• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 2
  • Tagged with
  • 28
  • 24
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Εισαγωγή στη συμμετρικοποίηση και εφαρμογές

Καβαλιεράτου, Νικολίνα 14 February 2012 (has links)
Η μετάλλαξη των συναρτήσεων είναι το κυρίως θέμα της παρούσας εργασίας που συνδυάζει τη γεωμετρία με τη θεωρία μέτρου και την ανάλυση με έναν ουσιώδη τρόπο. Δεδομένης μιας πραγματικής συνάρτησης f που ορίζεται σε ένα υποσύνολο του, κατασκευάζεται μία καινούρια συνάρτηση Ω n \ f ∗, η οποία έχει σημαντικές ιδιότητες. Οι εφαρμογές των θεωρημάτων που προκύπτουν είναι πολλές και ιδιαίτερα σημαντικές. Ένα από τα βασικότερα θεωρήματα είναι η ανισότητα HardyLittlewood-Sobolev που αποδεικνύεται με τη βοήθεια της συμμετρικο- ποίησης. Στο θεώρημα αυτό έχουμε ότι οι συναρτήσεις που ελαχιστοποιούν αυτήν την ανισότητα και την καθιστούν ισότητα (ονομάζονται ακραίες συναρτήσεις) είναι σφαιρικά συμμετρικές συναρτήσεις. Επίσης, μία πολύ ενδιαφέρουσα και σημαντική εφαρμογή της συμμετρικοποίησης είναι η γνωστή ισοπεριμετρική ανισότητα (δηλαδή η μπάλα έχει την ελάχιστη επιφάνεια μεταξύ όλων των σωμάτων δοσμένου όγκου). Στο κεφάλαιο 1 παρουσιάζονται κάποιες απαραίτητες έννοιες, ορισμοί και θεωρήματα από τη θεωρία μέτρου και ολοκλήρωσης, καθώς χρησιμοποιούνται συχνά στους ορισμούς και τις αποδείξεις των θεωρημάτων που αναπτύσσονται. Στο κεφάλαιο 2 παρουσιάζεται η φθίνουσα μετάλλαξη συναρτήσεων που ορίζονται σε υποσύνολα Ω του . Θεωρώντας μια πραγματική συνάρτηση σε ένα τέτοιο σύνολο, κατασκευάζουμε μια νέα συνάρτηση, η οποία έχει πεδίο ορισμού τη μπάλα με κέντρο την αρχή των αξόνων, η οποία έχει το ίδιο μέτρο (όγκο) με το και η νέα συνάρτηση έχει σημαντικές ιδιότητες. Γενικά, επιθυμούμε η νέα συνάρτηση να είναι ακτινική και ακτινικά φθίνουσα. Για να δοθεί ο ορισμός αυτός, πρώτα κατασκευάζουμε τη μονοδιάστατη φθίνουσα μετάλλαξη της δοσμένης συνάρτησης. n \ Ω iΣτο κεφάλαιο 3 παρουσιάζονται ανισότητες για μεταλλαγμένες συναρτήσεις μεταξύ των οποίων η γνωστή ανισότητα του Riesz και η αναφερθείσα σημαντική ανισότητα Hardy- Littlewood-Sobolev. Στο κεφάλαιο 4 δίνεται η συμμετρικοποίηση Steiner με μία πιο γεωμετρική σκοπιά καθώς ένα από τα πιο σημαντικά αποτελέσματά της είναι η γνωστή ισοπεριμετρική ανισότητα και άλλες πολύ ενδιαφέρουσες εφαρμογές. / -
2

Στατιστικές συναρτήσεις σάρωσης και αξιοπιστία συστημάτων / Scan statistics and systems' reliability

