1 |
Etude mathématique et numérique de la propagation acoustique d'un turboréacteurDuprey, Stefan 05 October 2006 (has links) (PDF)
Cette thèse traite du problème industriel de la modélisation et de<br />la simulation numérique du rayonnement acoustique à l'entrée d'air des nacelles<br />d'Airbus. Les hypothèses physiques subséquentes au contexte industriel<br />précis conduisent à un modèle simplifié de propagation acoustique linéaire sur<br />un écoulement porteur potentiel et non-linéaire. La modélisation de la source<br />modale de bruit du moteur se traduit par une condition de bord exprimée par<br />un opérateur Dirichlet-Neumann. L'existence et l'unicité du problème mathématique<br />général (auquel on a rajouté une condition de Sommerfeld convectée)<br />de la perturbation potentielle et locale autour d'un écoulement uniforme sont<br />démontrées. Un couplage discret alliant le potentiel acoustique (éléments finis<br />de volume) et sa dérivée conormale de bord (éléments finis de frontière) par une<br />équation intégrale est proposé. Le code informatique est validé analytiquement<br />et comparativement. Les résultats originaux prouvent la nécessité de la prise en<br />compte des non-linéarités de l'écoulement par des différences de plus de 5 décibels<br />en champ lointain. Le positionnement optimal de la surface rayonnante et<br />la possibilité d'adaptation de la méthode multipôle rapide rendent ce couplage<br />incontournable. Le modèle simplifié potentiel-linéaire, même si il n'est a priori<br />apte qu'à traiter l'entrée d'air, trouve toute sa justification en tant que brique<br />d'un code global basé sur la décomposition de domaine. Finalement, soulignons<br />l'avènement d'un élément fini axisymétrique naturel et d'une alternative originale<br />de calcul de l'écoulement non-linéaire par une méthode de point fixe.
|
2 |
Modelling of fluid structure interaction by potential flow theory in a pwr under seismic excitation / Modélisation des interactions fluide structure par écoulement potentiel dans un cœur de REP sous séismeCapanna, Roberto 07 December 2018 (has links)
Une modélisation efficace et une connaissance précise du comportement mécanique du cœur du réacteur sont nécessaires pour estimer les effets de l'excitation sismique sur une centrale nucléaire. La présence d'un écoulement d'eau (dans les REP) engendre des phénomènes d'interaction fluide structure. La modélisation des interactions fluide structure sur les assemblages combustible revêt donc une importance fondamentale pour la sécurité des réacteurs nucléaires. L’objectif principal du projet de thèse présenté dans ce document est d’étudier les interactions fluide structure afin de mieux comprendre les phénomènes impliqués. La modélisation et l'approche expérimentale sont considérées. Un nouveau modèle linéaire simplifié pour les interactions fluide structure est développé en utilisant la théorie de l'écoulement potentiel pour la modélisation des forces fluide, tandis que le modèle de poutre d'Euler-Bernoulli est utilisé pour la partie structurelle. Le modèle est d'abord développé pour un seul cylindre et il est validé avec des ouvrages de référence dans la littérature. Les effets de la taille de confinement et du nombre d'onde sont examinés. Le modèle d'écoulement potentiel développé pour un seul cylindre est ainsi étendu à une géométrie multicylindre. La démarche expérimentale est donc nécessaire pour valider le modèle développé. Une nouvelle installation expérimentale, ICARE, a été conçue pour étudier les phénomènes d’interaction fluide structure sur des assemblages combustible à demi-échelle. Dans ce document, les résultats fournis par les mesures de déplacement et de LDV sont largement analysés. Le comportement dynamique de l'assemblage combustible et les effets de couplage sont étudiés. Les calculs sont comparés aux résultats expérimentaux afin de valider le modèle et d’en analyser ses limites. Le modèle est en accord avec les résultats expérimentaux concernant l'effet de masse ajouté. De plus, le modèle prédit qualitativement les effets des couplages dans différentes directions. Par contre, le modèle d'écoulement potentiel ne permet pas de prédire des effets d'amortissement ajouté, principalement dus aux forces visqueuses. Enfin, dans ce document, une autre application du modèle développé