Spelling suggestions: "subject:"“ecodesign”"" "subject:"“ecodesigns”""
31 |
Product design: A conceptual development of product remanufacturing indexDixit, Swapnil B 01 June 2006 (has links)
In light of increasing pressure from environmental safety advocate groups and governments for eco-friendly manufacturing, safe after life product & waste disposal has had strong emphasizes in the past several years. Industrial manufacturers are becoming more and more responsive towards environment safety concerns. These efforts are being reflected by concepts such as green design or environmentally responsible design and manufacturing (ERDM). The key research areas in the 21st century for reducing the toll on the environment will be material recycling, controlled waste disposal (including fluids and gases) and remanufacturing. Remanufacturing offers a dual advantage over material recycling. First the geometrical form of the product and the functional capabilities are restored with fairly low costs.
Second, it reduces the need for dumping or disposal, making it better for the environment Remanufacturing is also an avenue to enforce product take back which has become important for the integrating environmental considerations. Remanufacturing can be lucrative and thus a motivating factor for the profit oriented industrial community.The work in this research is based on making remanufacturing more distinctive in terms of product design. An approach that incorporates remanufacturing principles at the product design inception phase can be highly beneficial in the context of after life processing of product. The approach used in this research is one of determining a suitable method of calculating the remanufacturing index (RI). The remanufacturing index of a product serves as a beforehand indication of the degree of the efforts return a product to its original geometrical shape and functional capabilities.
This index will provide an insight at the time of initial design of a particular product for understanding afterlife scenarios, which might help to reduce waste, save energy, virgin material, and other resources.The remanufacturing index formulation devised in this research considers all the major aspects of product after life, including disassembly, recycling and other damage correction efforts. This research offers modular analyses of a product for the purpose of remanufacturing. The index is a collection of interfacing elements such as inspection, damage correction and environmental impact. It considers all possible after life aspects of a product and combines them in a systematic manner to give a fair outlook of efforts to remanufacture.
|
32 |
Creative eco-effectivenessRios Velasco Urrutia, Clara Cecilia 22 November 2010 (has links)
My research is focused upon what industrial designers can contribute in order to
mitigate environmental problems often caused by their designs. The intent is to
propose a procedure to integrate eco-effectiveness at the beginning of the
design process, to consider it at each stage of the product’s lifecycle, and to
measure that product’s environmental performance in order to make informed
design decisions. At each stage the designer can follow this flexible process,
which is intended to work in conjunction with individual creative methods while
prioritizing the need for eco-effectiveness. The goal is to develop a procedure
that is simple enough for designers to use every day and that could also provide
means of verification, rather than relying on assumptions and good intentions.
I acknowledge that efforts from a single discipline are not enough. In order to
address the environmental challenges we face today, collaboration among
disciplines will be necessary, as well as a change of behavior and attitudes
towards consumption. This is my contribution. / text
|
33 |
Product Related Environmental Work in Small and Medium Sized Enterprises in Thailand, Developing and Manufacturing Electrical and Electronic ProductsJonsson, Fredrik January 2007 (has links)