Πήττα, Θεοδώρα 22 December 2009 (has links)
Σκοπός της εργασίας είναι η σύνδεση της στατιστικής συνάρτησης σάρωσης S_(n,m), που εκφράζει τον μέγιστο αριθμό των επιτυχιών που περιέχονται σε ένα κινούμενο παράθυρο μήκους m το οποίο “σαρώνει” n - συνεχόμενες προσπάθειες Bernoulli, με την αξιοπιστία ενός συνεχόμενου k-μεταξύ-m-από-τα-n συστήματος αποτυχίας (k-μεταξύ-m-από-τα-n:F σύστημα). Αρχικά υπολογίζουμε τη συνάρτηση κατανομής και τη συνάρτηση πιθανότητας της στατιστικής συνάρτησης σάρωσης S_(n,m). Αυτό το επιτυγχάνουμε συνδέοντας την S_(n,m) με την τυχαία μεταβλητή T_k^((m))που εκφράζει τον χρόνο αναμονής μέχρι να συμβεί μια γενικευμένη ροή ή αλλιώς μέχρι να συμβεί η “πρώτη σάρωση” σε μια ακολουθία τυχαίων μεταβλητών Bernoulli οι οποίες παίρνουν τιμές 0 ή 1 ανάλογα με το αν έχουμε αποτυχία ή επιτυχία, αντίστοιχα. Υπολογίζουμε τη συνάρτηση κατανομής και τη συνάρτηση πιθανότητας της T_k^((m)) είτε με τη μέθοδο της εμβάπτισης σε Μαρκοβιανή αλυσίδα είτε μέσω αναδρομικών τύπων και παίρνουμε τις αντίστοιχες συναρτήσεις για την τυχαία μεταβλητή S_(n,m) [Glaz and Balakrishnan (1999), Balakrishnan and Koutras (2001)]. Στη συνέχεια ασχολούμαστε με την αξιοπιστία του συνεχόμενου k-μεταξύ-m-από-τα-n:F συστήματος (Griffith, 1986). Ένα τέτοιο σύστημα αποτυγχάνει αν ανάμεσα σε m συνεχόμενες συνιστώσες υπάρχουν τουλάχιστον k που αποτυγχάνουν (1≤k≤m≤n). Παρουσιάζουμε ακριβείς τύπους για την αξιοπιστία για k=2 καθώς και για m=n,n-1,n-2,n-3 (Sfakianakis, Kounias and Hillaris, 1992) και δίνουμε έναν αναδρομικό αλγόριθμο για τον υπολογισμό της (Malinowski and Preuss, 1994). Χρησιμοποιώντας μια δυϊκή σχέση ανάμεσα στη συνάρτηση κατανομής της T_k^((m)) και κατ’ επέκταση της S_(n,m) με την αξιοπιστία, συνδέουμε την αξιοπιστία αυτού του συστήματος με τη στατιστική συνάρτηση σάρωσης S_(n,m). Τέλος σκιαγραφούμε κάποιες εφαρμογές των στατιστικών συναρτήσεων σάρωσης στην μοριακή βιολογία [Karlin and Ghandour (1985), Glaz and Naus (1991), κ.ά.], στον ποιοτικό έλεγχο [Roberts,1958] κ.τ.λ.. / The aim of this dissertation is to combine the scan statistic S_(n,m), which represents the maximum number of successes contained in a moving window of length m over n consecutive Bernoulli trials, with the reliability of a consecutive k-within-m-out-of-n failure system (k-within-m-out-of-n:F system). First, we evaluate the probability mass function and the cumulative distribution function of the random variable S_(n,m). We obtain that by combining S_(n,m) with the random variable T_k^((m)) which denotes the waiting time until for the first time k successes are contained in a moving window of length m (scan of type k/m) over a sequence of Bernoulli trials with 1 marked as a success and 0 as a failure. The probability mass function and the cumulative distribution function of T_k^((m)) are evaluated using two methods: i. Markov chain embedding method and ii. recursive schemes. Finally, through T_k^((m)) we evaluate the probability mass function and the cumulative distribution function of S_(n,m) [Glaz and Balakrishnan (1999), Balakrishnan and Koutras (2002)]. Next, we evaluate the reliability, R, of the consecutive k-within-m-out-of-n failure system (Griffith, 1986). Such a system fails if and only if there exist m consecutive components which include among them at least k failed ones (1≤k≤m≤n). Exact formulae for the reliability are presented for k=2 as well as for m=n,n-1,n-2,n-3 (Sfakianakis, Kounias and Hillaris, 1992). A recursive algorithm for the reliability evaluation is also given (Malinowski and Preuss, 1994). Using a dual relation between the cumulative distribution function of T_k^((m)) and therefore of S_(n,m) and the reliability R, we manage to combine the reliability of this system with the scan statistic S_(n,m). Finally, we briefly present some other applications of the scan statistics in molecular biology [Karlin and Ghandour (1985), Glaz and Naus (1991), e.t.c.], quality control [Roberts,1958] and other more.
3

