GIR1 lariat-capping ribozyme than from the sole wild-type sequence. To avoid systematic production of point-wise mutants, and exploit the recent SHAPEMap protocol, we designed an experimental protocol based on undirected mutagenesis and sequencing, where several mutated RNAs are produced and simultaneously probed. Produced reads must then be re-assigned to mutants to establish their reactivity profiles used later for structure modeling. The assignment problem was modeled as a likelihood maximization joint inference of mutational profiles and assignments, and solved using an instance of the "Expectation-Maximization" algorithm. Preliminary results on a reduced/simulated sample of reads showed a remarkable decrease of the reads assignment errors compared to a classic algorithm.
118

Asymptotic methods for option pricing in finance / Méthodes asymptotiques pour la valorisation d’options en finance

Krief, David 27 September 2018 (has links)
Dans cette thèse, nous étudions plusieurs problèmes de mathématiques financières liés à la valorisation des produits dérivés. Par différentes approches asymptotiques, nous développons des méthodes pour calculer des approximations précises du prix de certains types d’options dans des cas où il n’existe pas de formule explicite.Dans le premier chapitre, nous nous intéressons à la valorisation des options dont le payoff dépend de la trajectoire du sous-jacent par méthodes de Monte-Carlo, lorsque le sous-jacent est modélisé par un processus affine à volatilité stochastique. Nous prouvons un principe de grandes déviations trajectoriel en temps long, que nous utilisons pour calculer, en utilisant le lemme de Varadhan, un changement de mesure asymptotiquement optimal, permettant de réduire significativement la variance de l’estimateur de Monte-Carlo des prix d’options.Le second chapitre considère la valorisation par méthodes de Monte-Carlo des options dépendant de plusieurs sous-jacents, telles que les options sur panier, dans le modèle à volatilité stochastique de Wishart, qui généralise le modèle Heston. En suivant la même approche que dans le précédent chapitre, nous prouvons que le processus vérifie un principe de grandes déviations en temps long, que nous utilisons pour réduire significativement la variance de l’estimateur de Monte-Carlo des prix d’options, à travers un changement de mesure asymptotiquement optimal. En parallèle, nous utilisons le principe de grandes déviations pour caractériser le comportement en temps long de la volatilité implicite Black-Scholes des options sur panier.Dans le troisième chapitre, nous étudions la valorisation des options sur variance réalisée, lorsque la volatilité spot est modélisée par un processus de diffusion à volatilité constante. Nous utilisons de récents résultats asymptotiques sur les densités des diffusions hypo-elliptiques pour calculer une expansion de la densité de la variance réalisée, que nous intégrons pour obtenir l’expansion du prix des options, puis de leur volatilité implicite Black-Scholes.Le dernier chapitre est consacré à la valorisation des dérivés de taux d’intérêt dans le modèle Lévy de marché Libor qui généralise le modèle de marché Libor classique (log-normal) par l’ajout de sauts. En écrivant le premier comme une perturbation du second et en utilisant la représentation de Feynman-Kac, nous calculons explicitement l’expansion asymptotique du prix des dérivés de taux, en particulier, des caplets et des swaptions. / In this thesis, we study several mathematical finance problems, related to the pricing of derivatives. Using different asymptotic approaches, we develop methods to calculate accurate approximations of the prices of certain types of options in cases where no explicit formulas are available.In the first chapter, we are interested in the pricing of path-dependent options, with Monte-Carlo methods, when the underlying is modelled as an affine stochastic volatility model. We prove a long-time trajectorial large deviations principle. We then combine it with Varadhan’s Lemma to calculate an asymptotically optimal measure change, that allows to reduce significantly the variance of the Monte-Carlo estimator of option prices.The second chapter considers the pricing with Monte-Carlo methods of options that depend on several underlying assets, such as basket options, in the Wishart stochastic volatility model, that generalizes the Heston model. Following the approach of the first chapter, we prove that the process verifies a long-time large deviations principle, that we use to reduce significantly the variance of the Monte-Carlo estimator of option prices, through an asymptotically optimal measure change. In parallel, we use the large deviations property to characterize the long-time behaviour of the Black-Scholes implied volatility of basket options.In the third chapter, we study the pricing of options on realized variance, when the spot volatility is modelled as a diffusion process with constant volatility. We use recent asymptotic results on densities of hypo-elliptic diffusions to calculate an expansion of the density of realized variance, that we integrate to obtain an expansion of option prices and their Black-Scholes implied volatility.The last chapter is dedicated to the pricing of interest rate derivatives in the Levy Libor market model, that generaliszes the classical (log-normal) Libor market model by introducing jumps. Writing the first model as a perturbation of the second and using the Feynman-Kac representation, we calculate explicit expansions of the prices of interest rate derivatives and, in particular, caplets and swaptions
119

Traitement des données manquantes dans les données de panel : cas des variables dépendantes dichotomiques

Barhoumi, Mohamed Adel 11 April 2018 (has links)
Dans ce document, nous examinons la performance de l'estimation par la méthode bayésienne et celle par la méthode de vraisemblance. En premier lieu, on s'intéresse au cas où la base de données est complète pour estimer un modèle dichotomique par l'approche du maximum de vraisemblance et qui sera comparée à l'estimation du modèle par l'approche bayésienne ; dans ce dernier cas, on utilise la méthode d'échantillonnage de Gibbs. En deuxième lieu, on étudie l'impact du mécanisme de données manquantes ainsi que l'étude des cas complets sur l'estimation des paramètres du modèle. En outre, on utilise les modèles MCAR, MAR et NMAR. Nous illustrons ces méthodes d'estimation à l'aide des données simulées, ainsi qu'avec des données réelles portant sur la décision d'emploi ou de travail chez les jeunes.
120

Étude de l'imperméabilité des membranes aux ions et des propriétés électriques des canaux ioniques

Gambu, Isabelle January 1996 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.0963 seconds