Small and Medium Sized Enterprises (SMEs) in Thailand that develop and manufacture electrical and electronic products are among other SMEs in the world meeting increasingly stringent legal and customer requirements related to environmental issues. Obstacles for the SMEs around the world to meet these requirements are almost the same in form of lack of knowledge, budget and resources. The differences between SMEs in Thailand and SMEs in the EU, Japan or even Korea are that these countries have been developed the eco-design concept and SMEs have been involved in eco-design activities for many years. This process and activities are new both for the SMEs and for the supporting institutes and organisations in Thailand. Thailand has just started to build up the infrastructure to support the SMEs to implement the eco-design concept and to work more with product related environmental issues. The focus right now for the SMEs in this research is to comply with the EU Directives, RoHS and WEEE, and this is where the main investments are made, e.g. in order to be able to export to the demanding EU market. This research is investigating what kind of environment demands that SMEs in Thailand that develop and manufacture electrical and electronic products have on their products, how they handle these requirements and also what obstacles there are for implementing a more product related environmental concept, also known as eco-design, Design for the Environment (DfE), Green Design or Environmentally Oriented Design. A research in form of interviews and factory visits has been done with five different SMEs in Thailand. These five SMEs have also participated in the first official eco-design projects in Thailand with funding from the government in Thailand and also some from the EU. Interviews have been conducted with involved parties in these project such as institutes and experts provided by Universities. These interviews were made in order to get their opinion and experience about the present situation for SMEs in Thailand that develop and manufacture electrical and electronic products to work with product related green issues. The research shows that these companies have the possibilities and conditions to work further on with the eco-design concept in the future. Their participation in the eco-design projects has been a good experience and there is evidence of strong support from the management and owners, environmental awareness, pro-active work and motivation among the companies. The obstacles are as mentioned above concerning lack of resources, knowledge and experience of how these environmental demands and requirements will affect the product development process. This lack of experience depends mostly on the fact that these eco-design projects are the first projects in this field for the companies. These five companies have now built up a fundamental knowledge but are still in need of further support. The communication between the SMEs and supporting parties are important and also one factor these five companies think is functioning well.
|
34 |
Vers l’éco-conception des piles à combustible : développement d'un procédé de recyclage des catalyseurs des systèmes de PEMFC à base de platine / Fuel cells eco-designDuclos, Lucien 04 October 2016 (has links)
Les piles à combustible (PAC) de type PEMFC permettent d’assurer la conversion d’énergie chimique en énergie électrique en utilisant de l’hydrogène pouvant être produit à partir de sources renouvelables. La catalyse des réactions mises en jeu lors de cette conversion d’énergie nécessite l’utilisation de platine, dont les ressources sont faibles et la production (extraction et raffinage) complexe. De plus, du fait de son prix élevé, ce métal représente une part importante du coût de production des PEMFC. Aujourd’hui, le prix de cette technologie doit être réduit pour qu’elle soit économiquement compétitive et puisse être commercialisée à grande échelle. En outre, les charges en platine dans les électrodes de piles à combustible ne peuvent être réduites significativement sans altération de la performance et de la durabilité de ces systèmes. Donc, le développement d’une filière de recyclage pour assurer la récupération du Pt en fin de vie des PAC pourrait permettre une réduction du coût de production des PEMFC.Cette thèse a consisté à mettre en place une voie de recyclage du platine d’assemblages membrane-électrodes (AME) de PEMFC. Un procédé hydrométallurgique composé des étapes suivantes : (i) lixiviation, (ii) séparation et (iii) récupération du platine a été développé. Différentes alternatives de lixiviation (HCl/H2O2, HCl/HNO3), de séparation (par résine ou solvant), de récupération (sous forme de nanoparticules ou de sel) ont été testées. Le fonctionnement de ces processus de récupération du platine a alors été optimisé à partir de produits modèles (Pt/C et solutions synthétiques). Le choix de ces derniers a ensuite été orienté grâce à une étude d’analyse du cycle de vie (ACV) réalisée à l’échelle de l’AME.Enfin, 76% du platine contenu dans des AME composées