est décrite. Le modèle est utilisé afin de simuler des expériences réalisées sur une maquette d'assemblage combustible dans l'installation expérimentale installée à l'Université George Washington (GWU). Le modèle est capable de prédire et de fournir une interprétation valide de la perturbation du débit d'eau due au mouvement de l'ensemble excité. La thèse se termine par des perspectives d'amélioration du modèle, en intégrant des termes visqueux dans les équations. L'analyse des données de vélocimétrie par image de particules (PIV) recueillies au cours des campagnes expérimentales ICARE doit être poursuivie. / Efficient modelling and accurate knowledge of the mechanical behaviour of the reactorcore are needed to estimate the effects of seismic excitation on a nuclear power plant. Thepresence of cooling water flow (in PWRs) gives rise to fluid structure interaction phenomena.Modelling of fluid structure interactions on fuel assemblies is thus of fundamentalimportance in order to assure the safety of nuclear reactors. The main objective of thePhD project which is presented in this document is to investigate fluid structure interactionsin order to have a better understanding of the involved phenomena. Both modellingand experimental approach are considered. A new simplified linear model for fluid structureinteractions is developed by using the potential flow theory for fluid force modellingwhile the Euler-Bernoulli beam model is used for the structural part. The model, is firstdeveloped for a single cylinder and it is validated with reference works in literature. Theeffects of the confinement size and of the wavenumber are investigated. The potential flowmodel developed for a single cylinder, is thus extended to a multi cylinders geometry. Theexperimental approach is thus needed in order to validate the developed model. A newexperimental facility, ICARE, is designed in order to investigate fluid structure interactionphenomena on half scale fuel assemblies. In this document, the results provided bydisplacement and LDV measurements are widely analysed. The dynamical behaviour ofthe fuel assembly and coupling effects are investigated. Calculations are compared to theexperimental results in order to validate the model and to analyse its limits. The model isin agreement with experimental results regarding the added mass effect. In addition, themodel qualitatively predicts couplings effects on different directions. As a drawback, thepotential flow model cannot predict added damping effects, which are mainly due to viscousforces. Finally in this document another application of the developed model is described.The model is used in order to simulate experiments performed on a surrogate fuel assemblyin the experimental facility installed at George Washington University (GWU). The modelis able to predict and to provide a valid interpretation for the water flow perturbation dueto the motion of the excited assembly. The thesis concludes with perspectives for furtherimprovements of the model, by integrating viscous terms in the equations. Work needs tobe carried out on the analysis of Particle Image Velocimetry (PIV) data collected duringICARE experimental campaigns.
|
3 |
Étude exploratoire de la prédiction en temps réel des mouvements des navires sur la houleForestier, Jean-Michel 28 February 2005 (has links) (PDF)
L'objectif de l'étude est d'établir un modèle de comportement de l'ensemble navire et eau l'entourant permettant de prédire à court terme (10-15 s) et en temps réel les mouvements du navire sur la houle. L'approche proposée consiste 1) à établir une équation d'évolution autonome de/dt = f(e) de l'ensemble navire et eau, 2) à observer à chaque instant les variables d'état e à partir de mesures physiques. Le modèle f est établi par une mise en équations en fluide parfait et incompressible. Le potentiel et sa dérivée temporelle sur la surface libre ou sur la carène sont des variables d'état possibles pour l'eau. Ces grandeurs sur la surface libre peuvent être observées à partir de la mesure de sa dénivellation. L'observabilité de ces grandeurs sur la carène à partir de la mesure de la pression est un problème ouvert. Pour obtenir un modèle indépendant du temps, la mise en équations est développée en perturbations à partir d'une solution d'ordre zéro elle-même indépendante du temps.