Συναρτήσεις Bessel και ορθογώνια πολυώνυμα με περισσότερες από μία μεταβλητές

Λόης, Αθανάσιος 13 September 2007 (has links)
Οι γενικευμένες συναρτήσεις Bessel (συναρτήσεις Bessel πολλών μεταβλητών και δεικτών) χρησιμοποιούνται ως το βασικό μαθηματικό υπόβαθρο για την απλούστευση πολύπλοκων υπολογισμών σε φαινόμενα όπως της σκέδασης όπου η προσέγγιση του διπόλου δεν μπορεί να εφαρμοσθεί. Επίσης εμφανίζονται σε προβλήματα αλληλεπίδρασης ισχυρών δεσμών laser με ηλεκτρόνια, αλληλεπίδρασης φωτός με ασθενώς δεσμευμένο ηλεκτρόνιο, σε προβλήματα ιονισμού κτλ. Οι συναρτήσεις αυτές ικανοποιούν αντίστοιχες ιδιότητες (όσον αφορά στη γεννή- τρια συνάρτηση και τις αναδρομικές σχέσεις ) με τις συναρτήσεις Bessel μιας πραγ- ματικής μεταβλητής και η απόδειξη αυτών των σχέσεων βασίζεται στον ορισμό των γενικευμένων συναρτήσεων Bessel και στις ιδιότητες των συνήθων συναρτήσεων Bessel. Συγκεκριμένα παρουσιάζονται οι διάφορες γενικεύσεις των συναρτήσεων Bessel ξεκινώντας με αυτές των δύο μεταβλητών και του ενός ακέραιου δείκτη της μορφής για τις οποίες παραθέτονται η γεννήτρια συνάρτηση, οι αναδρομικές σχέσεις, παράγωγοι ως προς τις 2 μεταβλητές κάθε τάξης, αναπτύγματα τύπου Jacobi – Anger καθώς και σχέσεις σημαντικές για τους αριθμητικούς υπολογισμούς. Η ίδια μελέτη γίνεται και για τις διάφορες τροποποιημένες μορφές των συναρτήσεων καθώς και για τις γενικευμένες συναρτήσεις τριών αλλά και γενικά Μ μεταβλητών. Επίσης δίνονται αποτελέσματα για τις συναρτήσεις Bessel με περισσότερους από έναν δείκτες όπως οι συναρτήσεις , στην μονοδιάστατη περίπτω- ση και οι , και στην πολυδιά-στατη. Γίνεται καταγραφή των γενικευμένων μορφών των πολυωνύμων Hermite στις δύο διαστάσεις, των πολυωνύμων Gould – Hopper, των ιδιοτήτων τους καθώς και του τρόπου με τον οποίο συνδέονται με τις γενικευμένες συναρτήσεις Bessel. Τέλος, στην εργασία, που έχει τον χαρακτήρα της ανασκόπησης παρουσιάζονται και κάποια αποτελέσματα τα οποία αφορούν σε ιδιότητες πολυωνύμων Legendre και Laguerre δύο μεταβλητών. / The Generalized Bessel Functions (GBF) are multivariable extensions of the ordinary Bessel functions and their modified versions. Functions of this type encountered in a large number of fields, especially in physics, and used as a very important mathematical tool for simplifying the complicated computations. Problems, like the phenomenon of ionization and scattering, the interaction of intense laser beams with electrons, the effect of an intense electromagnetic field on a weakly bound system, are some examples of GBF’s applications in physics. In this work we gather and write down all the information related to the generalized Bessel functions and their modified versions, regarding their recurrence properties, generating functions ,integral representations, Jacobi – Anger expansions etc. Also we study the way that the generalized Bessel functions are linked with some multidimensional orthogonal polynomials such as Hermite, Laguerre, Legendre and Gould – Hopper polynomials.
4