de catalyseurs Pt-Co a pu être récupéré. Ce rendement a pu être obtenu après mise en place du procédé composé des étapes suivantes : (i) dissolution du Pt par lixiviation avec le mélange HCl/H2O2, (ii) séparation du cobalt sur résine échangeuse d’ions, (iii) récupération sous forme de nanoparticules par la voie polyol. Les résultats finaux d’ACV ont montré que le recyclage du platine permettrait une nette réduction des impacts environnementaux du cycle de vie d’AME de PEMFC. / The proton exchange membrane fuel cells (PEMFC) can be used to convert chemical energy into electrical energy using hydrogen which can be produced from renewable sources. Platinum (Pt) is the best catalyst used to perform PEMFC electrochemical reaction catalysis. However Pt resources are low and his production (extraction and refining) is complex. Moreover the platinum price represents an important part of the PEMFC stack cost. Nowadays this technology is too expensive to be competitive with conventional energy conversion systems, and cannot be commercialized at a large scale. In addition, PEMFC electrode platinum loading could not be reduced without affecting the system performance and durability. Thus PEMFC production cost could be reduced by recovering platinum from used fuel cells.The main goal of this thesis was to develop a platinum recovery way from fuel cells membrane electrodes-assemblies (MEAs). In order to achieve this objective the following steps were combined in a hydrometallurgical process: (i) leaching, (ii) separation, (iii) recovery. Several alternatives were tested for each step: leaching (HCl/H2O2, HCl/HNO3), separation (resin or solvent), and platinum recovery (as nanoparticles or as a complex). These platinum recovery steps were optimized using Pt/C catalysts and synthetic solutions. Then life-cycle analysis (LCA) methodology has been used to help with the process selection.Finally, about 76% of the platinum contained in multi-metallic catalysts (PtCo/C) MEAs has been recovered. The following path has been followed in this case: (i) dissolution in HCl/H2O2 solution, (ii) separation from cobalt with an ion exchange resin, (iii) recovery has nanoparticles using the polyol process. The LCA study final results showed that a significant reduction of PEMFC MEA life-cycle environmental impact could be achieved by recycling Pt at these systems end-of-life.
|
35 |
Caractérisation des process de fabrication microélectroniques pour l'éco-conception des futures technologies (partenaire industriel STMicroelectronics) / Environmental characterization of the microelectronic manufacturing processes for the technologies eco-designBaudry, Ingwild 14 October 2013 (has links)
L'industrie microélectronique est engagée depuis longtemps dans des mesures visant à réduire ses impacts sur l'environnement, et ce sur toutes les phases du cycle de vie de ses produits. Sur les sites de fabrication, la suite logique à la mise en place de système de traitement des pollutions est l'anticipation de ces dernières. L'éco-conception des technologies microélectroniques, c'est-à-dire l'intégration de paramètres environnementaux dans leur processus de développement, permet de répondre à cet objectif. Notre travail de recherche a pour but de caractériser environnementalement les procédés de fabrication microélectronique afin de proposer des outils et méthodes pour leurs concepteurs. Nous avons donc modélisé une technologie microélectronique, et associé des impacts environnementaux aux flux entrants et sortants. Cela nous a permis de proposer des indicateurs environnementaux destinés à la R&D et adaptés à un site de développement et de production microélectronique. / The microelectronic industry has been engaged for a long time in measures to reduce its impacts on the environment, regarding all the life cycle phases of its products. For the manufacturing sites, the logical follow-ups to the implementation of pollutions treatment systems are their anticipation. The eco-design of microelectronic technologies, that is the integration of environmental parameters in their development process, enables to meet this objective. The aim of our research work is to environmentally characterize the microelectronic manufacturing processes to propose tools and methods for their designers. Therefore, we modeled a microelectronic technology, and we matched environmental impacts with its inputs and outputs. This allows us to suggest environmental indicators for the R&D, which are adapted to a microelectronic development and manufacturing site.