|
4 |
Modélisation numérique non-linéaire et dispersive des vagues en zone côtière / Nonlinear and dispersive numerical modeling of nearshore wavesRaoult, Cécile 12 December 2016 (has links)
Au cours de cette thèse, un modèle potentiel résolvant les équations d’Euler-Zakharov a été développé dans le but de simuler la propagation de vagues et d’états de mer irréguliers et multi-directionnels, du large jusqu’à la côte, sur des bathymétries variables. L’objectif est de représenter les effets non-linéaires et dispersifs le plus précisément possible pour des domainescôtiers bidimensionnels (dans le plan horizontal) de l’ordre de quelques kilomètres.La version 1DH initiale du modèle, résolvant le problème aux limites de Laplace à l’aide de schémas aux différences finies d’ordre élevé dans la direction horizontale combinés à une approche spectrale sur la verticale, a été améliorée et validée. L’implémentation de conditions aux limites de type Dirichlet et Neumann pour générer des vagues dans le domaine a été étudiée en détail. Dans la pratique, une zone de relaxation a été utilisée en complément deces conditions pour améliorer la stabilité du modèle.L’expression analytique de la relation de dispersion a été établie dans le cas d’un fond plat. Son analyse a montré que la représentation des effets dispersifs s’améliorait significativement avec l’augmentation de la résolution sur la direction verticale (i.e. avec le degré maximal de la basede polynômes de Tchebyshev utilisée pour projeter le potentiel des vitesses sur la verticale).Une étude de convergence menée pour des ondes solitaires modérément à fortement non-linéaires a confirmé la convergence exponentielle avec la résolution verticale grâce à l’approche spectrale, ainsi que les convergences algébriques en temps et en espace sur l’horizontale avec des ordres d’environ 4 (ou plus) en accord avec les schémas numériques utilisés.La comparaison des résultats du modèle à plusieurs jeux de données expérimentales a démontré les capacités du modèle à représenter les effets non-linéaires induits par les variations de bathymétrie, notamment les transferts d’énergie entre les composantes harmoniques, ainsi que la représentation précise des propriétés dispersives. Une formulation visco-potentielle a également été implémentée afin de prendre en compte les effets visqueux induits par la dissipation interne et le frottement sur le fond. Cette formulation a été validée dans le cas d’une faible viscosité avec un fond plat ou présentant une faible pente.Dans le but de représenter des champs de vagues 2DH, le modèle a été étendu en utilisant une discrétisation non-structurée (par nuage de points) du plan horizontal. Les dérivées horizontales ont été estimées à l’aide de la méthode RBF-FD (Radial Basis Function-Finite Difference), en conservant l’approche spectrale sur la verticale. Une étude numérique de sensibilité a été menée afin d’évaluer la robustesse de la méthode RBF-FD, en comparant différents types de RBFs, avec ou sans paramètre de forme et l’ajout éventuel d’un polynôme. La version 2DH du modèle a été utilisée pour simuler deux expériences en bassin, validant ainsi l’approche choisie et démontrant son applicabilité pour simuler la propagation 3D des vagues faisant intervenir des effets non-linéaires. Dans le but de réduire le temps de calcul et de pouvoir appliquer le code à des simulations sur de grands domaines, le code a été modifié pour utiliser le solveur linéaire direct en mode parallèle / In this work, a potential flow model based on the Euler-Zakharov equations was developed with the objective of simulating the propagation of irregular and multidirectional sea states from deep water conditions to the coast over variable bathymetry. A highly accurate representation of nonlinear and dispersive effects for bidimensional (2DH) nearshore and coastal domains on the order of kilometers is targeted.The preexisting 1DH version of the model, resolving the Laplace Boundary Value problem using a combination of high-order finite difference schemes in the horizontal direction and a spectral approach in the vertical direction, was improved and validated. The generation of incident waves through the implementation of specific Dirichlet and Neumann boundary conditions was studied in detail. In practice, these conditions were used in combination witha relaxation zone to improve the stability of the model.The linear dispersion relation of the model was derived analytically for the flat bottom case. Its analysis showed that the accuracy of the representation of dispersive effects improves significantly by increasing the vertical resolution (i.e. the maximum degree of the Chebyshev polynomial basis used to project the potential in the vertical). A convergence study conducted for moderate to highly nonlinear solitary waves confirmed the exponential convergence in the vertical dimension owing to the spectral approach, and the algebraic convergence in time and in space (horizontal dimension) with orders of about 4 (or higher) in agreement with the numerical schemes used.The capability of the model to represent nonlinear effects induced by variable bathymetry, such as the transfer of energy between harmonic components, as well as the accurate representation of dispersive properties, were demonstrated with comparisons to several experimental data sets. A visco-potential flow formulation was also implemented to take into account viscous effects induced by bulk viscosity and bottom friction. This formulation was validated inthe limit of small viscosity for mild slope bathymetries.To represent 2DH wave fields in complex nearshore domains, the model was extended