Αριθμητική κατασκευή συναρτήσεων Lyapunov

Αλωνιάτη, Μαρία 14 October 2013 (has links)
Σε αυτή την εργασία παρουσιάζουμε μεθόδους για την κατασκευή συναρτήσεων Lyapunov για δυναμικά συστήματα αλλά και για τον καθορισμό του ελκτικού συνόλου ενός σημείου ισορροπίας. Η μελέτη των διαφορικών εξισώσεων έχει ως κίνητρο τις πολλαπλές εφαρμογές τους στη Φυσική, τη Χημεία, τα Οικονομικά, τη Βιολογία, κ.λ.π.. Εστιάζουμε στις αυτόνομες διαφορικές εξισώσεις της μορφής οι οποίες ορίζουν ένα δυναμικό σύστημα. Οι πιο απλές λύσεις μίας τέτοιας εξίσωσης καλούνται σημεία ισορροπίας. Πολύ σημαντικός είναι επίσης και ο καθορισμός του ελκτικού συνόλου. Ο καθορισμός του ελκτικού συνόλου επιτυγχάνεται μέσω υποεπίπεδων συνόλων μίας συνάρτησης Lyapunov, δηλαδή μίας συνάρτησης με αρνητική παράγωγο κατά μήκος των τροχιών στη περιοχή ισορροπίας. Σε αυτή την εργασία παρουσιάζουμε μεθόδους κατασκευής συναρτήσεων Lyapunov για ένα σημείο ισορροπίας. Υπάρχει πλούσια βιβλιογραφία πάνω στις συναρτήσεις Lyapunov. Το 1893, ο Lyapunov εισήγαγε την άμεση ή δεύτερη μέθοδό του, όπου κατάφερε να εξασφαλίσει αποτελέσματα για την ευστάθεια ενός σημείου ισορροπίας χωρίς να γνωρίζει τη λύση της διαφορικής εξίσωσης, αλλά χρησιμοποιώντας μόνο την ίδια τη διαφορική εξίσωση. Από τότε έχει δοθεί πλήθος αντίστροφων θεωρημάτων, που εξασφαλίζουν την ύπαρξη μίας συνάρτησης Lyapunov, από διάφορους συγγραφείς. Το πρώτο κύριο θεώρημα για ασυμπτωτική ευστάθεια δόθηκε από τον Massera το 1949 και από τότε έχει βελτιωθεί από πολλούς συγγραφείς προς διάφορες κατευθύνσεις. Ωστόσο, κανένα από τα θεωρήματα ύπαρξης δεν παρέχει μία μέθοδο σαφούς κατασκευής μίας συνάρτησης Lyapunov. Για γραμμικά συστήματα μπορεί κάποιος να κατασκευάσει μία τετραγωνικής μορφής συνάρτηση Lyapunov της μορφής με ένα συμμετρικό, θετικά ορισμένο πίνακα , όπου συμβολίζει το σημείο ισορροπίας. Ο Hahn περιγράφει πως μπορεί κάποιος, ξεκινώντας από ένα μη-γραμμικό σύστημα, να χρησιμοποιήσει την τετραγωνικής μορφής συνάρτηση Lyapunov του γραμμικοποιημένου συστήματος σα μία συνάρτηση Lyapunov για το μη-γραμμικό σύστημα. Πολλές προσεγγίσεις θεωρούν ειδικές συναρτήσεις Lyapunov, όπως τετραγωνικής μορφής, πολυωνυμικές, κατά τμήματα γραμμικές, ή κατά τμήματα τετραγωνικής μορφής. Οι μέθοδοι όμως αυτές μπορούν να χρησιμοποιηθούν μόνο σε συγκεκριμμένες διαφορικές εξισώσεις. Σε αυτή την εργασία θα ασχοληθούμε με δύο μεθόδους κατασκευής συναρτήσεων Lyapunov. Για τη πρώτη μέθοδο κατασκευής συναρτήσεων Lyapunov για ένα σημείο ισορροπίας, ξεκινούμε με ένα θεώρημα που εξασφαλίζει την ύπαρξη μίας συνάρτησης Lyapunov η οποία ικανοποιεί την ισότητα , όπου είναι μία γνωστή σταθερά. Βασικός στόχος της μεθόδου είναι να προσεγγίσει τη λύση αυτής της μερικής διαφορικής εξίσωσης με τη χρήση συναρτήσεων ακτινωτής βάσης. Τότε και η προσέγγιση είναι μία συνάρτηση Lyapunov και έτσι, μπορούμε να τη χρησιμοποιήσουμε για να καθορίσουμε το ελκτικό σύνολο. Επειδή η συνάρτηση δεν ορίζεται στο , μελετούμε και μία δεύτερη κλάση συναρτήσεων Lyapunov , οι οποίες ορίζονται και είναι ομαλές στο . Αυτές ικανοποιούν την ισότητα , όπου είναι μία δοθείσα συνάρτηση με συγεκριμμένες ιδιότητες, μία εκ των οποίων είναι ότι . Για την προσέγγιση χρησιμοποιούμε συναρτήσεις ακτινωτής