|
36 |
Mise en oeuvre de l'éco-conception pour des systèmes industriels complexes : de l'ACV par scénarios à la définition d'un portefeuille de projets de R&D éco-innovants / Eco-design implementation for complex industrial system : From scenario-based LCA to the definition of an eco-innovative R&D projects portfolioCluzel, François 27 September 2012 (has links)
Face à l’émergence des problématiques environnementales issues des activités humaines, l’écoconception s’attache à offrir une réponse satisfaisante dans le domaine de la conception de produits et services. Cependant, lorsque les produits considérés deviennent des systèmes industriels complexes, caractérisés entre autres par un grand nombre de composants et sous-systèmes, un cycle de vie extrêmement long et incertain, ou des interactions complexes avec leur environnement géographique et industriel, un manque évident de méthodologies et d’outils se fait ressentir. Ce changement d’échelle apporte en effet des contraintes différentes aussi bien dans l’évaluation des impacts environnementaux générés au cours du cycle de vie du système (gestion et qualité des données, niveau de détail de l’étude par rapport aux ressources disponibles…) que dans l’identification de réponses adaptées (gestion de la multidisciplinarité et des ressources disponibles, formation des acteurs, inclusion dans un contexte de R&D très amont…). Cette thèse vise donc à développer une méthodologie de mise en œuvre d’une démarche d’éco-conception de systèmes industriels complexes. Une méthodologie générale est tout d’abord proposée, basée sur un processus DMAIC (Define, Measure, Analyse, Improve, Control). Cette méthodologie permet de définir de manière formalisée le cadre de la démarche (objectifs, ressources, périmètre, phasage…) et d’accompagner rigoureusement l’approche d’écoconception sur le système considéré. Une première étape d’évaluation environnementale basée sur l’Analyse du Cycle de Vie (ACV) à haut niveau systémique est ainsi réalisée. Etant donnée la complexité du cycle de vie considéré et la variabilité d’exploitation d’un système industriel d’un site à l’autre, une approche par scénario est proposée afin d’appréhender rapidement l’étendue possible des impacts environnementaux. Les scénarios d’exploitation sont définis à l’aide de la matrice SRI (Stranford Research Institute) et intègrent de nombreux éléments rarement abordés en ACV, comme la maintenance préventive et corrective, la mise à niveau des sous-systèmes ou encore la modulation de la durée de vie du système en fonction du contexte économique. A l’issue de cette ACV les principaux postes impactants du cycle de vie du système sont connus et permettent d’entreprendre la seconde partie de la démarche d’éco-conception centrée sur l’amélioration environnementale. Un groupe de travail multidisciplinaire est réuni lors d’une séance de créativité centrée autour de la roue de la stratégie d’éco-conception (ou roue de Brezet), un outil d’éco-innovation peu consommateur de ressources et ne nécessitant qu’une faible expertise environnementale. Les idées générées en créativité sont alors traitées par trois filtres successifs, qui permettent : (1) de présélectionner les meilleurs projets et de les approfondir ; (2) de constituer un portefeuille de projets de R&D par une approche multicritère évaluant leur performance environnementale, mais également technique, économique et de création de valeurs pour les clients ; (3) de contrôler l’équilibre du portefeuille constitué en fonction de la stratégie de l’entreprise et de la diversité des projets considérés (aspects court/moyen/long terme, niveau systémique considéré…). L’ensemble des travaux a été appliqué et validé chez Alstom Grid sur des sous-stations de conversion électrique utilisées dans l’industrie de l’aluminium primaire. Le déploiement de la méthodologie a permis d’initier une démarche solide d’écoconception reconnue par l’entreprise et de générer au final un portefeuille de 9 projets de R&D écoinnovants qui seront mis en œuvre dans les prochains mois. / Face to the growing awareness of environmental concerns issued from human activities, eco-design aims at offering a satisfying answer in the products and services development field. However when the considered products become complex industrial systems, there is a lack of adapted methodologies and tools. These systems are among others characterised by a large number of components and subsystems, an extremely long and uncertain life cycle, or complex interactions with their geographical and industrial environment. This change of scale actually brings different constraints, as well in the evaluation of environmental impacts generated all along the system life cycle (data management and quality, detail level according to available resources…) as in the identification of adapted answers (management of multidisciplinary aspects and available resources, players training, inclusion in an upstream R&D context…). So this dissertation aims at developing a methodology to implement ecodesign of complex industrial systems. A general methodology is first proposed, based on a DMAIC process (Define, Measure, Analyse, Improve, Control). This methodology allows defining in a structured way the framework (objectives, resources, perimeter, phasing…) and rigorously supporting the ecodesign approach