using an unstructured discretization (scattered nodes) in the horizontal plane. The horizontal derivatives were estimated using the RBF-FD (Radial Basis Function - Finite Difference) method, while the spectral approach in the vertical remained unchanged. A series of sensitivity tests were conducted to evaluate numerically the robustness of the RBF-FD method, including a comparison of a variety of RBFs with or without shape factors and augmented polynomials. The 2DH version of the model was used to simulate two wave basin experiments, validating the approach and demonstrating the applicability of this method for 3D wave propagation, including nonlinear effects. As an initial attempt to improve the computational efficiency ofthe model for running simulations of large spatial domains, the code was adapted to use a parallelized direct linear solver
|
5 |
An efficient method for the calculation of the free-surface Green function using ordinary differential equations / Accélération du calcul des efforts hydrodynamiques par utilisation des propriétés différentielles des fonctions de Green de l'hydrodynamique à surface libreXie, Chunmei 14 May 2019 (has links)
Le calcul des efforts hydrodynamiques de premier ordre sur un ou plusieurs corps perçant la surface libre est aujourd'hui bien maîtrisé, et plusieurs codes de calcul implémentant la méthode des singularités (dite BEM ou méthode d'élément frontière) ont été développés. Le cadre est la théorie linéarisée des écoulements potentiels à une surface libre. Dans ces codes BEM, les singularités utilisées ont la propriété intrinsèque de satisfaire à la fois l'équation de Laplace dans le domaine fluide ainsi que la condition linéarisée de surface libre. Ces singularités, dites fonctions de Green à surface libre, dans le domaine fréquentiel en profondeur infinie et sans vitesse d'avance constituent le point focal de cette thèse. Tout d'abord, les expressions mathématiques existantes pour la fonction de Green de surface libre sont examinées. Douze expressions différentes sont passées en revue et analysées. Plusieurs méthodes numériques existantes sont comparées par rapport à leur temps de calcul et leur précision. Ensuite, une série d'équations différentielles ordinaires (ODEs) pour les fonctions de Green de surface libre dans le domaine temporel et le domaine fréquentiel et leur gradient est établie. Ces ODEs peuvent être utilisées pour mieux comprendre les propriétés de la fonction de Green et peuvent constituer un moyen alternatif de calculer ces fonctions de Green et leurs dérivées. Cependant, il est difficile de résoudre numériquement ces ODEs à cause de l'existence d'une singularité à l'origine. Cette difficulté est éliminée en modifiant les ODEs par l'utilisation de nouvelles fonctions sans singularité. Les nouvelles ODEs sont ensuite écrites sous forme canonique en utilisant une nouvelle définition de la fonction vectorielle. La forme canonique peut être résolue avec les conditions initiales à l'origine puisque tous les termes impliqués sont finis. Une méthode d'expansion basée sur une série de fonctions logarithmiques et de polynômes ordinaires, très efficace pour les problèmes de basse fréquence, a également été développée pour obtenir des solutions analytiques. Enfin, la méthode basée sur les ODE pour calculer la fonction de Green est implémentée et un nouveau solveur BEM est obtenu. L'élimination des fréquences irrégulières est incluse. Le nouveau solveur est validé par comparaison des coefficients hydrodynamiques à des solutions analytiques pour une hémisphère, ainsi qu'à des résultats numériques obtenus avec un solveur commercial pour un chaland parallèlépipédique et le porte-conteneurs KCS. / The boundary element method (BEM) with constant panels is a common approach for wave-structure interaction problems. It is based on the linear potential-flow theory. It relies on the frequency-domain free-surface Green function, which is the focus of this thesis. First, the mathematical expressions and numerical methods for the frequency-domain free-surface Green function are investigated. Twelve different expressions are reviewed and analyzed. Several existing numerical methods are compared including their computational time and accuracies. Then, a series of ordinary differential equations (ODEs) for the time-domain and frequency-domain free-surface Green functions and their derivatives are derived. These ODEs can be used to better understand the properties of the Green function and can be an alternative way to calculate the Green functions and their derivatives. However, it is challenging to solve the ODEs for the frequency-domain Green function with initial conditions at the origin due to the singularity. This difficulty is removed by modifying the ODEs by using new functions free of singularity. The new ODEs are then transformed in their canonic form by using a novel definition of the vector functions. The canonic form can be solved with the initial conditions at the origin since all involved terms are finite. An expansion method based on series of logarithmic function together with ordinary polynomials which is very efficient for low frequency problems is also developed to obtain analytical solutions. Finally, the ODE-based method to calculate the Green function is implemented and an efficient BEM solver is obtained. The removal of irregular frequencies is included. The new solver is validated by comparison of hydrodynamic coefficients to analytical solutions for a heaving and surging hemisphere, and to numerical results obtained with a commercial solver for a box barge and the KCS container ship.
|
Page generated in 0.1541 seconds