βάσης. Στη δεύτερη μέθοδο κατασκευάζουμε μια κατά τμήματα γραμμική συνάρτηση Lyapunov για το αρχικό μη-γραμμικό σύστημα χρησιμοποιώντας γραμμικό προγραμματισμό. / In this diploma work we present methods for the construction of Lyapunov functions for dynamical systems but also we determine the basin of attraction of an equilibrium. The study of differential equations is motivated from numerous applications in physics, chemistry, economics, biology, etc. We focus on autonomous differential equations x’ = f(x), x ∈ Rn which define a dynamical system. The simplest solutions x(t) of such an equation are equilibria, i.e. solutions x(t) = x0 which remain constant. An important and non-trivial task is thedetermination of their basin of attraction. The determination of the basin of attraction is achieved through sublevel sets of a Lyapunov function, i.e. a function with negative orbital derivative. The orbital derivative V ‘(x) of a function V (x) is the derivative along solutions of the differential equation. In this book we present a method to construct Lyapunov functions for an equilibrium. There is a rich literature on the functions of Lyapunov. In 1893, Lyapunov introduced the direct method, where he managed to secure results for the stability of an equilibrium point without knowing the solution of the differential equation, but using only the same differential equation. Since then many inverse theorems have been given that ensure the existence of a function Lyapunov, by various authors. The first main theorem on asymptotic stability given by Massera in 1949 and since then has been improved by many authors in different directions. However, none of the theorem of existence does not provide a clear method of manufacturing a Lyapunov function. For linear systems, one can construct a quadratic form of a Lyapunov function with a symmetric positive definite table. The Hahn describes how people, starting from a non-linear system, use the like it were a Lyapunov function for the nonlinear system. Many approaches consider special functions Lyapunov, such as quadratic form, polynomial. These methods can be used only in specific differential equations. In this book we present a method to construct Lyapunov functions for an equilibrium. We start from a theorem which ensures the existence of a Lyapunov function T which satisfies the equation T’(x) = −c, where -c > 0 is a given constant. This equation is a linear first-order partial differential equation. The main goal of this method is to approximate the solution T of this partial differential equation using radial basis functions. Then the approximation itself is a Lyapunov function, and thus can be used to determine the basin of attraction. Since the function T is not defined at x0, we also study a second class of Lyapunov functions V which are defined and smooth at x0. They satisfy the equation V ‘(x) = −p(x), where p(x) is a given function with certain properties, in particular p(x0) = 0. For the approximation we use radial basis functions, a powerful meshless approximation method. In the second method we construct a linear Lyapunov function for the original non-linear system using linear programming.
5