applied on the system. A first step of environmental evaluation based on Life-Cycle Assessment (LCA) is thus performed at a high systemic level. Given the complexity of the system life cycle as well as the exploitation variability that may exist from one site to another, a scenario-based approach is proposed to quickly consider the space of possible environmental impacts. Scenarios of exploitation are defined thanks to the SRI (Stanford Research Institute) matrix and they include numerous elements that are rarely considered in LCA, like preventive and corrective maintenance, subsystems upgrading or lifetime modulation according to the economic context. At the conclusion of this LCA the main impacting elements of the system life cycle are known and they permit to initiate the second step of the eco-design approach centred on environmental improvement. A multidisciplinary working group perform a creativity session centred on the eco-design strategy wheel (or Brezet wheel), a resource-efficient eco-innovation tool that requires only a basic environmental knowledge. Ideas generated during creativity are then analysed through three successive filters allowing: (1) to pre-select and to refine the best projects; (2) to build a R&D projects portfolio thanks to a multi-criteria approach assessing not only their environmental performance, but also their technical, economic and customers’ value creation performance; (3) to control the portfolio balance according to the company strategy and the projects diversity (short/middle/long term aspect, systemic level…). All this work was applied and validated at Alstom Grid on electrical conversion substations used in the primary aluminium industry. The methodology deployment has allowed initiating a robust eco-design approach recognized by the company and finally generating a portfolio composed of 9 eco-innovative R&D projects that will be started in the coming months.
|
37 |
Application de l’analyse du cycle de vie lors de la conception de matériaux poreux à partir de la biomasse / Life cycle assessment approach for the eco-design of bio-based porous materialsFoulet, Amandine 09 October 2015 (has links)
La liqueur noire est produite en grande quantité dans les papeteries, en co-produit de la pâte à papier. Issue de la transformation du bois, elle représente une source importante de biopolymères non concurrentielle à l’industrie alimentaire. Par dispersion d’une phase organique dans la liqueur noire, des émulsions concentrées et stables ont été obtenues. Parmi les phases dispersées envisagées, l’huile de ricin et le 1,2-dichloroéthane ont été les plus adaptées. Par polymérisation de ces émulsions concentrées, la liqueur noire a permis d’obtenir des matériaux poreux appelés polyECs. L’analyse du cycle de vie a été appliquée tout au long de la préparation des polyECs et a montré que l’utilisation du 1,2-dichloroéthane, en tant que phase dispersée, serait moins néfaste pour l’environnement que l’utilisation de l’huile de ricin. Après pyrolyse, la matrice polymère des polyECs est devenue carbonée pour donner des carbones poreux, les carboECs. Grâce à leur structure microporeuse et mésoporeuse, ces carboECs biosourcés présentent un intérêt pour le stockage d’énergie, notamment les supercondensateurs. Des essais préliminaires ont montré que les performances électrochimiques des carboECs étaient comparables à la littérature. De par le choix d’un co-produit issu de la biomasse comme matière première, l’élaboration des carboECs de liqueur noire s’inscrit dans une démarche d’éco-conception. Afin de vérifier cette démarche, les carboECs issus de liqueur noire ont été comparés à des carboECs issus de poly(styrène-co-divinylbenzène), par l’analyse du cycle de vie. Cette étude comparative a montré que le procédé basé sur la liqueur noire aurait un profil écologique plus avantageux que le procédé dit pétrochimique. / Black liquor is a by-product of paper pulp production and is daily produced in large quantities. Non-competitive to the food industry, this wood-based by-product is an important source of biopolymers. Black-liquor based concentrated and stable emulsions were obtained by dispersing an organic phase into black liquor. Among the considered dispersed phases, castor oil and ethylene dichloride were the most suited. Similar materials were prepared by polymerising the concentrated emulsions containing those dispersed phases. The obtained porous monoliths, called polyECs, were compared by life cycle assessment. The results showed that using ethylene dichloride as the dispersed phase was more beneficial for the environment than using castor oil. Through pyrolysis, the polymeric matrix of the polyECs was processed into carbon to produce carboECs. The bio-based porous carbons presented a microporous and a mesoporous structure that is of interest for energy storage, in particularly supercapacitors. The exploratory tests showed that the carboECs efficiency as supercapacitors were similar to what found in literature. The choice of black liquor as the main raw material was made through an eco-design approach. To comfort that approach, the black-liquor-based carboECs were compared to a poly(styrene-co-divinylbenzene)-based carboECs using life cycle assessment. This study showed that using black liquor instead of styrene/divinylbenzene is beneficial.
|
38 |
Développement méthodologique pour la mise en oeuvre d’une démarche participative d’éco-quali-conception appliquée aux systèmes de production viticoles. / Methodological development for the implementation of a participatory eco-quali-conception® approach applied to wine production systemsRouault, Anthony 12 March 2019 (has links)
Pour satisfaire de nouvelles exigences, notamment environnementales, la reconception des systèmes agricoles doit intégrer de nouveaux objectifs, modifier la façon dont les concepts et connaissances sont mobilisés et renouveler les méthodes d’évaluation et critères utilisés (Meynard et al., 2012). L’éco-conception vise à intégrer des aspects environnementaux dans la conception d’un produit (ISO 14006) et peut donc répondre à ces besoins et permettre de concevoir des systèmes agricoles éco-efficients. L’Analyse du Cycle de Vie (ACV) est une méthode d’évaluation environnementale recommandée pour outiller les démarches d’éco-conception. Par ailleurs, en France, où 93% de la production viticole est vendue sous signe de qualité (INAO, 2016), la qualité est souvent aussi importante que le rendement dans la définition des objectifs de production viticoles. Ce travail de thèse explore l’intérêt et les modalités d’un rapprochement entre l’écoconception et les démarches de co-conception de systèmes de culture. La problématique est ainsi articulée en trois temps : i) Pourquoi et comment mettre en place une démarche participative d’éco-conception en agriculture ? ii) ACV et démarche participative d’écoconception en viticulture : quelles questions et solutions méthodologiques ? iii) Comment intégrer un objectif de qualité du raisin à une démarche d’éco-conception en viticulture ? Ces questions ont été explorées au travers de la mise en place d’une démarche participative d’éco-conception intégrant viticulteurs et conseillers viticoles. Cette démarche a été définie et appliquée avec deux groupes de viticulteurs et leurs conseillers viticoles dans la vallée de la Loire. / To address new challenges, including environmental ones, the redesign of agricultural systems must incorporate new objectives, change the way concepts and knowledge are mobilized and renew the evaluation methods and criteria used (Meynard et al., 2012). Eco-design aims to integrate environmental aspects into the design of a product (ISO 14006) and can therefore meet these needs and make it possible to design ecoefficient agricultural systems. Life Cycle Assessment (LCA) is a recommended environmental assessment method to support eco-design approaches. Moreover, in France, where 93% of wine production is produced under quality labels (INAO, 2016), quality is often as important as yield in defining wine production objectives. This thesis work explores the interest and modalities of a convergence between ecodesign and co-design of cropping systems. The problem is thus articulated in three stages: i) Why and how can a participatory eco-design approach be implemented in agriculture? ii) LCA and participatory eco-design approach in viticulture: which methodological questions and solutions? iii) How to integrate a grape quality objective into an eco-design approach in viticulture? These questions were explored through the implementation of a participatory eco-design approach involving winegrowers and wine advisors. This approach was defined and applied with two groups of winegrowers and their wine advisors in the Loire Valley.