Μελέτη μεθόδων βελτιστοποίησης μη γραμμικών συναρτήσεων για την ανάπτυξη μεθόδων κωνικών τομών

Μυλωνά, Ειρήνη 15 October 2008 (has links)
Η μεταπτυχιακή αυτή διπλωματική εργασία στοχεύει στην παρουσίαση κάποιων από τις δημοφιλέστερες μεθόδους βελτιστοποίησης μη γραμμικών συναρτήσεων. Εξετάζεται σε κάθε περίπτωση τόσο το θεωρητικό υπόβαθρο, όσο και η πρακτική λειτουργικότητα της εκάστοτε μεθόδου, τα είδη των προβλημάτων όπου επιτυγχάνεται η μέγιστη αποτελεσματικότητα, λεπτομέρειες σχετικά με το ρυθμό σύγκλισης, καθώς και κάποια συγκριτικά ως προς τις προαναφερθείσες μεθόδους σχόλια. Αρχικά υπενθυμίζονται βασικές έννοιες που χρησιμοποιούνται στην πορεία της επισκόπησης των μεθόδων. Ακολούθως, γίνεται εκτενής αναφορά στις πλέον διαδεδομένες τετραγωνικές μεθόδους μονοδιάστατης βελτιστοποίησης, πιο συγκεκριμένα στις μεθόδους Μέγιστης Μείωσης, Newton, Διχοτόμησης, Fibonacci και Αναζήτησης Χρυσής Τομής. Τις μεθόδους κλίσης ακολουθούν οι μέθοδοι συζυγών κατευθύνσεων, που επιχειρούν ταχύτερη σύγκλιση και μείωση της πολυπλοκότητας. Στη συνέχεια περιγράφονται μέθοδοι μεταβλητής μετρικής, όπως η τροποποιημένη μέθοδος Newton, η Secant και ένας συνδυασμός των μεθόδων Μέγιστης Μείωσης και Newton. Η εργασία ολοκληρώνεται με την παρουσίαση μη τετραγωνικών προτύπων, όπως οι Καμπυλόγραμμες Τροχιές, η μέθοδος Jacobson-Oksman καθώς και Κωνικές Μέθοδοι. / This master course essay presents some of the most popular non-linear optimization methods. It refers both to the theory and the practice of each method, describes when each method is most efficient to be used, offers some convergence information and provides some comments about the comparison of the methods. Firstly, there is a reference of basic optimization theory which is followed by a detailed description of the most widely known quadratic optimization methods, such as Steepest Descent, Newton, Interval Halving, Fibonacci and Golden Section Search. Next section refers to Conjugate Direction methods which tend to be more efficient and converge faster. These are followed by Quasi-Newton methods, such as variations of the Newton method, Secant and a combination of Steepest Descent and Newton. Finally, some non-quadratic methods are presented, such as Jacobson-Oksman method and conic methods.
6