|
39 |
Implementation Of Eco-Design In Product Development : Knowledge management for effective eco-design implementationFranzén, Oskar, Guo, Liyi January 2021 (has links)
Background: The accumulating concern for environmental change has increased the need for companies to take a closer consideration to the negative impact of their operations. One effective approach to mitigate the impact is to, from the very first stages when a product is developed, analyse the environmental impact of the product’s entire lifecycle from the raw materials extruded from the ground to the disposal of the product. This type of practice is often referred to as eco-design. Unfortunately, the rate of companies implementing these practices are progressing slowly and a truly sustainable society is yet not in reach. Purpose: This study aims to investigate some of the most commonly cited obstacles in previous research. These problems can be concluded as the lack of specialized competencies, regarding the environmental impact of products in design teams. The reason this is problematic is that the practice of eco-design often requires a lot of information to be interpreted by a person with knowledge in the field. Companies have attempts to solve this issue by hiring eco-design specialists, however this often leads to difficulties in communication and disagreements with product developers. Therefore, this relationship between different stakeholders has been the second focus of the thesis. To find solutions to these problems the topic will be investigated from a knowledge management perspective. Method: To begin with, background data was reviewed to give a firm understanding of the topic and to create the basis of the theoretical framework. Later a multiple case study of two companies were performed and empirical data was gathered mainly from interviews. The empirical findings were analysed and compared to the theoretical framework in order to answer the research question. Conclusion: The results show that implementing eco-design in a company's product development can be hard in the implementation phase but when the practices are established the flow of information receives less problems. Furthermore, the hiring of professional eco-designers can be a good choice although they need to be implemented directly into the design teams.
|
40 |
Accelerated Testing: Development of a Normative Lifespan Method for Water-Sports ProductsChaigne, Hoel January 2020 (has links)
In the sports industry, the products currently being developed by design teams are degraded over time due to wear and tear. During the last decade, awareness about the global environmental crisis has increased and sports users are now more demanding about the environmental impact of products and services that they are using. Therefore, people are searching for companies that make durable and sustainable products and services. While the importance of durability regarding the development of a circular economy has been recognized, a concrete concept has not yet been specifically addressed in European product policies. Standards are missing and this research aims to develop a method, where companies from the water-sports industry could follow a step-by-step process to assess the normative lifespan of a product, especially in the early design stages of the product development process. The case study of OLAIAN, the DECATHLON surf brand, has made it possible to develop repeatable long-term quality test protocols on neoprene wetsuits and surfboards to characterize the ageing of these products. A product’s resistance is one of the durability factors that are tested in this method, by creating a database containing the number of uses a product has made and its evolution over time. This case study has allowed the testing of different protocols in co- creation with the surf organizations and explores further the study of a testing phase during the product development process. From these empirical findings, a 10-step method has been designed to estimate the normative lifespan of a product. Globally, the outcomes are intended for the design team, in order to know a product’s resistance over time and its weaknesses, thus being able to improve and further its lifespan. A second outcome is to fulfill information to complete studies on durability. Therefore, increase the reliability of Life Cycle Analysis and observe where is the biggest environmental impact in the product’s process (from inception to recycling) to take actions. This also helps to know more precisely the temporal warranty that companies can promise to their customers, and it completes studies on environmental indicators display to guide consumers to more sustainable choices. This study aims to allow in the future, sports organizations certified by Standardization organization for testing of products and the assessment of their durability. Further research on sensors or electronic devices, to more precisely follow the evolution of product during field- testing would be very relevant. As this thesis focused on field-testing for the reliability of products, based on these results further research in statistical models to support failures analysis in accelerated lab-testing must be implemented. Another opportunity is the emergence of platforms and product-service systems in the sports field. This could open up opportunities to have products used at a high frequency and in intense conditions to enable faster feedback on durability.
|
Page generated in 0.0551 seconds