Κλάσεις καθολικών και αμφιμονοσήμαντων συναρτήσεων

Κουτρουμπούχου, Άννα 27 August 2008 (has links)
Το αντικείμενο αυτής της εργασίας είναι η μελέτη κάποιων κλάσεων καθολικών συναρτήσεων. Οι κλάσεις αυτές περιέχουν συναρτήσεις μιας μιγαδικής μεταβλητής, οι οποίες πραγματοποιούν εντυπωσιακές προσεγγίσεις πάνω σε συμπαγή υποσύνολα του μιγαδικού επιπέδου. Πιο συγκεκριμένα, θα ασχοληθούμε με δύο κλάσεις καθολικών σειρών Taylor, και με μία κλάση καθολικών συναρτήσεων ως προς τις παραγώγους. Καθολική σειρά Taylor, με την έννοια του Β. Νεστορίδη, ονομάζουμε μία συνάρτηση f , ολόμορφη σε κάποιο ανοιχτό σύνολο Ω ⊂ 􀀀 , η οποία με τη βοήθεια των μερικών αθροισμάτων του αναπτύγματος Taylor γύρω από ένα κέντρο ζ∈Ω, προσεγγίζει όλα τα πολυώνυμα ομοιόμορφα στα συμπαγή υποσύνολα του Ωc , με συνεκτικό συμπλήρωμα. Αυτή την κλάση συναρτήσεων την συμβολίζουμε με U(Ω,ζ). Επιπλέον υπάρχει η ασθενέστερη κλάση 1 U (Ω,ζ) , των καθολικών σειρών Taylor με την έννοια του Luh, η οποία περιέχει συναρτήσεις που πραγματοποιούν του ίδιου τύπου προσεγγίσεις, αλλά μόνο σε συμπαγή υποσύνολα του c Ω . Στο πρώτο κεφάλαιο, παρουσιάζουμε κάποια γενικά αποτελέσματα, που είναι προαπαιτούμενα για ότι θα ακολουθήσει. Πιο συγκεκριμένα, διατυπώνουμε και αποδεικνύουμε το κλασσικό θεώρημα Baire που ισχύει σε πλήρεις χώρους καθώς και κάποια τοπολογικά λήμματα που ισχύουν στο μιγαδικό επίπεδο. Το πρώτο λήμμα είναι ένα κλασσικό αποτέλεσμα που μας εξασφαλίζει την ύπαρξη εξαντλούσας ακολουθίας συμπαγών συνόλων ενός ανοιχτού υποσυνόλου του 􀀀 , με κατάλληλες ιδιότητες. Το δεύτερο λήμμα είναι ένα πιο ειδικό και τεχνικό αποτέλεσμα, οφείλεται στον Β.Νεστορίδη και θεωρείται σημαντικό βήμα στην μελέτη των καθολικών σειρών Taylor. Επίσης, αναφέρουμε τα γνωστά προσεγγιστικά θεωρήματα των Runge και Mergelyan με την βοήθεια των οποίων, μπορούμε να μελετάμε μόνο τα πολυώνυμα και να έχουμε αποτελέσματα που ισχύουν σε γενικότερες συναρτήσεις. Στο δεύτερο κεφάλαιο θα παρουσιάσουμε την απόδειξη του Β. Νεστορίδη, ότι η κλάση U(Ω,ζ) είναι Gδ και πυκνό υποσύνολο του Η(Ω), με την τοπολογία που αναφέραμε παραπάνω. Το αποτέλεσμα αυτό είναι ιδιαίτερα εντυπωσιακό, διότι μας αποκαλύπτει ότι με μερικά αθροίσματα αναπτύγματος της ίδιας συνάρτησης, μπορούμε να προσεγγίσουμε όλα τα πολυώνυμα πάνω σε μια πολύ μεγάλη κλάση συμπαγών υποσυνόλων. Στο κεφάλαιο 3, θα παρουσιάσουμε την απόδειξη ότι η κλάση (Ω) der U είναι Gδ και πυκνό υποσύνολο στο Η(Ω). Όπως το παραπάνω αποτέλεσμα, έτσι και αυτό έχει ιδιαίτερο ενδιαφέρον, αφού μας εξασφαλίζει την ύπαρξη πολλών συναρτήσεων στην κλάση (Ω) der U . Το τελευταίο κεφάλαιο αποτελεί το κύριο μέρος της παρούσας εργασίας. Βασικός στόχος μας είναι να αποδείξουμε την ύπαρξη 1-1 συναρτήσεων στην τομή των κλάσεων 1( , ) ( ) der UΩζ IU Ω (βλ.[5]). Σημειώνουμε ότι για αυτό το αποτέλεσμα πρέπει το Ω να είναι ειδικότερα χωρίο Jordan. Στην 3 βιβλιογραφία έχει αποδειχτεί ότι η κλάση U(D,0) δεν περιέχει 1-1 συναρτήσεις, και μάλιστα είναι ξένη με την κλάση Nevanlinna οπότε δεν περιμένουμε από τις συναρτήσεις αυτές να έχουν καλές ιδιότητες (βλ.[14]). Αντίθετα το αποτέλεσμα που παρουσιάζουμε υποδηλώνει ότι το φαινόμενο αυτό δεν εμφανίζεται στις υπόλοιπες δύο κλάσεις καθολικών συναρτήσεων και δείχνει πόσο διαφορετική είναι η κλάση U(Ω,ζ) από την κλάση U1(Ω,ζ ). / -
7

Κριτήρια ελέγχου πολυδιάστατης συμμετρίας με βάση την εμπειρική χαρακτηριστική συνάρτηση

Μαλεφάκη, Σωτηρία 25 August 2010 (has links)
- / -
8

Σχεδίαση και υλοποίηση σε FPGA, αρχιτεκτονικών πολλαπλών λειτουργιών χαμηλής επιφάνειας ολοκλήρωσης, για κρυπτογραφικές συναρτήσεις κατακερματισμού

Κομηνέας, Θεόδωρος 31 August 2012 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται σχεδιασμούς και υλοποιήσεις σε υλικό αρχιτεκτονικών για κρυπτογραφικές συναρτήσεις κατακερματισμού. Στόχος ήταν η ανάπτυξη αρχιτεκτονικών πολλαπλών λειτουργιών για συναρτήσεις κατακερματισμού της οικογένειας Secure Hash Algorithms (SHA). Αναλυτικότερα, αρχικά έλαβε χώρα μελέτη τριών συναρτήσεων κατακερματισμού, και συγκεκριμένα των SHA-1, SHA-256 και SHA-512, καθώς και των αντίστοιχων αρχιτεκτονικών τους (τέσσερα στάδια pipeline). Στη μελέτη αυτή έγινε ανάλυση και εντοπισμός ομοιοτήτων και διαφορών των αρχιτεκτονικών αυτών, όσον αφορά τα δομικά τους στοιχεία και τις επιμέρους παραμέτρους τους. Με βάση τα αποτελέσματα αυτά, και αξιοποιώντας τις ομοιότητες των αρχικών αρχιτεκτονικών, σχεδιάστηκαν δύο αρχιτεκτονικές πολλαπλών λειτουργιών με τέσσερα στάδια pipeline: α) η SHA-1/256 που ενσωματώνει τις λειτουργίες των SHA-1 και SHA-256 αλγορίθμων και b) η SHA-1/256/512 που ενσωματώνει τις λειτουργίες και των τριών. Λόγω της παραπάνω αξιοποίησης, οι αρχιτεκτονικές αυτές παρουσιάζουν μικρή απώλεια σε ταχύτητα, ενώ ταυτόχρονα η επιφάνεια ολοκλήρωσης κρατείται σε χαμηλά επίπεδα. Η ορθή λειτουργία των παραπάνω αρχιτεκτονικών επιβεβαιώθηκε, αρχικά, μέσω εξομοίωσης με το ModelSim της Mentor Graphics, Στη συνέχεια, εκτελέστηκε σύνθεση και place-&-route των αρχιτεκτονικών σε FPGAs της Xilinx (οικογένειες Virtex-4, Virtex-5, Virtex-6) με χρήση της σουίτας Xilinx ISE Design Suite v12.1, από όπου προέκυψαν οι μετρικές της απόδοσής τους (συχνότητα, επιφάνεια, ρυθμαδόποση). Τέλος, πραγματοποιήθηκε, ενδεικτικά, υλοποίηση της αρχιτεκτονικής SHA-1/256 στο board Spartan 3E (xc3s500E) και εκ νέου επιβεβαίωση της ορθής λειτουργίας. / This thesis deals with the design and implementation in hardware architectures for cryptographic hash functions. The aim was to develop multi-mode architectures for the Secure Hash Algorithms (SHA) famylies. Specifically, the study initially held three hash functions, namely SHA-1, SHA-256 and SHA-512, as well as their respective architectures (four-stage pipeline). This study has analyzed and identified similarities and differences of these architectures, on their components and sub-parameters. Based on these results, and using the similarities of the original architecture, we designed two multi-mode architectures with four-stage pipeline: a) SHA-1/256 that integrates the functions of the SHA-1 and SHA-256 algorithms and b) the SHA -1/256/512 incorporating the functions of all three. Due to the above use, the architectures have little loss in speed, while the chip area is kept low. The proper functioning of these architectures was, initially, through simulation with ModelSim (Mentor Graphics), then performed synthesis and place-&-route architectures of FPGAs to Xilinx (families of Virtex-4, Virtex-5, Virtex-6) using the Xilinx ISE Design Suite v12.1, from which emerged the metrics of performance (frequency, area, throughput). Finally, for demonstration reasons, an implementation of the architecture SHA-1/256 board Spartan 3E (xc3s500E) and re-confirmation of its correct operation took place.
9

Από τη μοντελοποίηση προβλήματος στην αναπαράσταση διμελών σχέσεων και συναρτήσεων στο επίπεδο: Μία μελέτη περίπτωσης στα Μαθηματικά του Γυμνασίου

Πύρρης, Βασίλειος 07 June 2013 (has links)
Η εργασία αναφέρεται στη διδασκαλία των μαθηματικών στο Γυμνάσιο και ιδιαίτερα στη διδασκαλία της μοντελοποίησης καθώς και στις σχέσεις και συναρτήσεις στο επίπεδο R2. Για τη συγγραφή της πραγματοποιήθηκε διδακτικό πείραμα σε ένα τμήμα της Γ΄ τάξης του Πειραματικού Γυμνασίου του Πανεπιστημίου Πατρών. Κατά τη διεξαγωγή του πειράματος δόθηκε στους μαθητές ένα πραγματικό πρόβλημα με δικές μας επιμέρους διδακτικές επιλογές και διαχείριση της τάξης. Μέσω των απαντήσεων που μας έδωσαν οι μαθητές, επιχειρούμε να κάνουμε γενικές παρατηρήσεις και να εξαγάγουμε συμπεράσματα για περαιτέρω διδακτική αξιοποίηση. / --
10

k-Γάμμα και k-Βήτα συναρτήσεις

Σουρλά, Βασιλική 18 June 2014 (has links)
Στην παρούσα διπλωματική εργασία γίνεται μία (όσο το δυνατόν καλύτερη) καταγραφή των γνωστών αποτελεσμάτων, καθώς επίσης και αποτελεσμάτων που αφορούν τις k -ζήτα συναρτήσεις και k -υπεργεωμετρικές. Επιπλέον δίνουμε και νέες ανισότητες για τις Γk(x) και Bk(x, y) συναρτήσεις. / --

Page generated in 0.0299 seconds